
z87 

A THEOREM IN THE THEORY OF FONCTIONS OF A REAL VARIABLE. 

By W. H. V 0 u n g (Cambridge, Engl.). 

Adunanza del x 4 luglio xgo./. 

Among the many interesting results in DINI'S Functions of a Real Variable not 

the least remarkable is the theorem x) that a function defined for an interval, and 

itself the differential coefficient of another function, possesses one of the most familiar 

properties of a continuous function, viz. that it assumes in every interval every value 

between its upper and lower limits in that interval. 

BAIRE has shewn 2) that the limit of a continuous function necessarily has points 

of continuity everywhere dense, and furthermore that the points of continuity with 

respect to each perfect set are everywhere dense in that set, in other words, the func- 

tion so defined is pointwise discontinuous with respect to every perfect set. The 

particular limit of a continuous function constituted by a differential coefficient preserves 

therefore to a striking degree properties of the function of which it is a limit. The 

question naturally arises. Has the limit of a continuous function in the general case the 

first named of the properties in question ? It is easy to construct examples shewing 
that this is not so a). We are led further to ask. What additional condition must hold 

in order that a function which is the limit of" a continuous function may in every 

interval assume every value between its upper and lower limit in that interval ? 

This question is dealt with in the following note. It is found that the necessary 
and sufficient condition 4) that a junction which is pointwise discontinuous with respect 
to every perfect set in the segment in which it is defined, should assume in every interval 

x) See ~S 141, I47, 17I, x72. 
2) Sur les fonctions de variables rdelles [Annali di Matematica pura ed applicata, serie III, tomo III 

(1899), pp. I-I23] , ~ 22-30; other references in HoBsoN's Functions of a Real Variable (t9o7) , p. 525. 
a) For instance the function which is zero at every irrational point of the segment (o, I), and 

is I at any rational point ~ (p < q and prime to it). 
q q 

4) This condition may be compared with the well known su~icient condition that a function 
may assume its upper (lower) limiting value, viz. that at every point its value ~ (~_~) every limit at 
the point. 
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every value between its upper a~ld lower lbnits in that interval, is that the value oJ the 
function at each point is one of the limits of vahfes in the neighbourhood of the point 
on the right and also one of the limits of vah~es in the neighbourhood of the point on 
the left. 

We thus get incidentally a new proof of DI~qI'S theorem on quite different lines 
from those in his classical treatise. 

2. 

T ~ O R E M -  If f ( x )  is a function which is defined for every point of an interval 
and has the following two properties. 

A) the value f ( x )  at any point P is one of the limits of values in the neighbourbood 
of P on the right and also on the left s): 

B) the function is pointwise discontinuous with respect to every perfect set ('or, which 
is the same, the function is the limit of a continuous function); then 

C) f ( x )  assumes eveJ 7 value k between its upper and lower limits. 
Let S x be the set of points for which f ~ k ,  and S 2 the set for w h i c h f < k ;  

then we shall shew first that (omitting the trivial case in which the upper lower limits 

coincide) both S and S~ are dense in themselves on both sides. 
For, by the definition of upper and lower limit, there witi certainly be at least one 

point in each set. Let P be a po!nt of S ,  and let the value of f there be k + e ;  
then, by A), there is on each side of P a sequence of points having P as limit, such 
that, passing along the sequence, f has the limit k + e, so that after a certain stage 
every point of the sequence must belong to S .  Since this is true on both sides of P, 
P is a limit on both sides for the set S ,  in other words Sx (and similarly $2) is dense 
in itself on both sides. 

If one of the sets, say S,, is not dense everywhere, there is a definite set of 
non-abutting intervals free of points of S~ (viz. the , black intervals ~) of the perfect 
set which is the derived of S) .  Not only do the internal points of these intervals not 
belong to S,, this is true of the end-points also, since these could not he limiting 
points on both sides for the set S~. 

Similarly, if S 2 is not dense everywhere, we get a second set of non-abutting 
black intervals, no point of which, including the end-points, belongs to S 2. 

I t It may be that both these sets of intervals exist, and that one of the first set 
abuts with one of the second set. In this case the common end-point belongs to neither 

S, nor S~, so that the value of the function there is k. 
2) If this is not the case, either neither set of intervals exists, or else all the inter- 

vals so determined from both S and S form a set of non-abutting black intervals, so 

$) At the end-points of the fundamental segment this is to be taken throughout to apply excep- 

tionaUy to one side only. 
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that the points not internal to such intervals form a perfect set U 6),. which, if both 
the sets S, and S 2 are dense everywhere, is the continuum itself. 

Let P be any point of this perfect set U, and d any interval containing P as internal 
point, so that d does not tie entirely inside one of the black intervals of U, and there- 

fore all the points of d do not belong to one only of the sets S and $2. Then we 
can make the same statement of all the points of U in the interval d. For suppose, if 
possible, that all the points of U in d belonged to S .  Then none of the end-points, and 
therefore none of the internal points, of any black intervals lying wholly, or in part, 
inside d, would belong to S 2 ; therefore no point of d would belong to S ,  which, since 
d is not part of a black interval, is not the case. Similarly all the points of U in d are 
not points of S .  Thus inside d there is either a point belonging to neither S, nor $2, 
and this would be a point at which f ~  k, or else there are inside d points of U which 
belong to S and points of U which belong to S~. 

In this latter case it follows that P is a limiting point of points of U where the 
value of f is ~ k, and of points of U where the value of f is < k, so that, if P is a 
point of continuity with respect to the perfect set U, the value of f at P must be 

precisely k. 
Now by B) there is such a point of continuity in the perfect set U, thus it follows 

in this case also that the function actually assumes the value k, which proves the theorem. 

COROLLARY. - -  I f  f is a function satisfying the condition A), but, in some particular 
interval, not assuming every value between its upper and lower limits, then there is a 
perfect set at every point of which the function is discontinuous with respect to that 
perfect set. 

The examples given below shew that the case contemplated in the Corollary is 
a possible one, and that the function may be either totally or only pointwise discon- 
tinuous. 

Condition A) has been proved sufficient in the case of a function which is the 
limit of a continuous function in order that C) may hold, that is in order that in every 
interval the function may assume all values between its upper and lower limits in that 
interval. That it is a necessary condition not only for such a function but for any function 
is easily seen. 

In fact if P be any point at which the value of the function is c, and we take 
with P as left-hand end-point any interval, as small as we please, the function assumes, 
by hypothesis, inside this interval one at least of the values c -a t- e, c - -  e, where e is 

as small as we please. Taking as new interval the left-hand half of the first interval, 
I 1 the function assumes in like manner one at least of the values c 2f_ _; e, c -  ~-e, inside 

6) An end-point of the fundamental segment is to be considered as belonging to U if, and only 
if, it is not an end-point of a black interval. 



19o w.H. YOUNG. 

this interval; whence, by repeated application of this process, we see that the value c 
at P is a limit of values in the neighbourhood of P on the right, and similarly, of 
course, on the left. 

Here we have tacitly assumed that the point P is not internal to an interval in 
which the function is constant, in which case no discussion is required. 

Thus we see finally that the necessary and sud~cient condition that a function which 
is pointwise discontinuous with respect to every perfect set should in ever), interval assume 
every value between its upper and lower limit in that interval, isthat A) should hold. 

The following examples shew that condition A), though necessary is not sufficient 
to insure C )  in the case of a discontinuous function which is not the limit of a con- 
tinuous function. 

EXAMPLE I. - -  Let the rational numbers between 0 and I, both excluded, be ar- 
ranged in countable order, and be R,, R2, R3~ . . . .  

Consider a function which has at every rational point P---with denominator q~---2" 
q 

the value Rn, for all integers n. The values at the remaining points (that is the ir- 

rational points and those rational points P--- whose denominators are not powers of 2) 
q 

may be any values we please between 0 and i. 
Then if x be any point in the segment (0, i), and we describe with x as end- 

point any interval, inside this interval there will be rational points corresponding to 
denominators 2" for all but a finite number of values of n. Therefore inside this in- 
terval the function assumes all but a finite number of values of the series R,, R 2, 
R3~ . . . .  Therefore if y be any value, rational or irrational, between 0 and I, both 
included, the function has the limit y at some point inside the interval. Since this is 
true however large m, and therefore however small the interval may be, it follows 
that one of the limits which we approach in moving towards x from whichever side 
we please is y; in other words, whether we ~.pproach from the right or the left, the 
limits which we obtain for the values of the function in the neighbourhood of any 
point x are all the numbers between 0 and t both included. 

By suitably assigning the values at the remaining points, we can insure that any 
irrational values we please are not assumed by the function thus we see that condi- 
tion A) alone does not insure the result C). 

All these functions are totally discontinuous. The following special cases of the 
type may be noticed. 

i)  Let the value at the remaining points be I. No irrational value is assumed 
by the function, but the function assumes its upper limit in every interval. 

2) Let the value at the remaining points be -}. The same is true as in I), except 

that the upper limit I is not assumed as a value. 
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3) At each of the remaining points x let the function be x. In the whole 
segment (0, i) every value between the upper and lower limits is assumed, but this 
is not true of any partial segment. 

EXAMPLe I I . -  The preceding example shews that condition A) is, in the case 
of a totally discontinuous function, insufficient to secure C). Using the well-known 
correspondence between the continuum and a perfect set nowhere dense, we can de- 
duce that the same is true when the function is pointwise discontinuous. 

Taking, for instance, the typical ternary set of zero content, whose black intervals 
are got by dividing the segment (0, I) into three equal parts and blackening the 
middle segment, and repeating this process in each white segment and infinitum, the 
correspondence is simply got by making both end-points of these black intervals in 
order correspond to the rational points whose denominators are powers of 2, obtained 
in order in like manner by binary instead of ternary division. 

To be more precise, expressing the binary numbers in the scale of 2, the number 

o . e  xe  2g 3 . . .  e n I  

(where each e is either 0 or i), corresponds to the two numbers got by multiplying 

each e by 2, and replacing the terminal I by 2 and by 02 respectively, these numbers 
being interpreted in the scale of 3. 

Each point corresponds to the limit of the points corresponding to rational points 
in its neighbourhood, so that the correspondent of the non-terminating binary number 

o . e  xg2g3 " ' "  

not ending in I, is got by multiplying by 2 and interpreting in the scale of 3. 
If now y be any of these ternary numbers and x the corresponding binary 

number, we take 
F(y) - -  f (x)  

where f(x) is one of the functions constructed in the preceding example. 
At any points of a black interval of the ternary perfect set however, let F have 

the same value as at the end-points of that interval. 
This function F is continuous except at every point of the ternary perfect set, 

at each point of which it is discontinuous with oscillation unity. Since the ternary 
perfect set is dense nowhere, this function is a pointwise discontinuous function, and 
it satisfies condition A); only inside the black intervals of the perfect set, however, 
does C) hold true. 

Ss. 

As above remarked the theorem of ~ 2 is a generalisation of the well-known 
property of a continuous function, viz. that it actually assumes in every interval every 
value between its upper and lower limits, in this case included. 

It is perhaps worth while giving the proof of this property on the lines of that 
in~j 2. 
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The points at which f (x)  is greater than the value k in question are easily seen 
to be infinite in number; they also form a set dcnse in itself on both sides 7)and the- 

refore cannot form a closed set, since they certainly do not fill up the whole segment. 

It follows that all the non-included limiting points of this set are points at which f - - k .  

For, if L be one of these points, then, by hypothesis, f(L) if not equal to k, must be 

less than k, say f ( L ) =  k--e.  But in every interval surrounding L there are points 

at which f ~ k, therefore there is a discontinuity at L with oscillation equal to e or 

greater, which is not true. Therefore f ( L ) =  k. Q.E.D. 

G6ttingen, June I9o 7. 

W. H. YOUNG. 

7) This set is of course formed by the internal points of an interval or a set of intervals. 


