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 

Abstract—Photonics-based multiband radars have been 

demonstrated where photonics is exploited for multiple RF signal 

generation and detection by means of a single optical local 

oscillator that replaces the conventional cascades of electrical 

local oscillators. The ultra-wide band and high stability of 

photonics and the use of a single local oscillator assure very low 

system phase noise and phase coherence among the RF signals. 

This phase coherence among multi-band signals is exploited to 

perform differential phase estimation in enhanced sub-millimeter 

displacement measures. The system employs stepped frequency 

continuous waves simultaneously in the S- and X-band, 

measuring the differential phase over a frequency span up to 

7.4GHz. The high coherence among the two frequency bands, 

provided by the photonic architecture, enables very precise 

displacements measures, allowing to obtain sub-millimeter 

precision without using correction algorithms. 

The presented experimental results demonstrate a precision 

< 200m in a range up to 3km. Moreover, the sharing of the same 

hardware to handle a multi-band operation allows a great 

reduction of size, weight, power and footprint of the overall 

system.  

 
Index Terms— differential phase estimation, dual-band radar. 

microwave photonics, photonic transceiver.  

 

I. INTRODUCTION 

eal-time monitoring of sub-millimeter displacements  is a         

useful task in more and  more applications related to the 

environment monitoring  (displacements of ground or big 

structures) [1], security  (e.g., displacements of buildings) [2], 

or industrial processes (displacement of industrial machineries 

etc.) [3]. As a significant example, the monitoring of landslides 

is a key enabling strategy in order to prevent and reduce 

natural hazards produced by ground failures. They are 

responsible for great damages, as human suffering, huge 

economic losses and environmental degradation [4]. Over the 
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years, many different technologies were employed in order to 

map and control the movement of ground displacements as 

extensometers [5], crack meters [6], inclinometers [7], laser or 

sonar range finders [8], GPS receivers [9], etc. The main 

limitation associated with all these solutions is the inability to 

provide a deformation information on large areas, being used 

only for localized solutions. Moreover, their installation can be 

difficult, expensive and time consuming in order to be 

effective, especially when applied to monitoring of broad and 

inaccessible areas [10]. An alternative and attractive solution 

is the use of a remote sensing approach based on radars, 

capable of overcoming the limitations already mentioned, and 

remotely providing a complete and precise deformation map of 

the whole area under surveillance [11-14].  

 In the recent years, radars for retrieving ground 

displacements were developed and demonstrated to achieve 

very high resolution and long-range capabilities. The 

commercially available radar systems are based on single-band 

differential interferometry [14], with the technique of stepped-

frequency continuous wave (SFCW) [15]. The SFCW 

technique consists on the use of several coherent sine waves in 

a single RF band to illuminate and detect the positions of 

different targets located along the radar line of sight. Through 

differential interferometry, the collected echoes are processed 

by employing differential phase algorithms, which translates 

the phase variations into small displacement measures. The 

combination of several sinusoidal waveforms allows to 

synthesize a large signal bandwidth, which provides improved 

range cell resolution (i.e. the minimum distance among two 

targets to be detected as independent targets), and reduction of 

noise for an enhanced differential phase estimation. An 

important parameter that has a great impact on the phase 

estimation precision is the coherence among the sinusoidal 

waveforms. When there is a high coherence, undesirable phase 

fluctuations between two consecutive observations are 

minimized, and for this reason, the measured phase variations 

will correspond entirely to the range shift of interest. In this 

way, a high coherence can lead to very precise displacements 

measures.  

  Nevertheless, it would be highly desirable to have a 

system operating in a coherent multi-band configuration. This 

feature would strong benefit the displacement measure 

accuracy, due to the possibility of applying the advanced 

interferometric techniques among the different frequency 
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bands and allowing to tune the operative RF carriers for 

adapting the system to the environment (as weather condition 

or observed scenario) and to the range of interest [16]. The 

combination of these characteristics would greatly enhance the 

final accuracy in performing differential phase measurements 

contributing to a reliable early risk detection. 

However, the generation of multi-band signal over a wide 

frequency range by actual electronic systems is a challenging 

task, which greatly increase system complexity and cost [17].  

 Recently, photonics technologies have been introduced in 

the microwave field in order to overcome many of the 

limitations of electronics. Photonics has been demonstrated for 

an efficient  generation and detection of several simultaneous 

coherent high-frequency radiofrequency (RF) signals. In 2013 

and 2014 the first photonics-based coherent single-band [18] 

and dual-band [19] radar system were demonstrated 

respectively. In [19] the system exploits a single highly stable 

optical clock as optical local oscillator for generating and 

detecting (through photonic up- and down conversion of the 

waveforms) all the RF signals with an intrinsic high phase 

coherence among the carriers, allowing coherent multi-band 

radar operations.  

 In this work we take advantage of the novel photonics-based 

multiband radar system in order to perform precise 

displacement measures. The possibility of exploiting more 

than one different band confers improved resolution to the 

system, which combined with the huge bandwidth and 

flexibility of photonics allow to carry out an extended analysis 

based on SFCW and differential interferometry. The obtained 

flexibility refers to the system’s capacity of dynamically tune 

the RF operative carrier in a software defined manner. The 

high phase coherence among the RF carriers allows to reduce 

the complexity, or avoids the use of correction algorithms. 

Finally, a great reduction of the overall system size, weight 

and power consumption (SWaP) is obtained through the use of 

a single transceiver to handle a multi-band approach.  

 This work reports for the first time, for the best of our 

knowledge, the system characterization and the experimental 

results of small displacement measures based on SFCW 

technique and differential interferometry using a photonics-

based dual-band coherent radar operating in S- and X-bands. 

The proposed system suitable for the monitoring of landslides 

or civil structure (buildings, dams, ect.) demonstrates the 

capability of the proposed architecture to reach displacement 

accuracy in the sub-millimeter scale, with a measure error 

lower than < 200m for targets over a range up to 3 km 

without correction algorithms. 

II. OPERATING PRINCIPLE 

The radar exploits the combination of two different 

techniques to determine target displacement and position: 

SFCW and differential interferometry. 

The target is illuminated by several sinusoidal signals, 

coherent to each other, with frequency fn and separation of Δf, 

and the displacement monitoring is based on differential phase 

measurements. Each frequency component of the 

backscattered echo accumulates a different phase shift φn, 

depending on the traveled distance d:  

c

d
fnn

2
2                             (1) 

Thus, for a given range, two frequency separated by f will 

present a relative phase difference  

c

d
f

2
2                            (2) 

so that any change d in the distance induces a phase variation 

, related by the following relationship: 





f

c
d

4
                      (3) 

If the phase varies more than 2, ambiguities come out. In 

fact this kind of technique presents an unambiguous range 

given by: 
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Fig. 1 - (left) Scheme of the photonics-based displacement measure experiment; (right) insets of the spectrum in the highlighted 

points. (A) optical spectrum of the MLL; (B) electrical spectrum of the applied signals; (C) optical spectrum of the modulated 

signals after the MZM; (D) electrical spectrum at the photodiode’s output, with the following RF filters highlighted; € electrical 

spectrum of the filtered RF signals before the wideband amplifier; (F) electrical spectrum of the received signal after the receiver 

PD and after the low-pass filter. 
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Taking into account (3), it’s worth to notice that a given 

precision in the phase estimation corresponds to a different 

accuracy in the range determination depending on f.  

The standard deviation on the phase estimation is given by 

[20]: 

SNR

1
                              (5) 

Where SNR is the Signal-to-Noise Ratio of the received 

signal.  

As the phase estimation accuracy is independent on the 

signal frequency , for a given SNR the higher is the frequency 

difference Δf  more precise is the distance measure (eq. 3), at 

the cost of reducing the unambiguous range (see eq. 4) [21]. In 

this way, the use of high Δf makes possible to detect 

displacements much smaller than a fraction of millimeter [21].  

Furthermore, if N is the number of sinusoids forming the 

SFCW signal, the total signal bandwidth BW is given by: 

fNBW  )1(                     (6) 

As for a radar system, the range cell resolution ΔR, 

achievable by applying standard radar processing algorithms 

on the received signal, is given by the transmitted signal 

bandwidth: 

f
N

c

BW

c
R 





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)1(22
           (7) 

This way the same SFCW signal can be exploited for both 

rough positioning of the target and simultaneous displacement 

measure, even allowing the system to recognize and monitor 

multiple targets at different distance within the antenna beam 

width. 

To this aim, the photonic transceiver, guaranteeing the 

coherence between different RF bands, is able to provide an 

extremely high synthetic frequency, i.e., the combination of  N 

individual sinusoidal tones in order to synthesize a larger 

bandwidth. The high synthetic frequency  combined with the 

low phase noise characteristics, allow a precise differential 

phase estimation, which, as already stated, can be translated 

into very small displacement measures. 

III. PHOTONICS-BASED RADAR SYSTEM FOR DIFFERENTIAL 

PHASE MEASUREMENTS 

The scheme of principle of the multi-band photonics-based 

radar system used to perform differential phase measurements 

is depicted in Fig. 1. The key element of the system is a mode-

locked laser (MLL) which acts as optical local oscillator and 

allows to perform coherent up- and down-conversion of the RF 

signals. In the up-conversion, the MLL generates an extremely 

precise optical pulse train (Fig. 1A) with a repetition rate of 

FMLL=400MHz. The optical modes are then modulated via a 

Mach-Zehnder modulator (MZM) by a direct digital 

synthesizer (DDS), generating two different SFCW waveforms 

at two different intermediate frequencies (IFs), respectively 

IFS=75MHz and IFX= 125MHz, as shown in Fig.1B (S and X 

are referred to the frequency bands of the up-converted 

transmitted signal). By means of the MZM, the waveforms are 

then transferred as lower and upper sidebands around each 

optical mode of the MLL (Fig. 1C). In this way the IF 

spectrum at the input of the MZM, is replicated, in the optical 

domain, every FMLL. In order to avoid aliasing, the sum of the 

intermediate frequencies and their spectral occupancy must be 

less or equal the half of the MLL repetition rate. After the 

MZM, a photodiode (PD) is used to perform the heterodyning 

of all spectral components, which will produce RF signal 

replicas at carrier frequencies CFS=k.FMLL±IFS and 

CFX=m.FMLL±IFX, respectively (Fig. 1D), with k and m 

positive integers. Then, it is possible to select the required up-

converted signals at CFS=2475MHz (S-band) and 

CFX=9875MHz (X-band) by using two electrical band-pass 

filters (BPF), one for each desired band (Fig. 1E). In this way, 

the carrier frequencies can be selected independently among 

the several generated replicas. A wideband RF amplifier 

(WBA) at the end of the transmitter side will boost the RF 

signal, which is going to be transmitted by a Horn antenna. 

 At the receiver side, a second identical antenna collects the 

RF echo which is going to be amplified by another WBA. The 

RF received signal is transferred to the optical domain through 

another MZM that modulates the same optical pulse train 

provided by the MLL. This modulation generates replicas of 

the received RF waveform around each of the MLL modes at 

RF spectral distance. The obtained optical spectrum is analog 

to the spectrum in Fig. 1C. Then, the heterodyning in another 

PD of each replica with the closest optical carrier, produces a 

down-converted replica of the received RF carriers in the 

original IF spectral region. The down-converted signal is then 

filtered by an electrical low-pass filter (Fig. 1F) and sent to a 

400MSample/s analog-to-digital converter (ADC), which 

digitizes the signal and performs the required processing. The 

ADC also digitizes a copy of the signal generated by the DDS 

in order to obtain phase reference. The coherence is 

guaranteed by the MLL, which serves as a reference for both 

up- and down-conversion of the radar signal.  

IV. EXPERIMENT 

Two broadband horn antennas with 60 degree beam width, 

one for signal transmission and one for the backscattered 

signal collection, were placed on a digitally controlled 

motorized linear platform (Fig.2). The motorized slide, 

remotely controlled, allows a precise antenna positioning. 

Indeed, due to practical limitations, the displacements 

measurements were carried out by moving the antenna 

assembly, rather than the target, and using the laboratory wall, 

in the antenna far field region, as a target. The reference 

location, used for the displacement measure, was set to the 

slide central position, where the rail has been first positioned, 

thus allowing to set both positive and negative target 
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Fig. 2 - Moving antenna setup 

The transmitted signal, which spectrum is reported in Fig. 3 

is formed by two SFCW, each one composed by 20 frequency 

steps (limited by the available RF filter bandwidth), generated 

at their intermediate frequency, respectively of 75MHz and 

125MHz. Each step has a duration of 200 µs and they are 

equally spaced by 1MHz. The signal is then up-converted at 

RF by the photonics-based transceiver at, respectively, the S-

band (2.475GHz, Fig. 3A) and X-band  (9.875GHz, Fig.3B). 

The S-band and X-band signals are then coupled and amplified 

by means of a broadband electrical amplifier and then radiated 

by the transmitting antenna. 

At the receiver side, the signal scattered by the target is 

collected by the second horn antenna,  amplified by a low 

noise broadband amplifier and received by the photonic 

transceiver, where the signal is down-converted back to IF to 

be digitized and processed. 
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Fig. 4 - IF-spectrum of the received SFCW signal. 

In order to evaluate the target displacement, the amplitude 

and phase spectrum of the received down-converted echo (Fig. 

4) and the reference signal (i.e., a copy of the transmitted 

signal Fig.5)  has been first evaluated via standard fast Fourier 

Transform (FFT). The phase of the 40 SFCW tones was then 

extracted after multiplying together the echo spectrum and the 

complex conjugate of the reference one. Finally, applying 

eq. (3) at the phase difference among the S and X-band SFCW 

tones leads to the actual target displacement. 

As the total bandwidth of the SFCW signal is 40MHz the 

range cell resolution ΔR obtained by applying standard radar 

processing algorithms on the received signal is equal to ΔR = 

3.25m.  

Furthermore, using the differential phase technique, the 

minimum frequency step f  of 1MHz, is able to guarantee   a 

maximum unambiguous distance is of about 300m, however, 

higher displacement resolution are obtained  exploiting the 

dual band operation, making possible to obtain 20 independent 

measures with a maximum frequency difference f up to 

7.4GHz, leading to a minimum unambiguous range of 

2cm.
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Fig. 3 – Electrical spectrum of the dual-band RF signal 

a) S-band signal; b) X-band signal 

 
Fig. 5 - IF-spectrum of the generated SFCW signal 
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V. RESULTS 

To simulate the target displacement, the antenna position is 

moved by steps as small as 0.2mm and with a 10mm-long total 

excursion (limited by the motorized slide), with the target (the 

laboratory wall) about two meters apart from the radiating 

elements.  

For each step a radar acquisition is made and compared 

with the reference position which, in this case, was the centre 

of the motorized rail, thus providing the target displacement.   

In Fig. 6-A, the measured displacement (y-axis), as a 

function of the actual stage position (x-axis) is reported. The 

measurement, results to be in a good agreement with the real 

target position, with a maximum measurement error Fig. 6-B, 

limited to less than ±0.2 mm. 

As in a real application, such as mine or structural 

monitoring, the target could be located up to few km away 

from the radar, the measure has been repeated for different 

target distances. Since one of the sources of error in the phase 

difference estimation is determined by the intrinsic phase noise 

of the radar system, adding a delay between the signal 

generation and reception decorrelates the echo and the 

reference signal, thus providing a better estimation of the 

system performance. 

To this aim, several target distances has been simulated by 

adding, respectively, one and two 1km-long optical fiber 

spools in the radar transceiver as delays. Since the refractive 

index of optical fibers is about 1.5, such fiber spans emulate, 

respectively, a distance of 1.5km and 3km.  

         
The range cell, i.e. the target distance, has been measured 

by evaluating the peak of cross-correlation function between 

the collected echo and the reference signal. As shown in 

Fig. 7, in which the blue plot reports the 0km case, the red plot 

the 1.5km target and the green one the 3km target, the 

measured ranges perfectly match with the nominal length of 

the fiber spools.  

 
As can be seen in Fig. 8, reporting the mean value of 

absolute displacement error at different ranges, the error 

remains almost constant among the 3km target distance and 

below 0.2mm, thus confirming that the phase stability of the 

developed radar system is suitable for phase interferometry 

techniques.  

Another limiting factor in the phase estimation is given by 

the received signal SNR. Indeed, as expressed by eq. (4), for a 

given SNR the minimum standard deviation of the phase 

estimation is determined.  

In Fig.9 the displacement precision, expressed in 

millimeters is reported as a function of the signal SNR. The 

green curve reports the theoretical displacement precision for a 

single 7.4 GHz sinusoidal signal, equal to the  frequency 

difference among the S and X bands. Such curve represent the 

maximum accuracy achievable by the if system transmitting a 
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Fig. 6. A) Measured displacement vs. real displacement; 

B) Displacement measure error. 

 

 

Fig. 7. Experimental cross-correlation function of the 

received echo for 0km (blue), 1.5km (red) and 3 km 

(green)  distant targets. 
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Fig. 8. Mean error of the displacement measurement error. 
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Fig. 9 Dislacement precision vs signal SNR. 

 

single sinusoidal tone for each of the two bands rather than the 

SFCW signal. Instead,  the blue lines, show the displacement 

precision achieved by means SFCW signal of 20 steps (20 

sinusoidal signal for each frequency band), in the ideal case 

(blue solid line, simulated result) and the measured one (dotted 

line). 

Comparing the theoretical results it is possible to notice that 

the SFCW curve present about 13 dB SNR gain compared to 

the single frequency case. This gain is ascribed at the 

averaging gain. Indeed, as N independent phase measurements 

are coherently averaged, the variance of the estimated 

parameter decreases (and consequently the SNR increases) by 

a factor of N. In this case, as N=20, thus leading to an SNR 

gain, induced by the averaging, equal to 13dB. 

Instead, the dashed line correspond to the system measure 

error. Compared to the theoretical one, it is possible to notice 

3 dB loss in the low SNR region, while above 27dB of SNR is 

even possible to notice a decrease of the curve slope, 

indicating that for high values of signal SNR, the 

improvements in the phase estimation are reduced, since 

effects of system saturation (e.g., amplifiers, ADCs, ect.) take 

place, becoming impossible to reach the theoretical value. 

VI. CONCLUSION 

This work reports for the first time, to the best of our 

knowledge, a photonics-based radar system exploiting 

multiband stepped-frequency continuous wave (SFCW) signals 

with differential interferometry to perform displacement 

measurements.  

The use of photonics allows for the generation and 

detection of tunable and multi-band RF signals with intrinsic 

high phase coherence that allows to obtain sub-mm resolution 

without correction errors. 

In the proposed experiment the photonics-based radar 

transceiver exploits a mode locked laser to generate 40 

coherent sinusoidal waveforms  distributed in S- and X- bands, 

synthesizing a band of 7.4 GHz. 

Experimental results demonstrate an accuracy < 200m for 

displacement measurements up to 3km of distance. 

The use of a single photonics-based transceiver for 

handling the signals in both the RF bands allows for a 

reduction of the size, weight, power consumption and footprint 

of the whole system. 
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