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ON THE SINGULAR SOLUTIONS OF ORDINARY DIFFERENTIAL
EQUATIONS OF THE FIRST ORDER WITH TRANSCEN-
DENTAL COEFFICIENTS

By Prof. M. J. M. HILL.

[Received and read January 18th, 1917.]

I. The theory as at present accepted.

1. If we start from the complete primitive

f(x, y, c) = 0, U)

and form the equation •=£- + •=*- -f- = 0, (ID*
^ Dx Dy dx

and then eliminate c between (I) and (II), we obtain a differential equation
of the form

or as we shall write it <j> (x, y, p) = 0. (Ill)

Let us now replace c in (I) by a certain function of x, y, viz., C, so
that the relation between x, y is

f(x, y, C) = 0, (IV)

where C satisfies J>/(z , j , ® = 0 . (V)

then on differentiating (IV), and using (V), it follows that

Df(x, y, C) Df(x, y, C) dy _ v

Dx "*• Dy dx~~ K

* D denotes partial differentiation when the independent variables are x, y, c or x, y, C
or x, y, p ; 9 denotes partial differentiation when the independent variables are x, y; 5 de-
notes partial differentiation when the independent variables are x, c; A denotes partial differ-
entiation when the independent variables are x, p ; d denotes total differentiation with regard

to x ; and v denotes -^.
dx
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Now if C be not such a function of x, y as to make

l fe = 0,

aud v/^y, O = 0>

then it is possible to eliminate C from (IV) and (VI) and the result is
again (III).

Hence (IV), on the hypothesis made as to C, is an integral of (III).
It is to be observed that in discussing any particujar differential equa-

tion, whilst it may be impossible to deduce the singular solution from one
form of the primitive (IV) by the use of (V), it may be possible to deduce
it from some other form of the complete primitive.

Lagrange supposed that y was expressed in terms of x and c, and
instead of using the condition (V) he used the condition here represented

which is not necessarily equivalent to (V). (See Examples 1, 3, 4.)
The theory of singular solutions as at present accepted assumes that

every singular solution of (III) can be obtained in this way, but this is an
assumption which is the converse of what has been proved. I have never
met with any proof of the converse theorem, nor on the other hand with
any particular case in which the converse theorem is not true.

2. If we now turn to the problem of determining the singular solution
from the differential equation (III), then the theory as at present accepted
states that, if a singular solution of (III) exist, it must satisfy simul-
taneously (III) and the two following equations

= o, ,ix)
Dp

»
-00 (a, y, y) . D<t>(x, y, p) _ ft X)

Dx ^p Dy ~~U' K }

unless £> be infinite, in which case ' ,' must vanish.

Now it is true that, if a singular solution exists which satisfies (IX),

* If C satisfy (IV) and (V), then (VII) and (VIII) are equivalent to a single condition only.
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then it must also satisfy (X), except in the exceptional case noted above.
But the theory as at present accepted is an assumption of the converse of
this proposition.

Cases are given below (see Examples 1, 3, 4) in which it is impossible
to satisfy equation (IX) at all. A case is given (see Example 5) in which
the singular solution satisfies (IX), but reduces the left-hand side of (X)
to an indeterminate expression.

[2a.* Commencing with the primitive in the form taken by Lagrange

y=f(x,c), (XI)

we obtain the differential equation

dy _ Sf(x, c)
dx dx

... dy _ Sf(x, c)
or, writing p = ^ , p = ^

Solving (XIII) for c, and substituting in (XI), we obtain an equation of the
!orm

 V

I proceed to calculate the partial differential coefficient of y with re-
gard to p, treating x as constant.

Let A denote partial differentiation when x and p are treated as
independent variables.

Then differentiating (XI) and (XIII) partially with regard to p} we
obtain A „», < A

Ay_ _ Sf{x. c) Ac
Ap ~ Sc &p'

, , S2f{x, c) Ac
and 1 = -v~5— "A— ;

Scdx Ap
A?/ Sf(x, c) /Sf(x, c) / V T Atherefore -r1 = V / ^ ' . (XV)
A]) dc I Sc Sx
A?/ Sf(x, c) /S2f(x, c)
A]) dc I Sc Sx

If now the differential equation be taken in the form

(III)

* This article was added to the paper in February, 1917, subsequently to the date at
which the paper was presented to the Society. It is based on Mansion's work, which is
referred to in the Historical Section below. The parts so added to the paper are enclosed in
square brackets. Mansion's reasoning is differently expressed, but it leads to the same con-
clusions.
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then %t%L+ %£ = (>. (XVI)
Dy Ap Dp

Equating the values of ~ in (XV) and (XVI), we obtain

Sf(x, c) fS2f(x, c) _ D$/D$
~ST~f ScSx " Dp/Dy'

S*f(x c)
Mansion shows that if % I vanishes then each curve represented by

Scox
the complete primitive has contact of the second order with the envelope.
He takes as the condition for finding a singular solution

£* = <>•
It is clear from the equation (XVII) that when

Sf(x, c) _
8c ~ U>

we must have

and therefore it is not sufficient to take

Dp '

an equation which it may not be possible to satisfy. It is necessary to

consider also the possibility that j ^ may be infinite.

Mansion did not in his paper apply his condition to any equation
having transcendental coefficients. This has been done in Examples 1,
3, 4, 6, 7.]

II. History of the Subject, §§ 3-7.

3. The preceding theory, excepting {a) the restriction upon C involved
in the condition that the equations (VII) and (VIII) are not to be satisfied,
and (6) the work of Mansion referred to in § 2a, dates back to the memoir
by Lagrange, " Sur les integrates particulieres des equations differen-

* Mansion does not give this equation.
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tielles " (Nouveaux Memoires de VAcademie royale des Sciences et Belles-
Lettres de Berlin, ann6e 1774), printed in the 4th volume of his works.

Lagrange assumes the converse theorems referred to in §§ 1 and 2
above. Thus in § 5, p. 12, of his memoir, after giving the substance of
§ 1 of this paper, he says :

" II est facile de d6montrer qu'il n'y a pas d'autres combinaisons
possibles qui puissent fournir des integrates de cette espece non comprises
dans l'integrale complete."

And again, after obtaining the conditions (IX) and (X) (of § 2 of this
paper), in § 14, p. 26, on the hypothesis that the differential equation
contains no radical signs and no transcendental functions, he says, in
§ 15, p. 28 :

" Et quoique la demonstration pre'ce'dente soit fondee sur l'hypothese
que lequation propos^e ne renferme aucune fonction transcendante il
n'est cependant pas difficile de se convaincre que la meme conclusion aura
lieu quelles que soient la nature et la forme de cette equation."

It is strange that with this last mentioned idea in his mind Lagrange
should have limited his examination of particular cases to equations con-
taining no transcendental functions ; and the strangeness is increased by
the fact that he refers, I.e., p. 6, to a memoir by Laplace, " Sur les solu-
tions particulieres des equations differentielles '' {Memoires de VAcademie
royale des Sciences de Paris, ann6e 1772), printed in the 8th volume of
Laplace's works, in which Laplace compares the differential equations

g = *</•', ! = J(U*»>-. and | = , . - " ;

where q is some function of x, y, which is neither zero nor infinite when
y = 0, and n and r are both positive (I.e., pp. 380, 331).

4. Darboux in a paper, " Sur les solutions singulieres des equations
aux derivees ordinaires du premier ordre", published in the Bulletin des
Sciences Mathematiques, 1873 (pp. 163, 164), bases his work on the con-
ditions (IX) and (X).

He refers to a paper by Mansion, entitled " Note sur les solutions
3ingulieres des equations differentielles du premier ordre " (Bulletins de
VAcademie royale des Sciences, des Lettres et des Beaux-Arts de Belgique,
1872, pp. 149-169); but he dissents from the view, taken by Mansion,
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that the condition

Dpi By U'

should be substituted for the condition

Dp

Darboux says, " Mais ees dernieres regies ne s'appliquent qu'aux cas
tout a fait singuliers ou la fonction <p contient des expressions nial deter-
mine'es, radicaux, etc. ; tout au plus si elles peuvent fournir la solution
p = oo, que ne donne pas 1'equation

Dp U>

et qu'on peut toujours ecarter par un changement d'axes coordonn6s "
(I.e., p. 158, footnote 2).

It will be seen, however, in Examples 1, 3, 4, that their singular solu-
tions are obtainable by Mansion's condition, though not obtainable by
Lagrange's condition ; and further that they are not merely cases in
which p = oo .

In a later memoir, " Sur les solutions singulieres des equations aux
derivees partielles du premier ordre", published in 1883 in T. 27
(ser. 2) of the Mtunoires presentes par divers savants a /'Acadt'mie
des Sciences de VInstitut National de France, Darboux constructs his
theory on equations corresponding to (IX) and (X). These equations he
describes as a convention adopted to give a definition of the singular
integral applying to all cases (I.e., p. 114). On p. 2, he says that the
hypothesis of the existence of a complete integral made by Lagrange
was not justified. He says (pp. *2 and 3) that Lagrange supposed
the existence of a complete integral which was finite and continuous
throughout the whole extent necessary to determine the envelope of the
curves represented by the complete integral. He says that this hypo-
thesis excludes, without mentioning it, the case in which the curves repre-
sented by the complete primitive have singular points or cease to be
continuous or even to exist beyond a limited region of the plane.

Darboux, like Lagrange, does not apply his theory to any particular
differential equation with transcendental coefficients. It appears to me to
be difficult to see how Darboux's theory, which is based (I.e., pp. 4, 5) on

* Or the equation obtainable from this by the interchange of the dependent and inde-
pendent variables.
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the properties of equations obtained as the result of the elimination of
constants, and corresponding closely to the theory of envelopes of alge-
braic curves and surfaces, could apply without exception to the envelopes
of transcendental curves ; but if I rightly understand Darboux's reference
to " all cases " his theory was intended to include these.

5. Cayley says {Messenger of Mathematics, Vol. 6, 1877, p. 24)
that the theorem he had proved regarding the existence of an envelope of
a family of algebraic curves does not extend to transcendental curves.

6. Hamburger's paper " Ueber die singularen Losungen der alge-
braischen Differentialgleichungen erster Ordnung " (Crelle, Bd. 112, 1893)
is based on the equations (IX) and (X).

But he differs (p. 206) from the opinion expressed by Darboux that the
hypothesis made by Lagrange as to the existence of a complete primitive
was unjustified, and he shows (pp. 221-229) how the complete primitive
is to be found. In this connection he refers not only to the work of
Madame Kowalewsky but also to that of Darboux himself.

He also differs from the opinion of Cayley quoted above. His opinion
is (pp. 206, 207) that the existence of envelopes or singular solutions has
nothing to do with the transcendental or algebraic nature of the general
integral.

He points out (p. 238) that inasmuch as the conditions I have marked
(VII) and (VIII) [which if taken in conjunction with (IV) and (V) are equi-
valent to one independent condition] have to be satisfied in order that
there may be no envelope, the general case is that in which au envelope
exists ; whilst, on the other hand, when we start from the differential
equation (III), it is necessary that a condition amongst the coefficients
[arising from the fact that it must be possible to satisfy simultaneously
(III), (IX), and (X)] should be satisfied in order that an envelope may exist,
so that the case in which the envelope does not exist is the general one.

7. Laplace, on pp. 327-331 of his memoir, deals with the question of
determining whether a given solution of a differential equation is or is not
comprised in the general integral, it being supposed that the general
integral is unknown. His conclusion is that if the values of the differ-
ential coefficients from the second* onwards, as determined from the
differential equation, are respectively equal to their values as determined

* The first differential coefficients are necessarily the same.
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from the given solution, then that given solution is a particular integral,
comprised in the general integral.

If this is not the case, then the solution is a singular integral. This
last statement is certainly true, but the one preceding it cannot in all
cases be relied on, as will be seen from the discussion of Example 1
below.

Laplace's argument rests on the possibility of expanding the ordinates
of points on the complete primitive and on the given solution in ascending
powers of the abscissa.

The demonstration therefore may not apply when the points on the
given solution are points of discontinuity on the curves represented by the
complete primitive.

Laplace's test gives a correct result in Example 2, but fails in
Example 1.

It follows from Hamburger's investigations {I.e., p. 219) that the
equation considered by Laplace, mentioned above, viz.

^ - au*
dx~qj '

has IJ = 0 for a singular integral when 0 <?<• < 1, but a particular in-
tegral when n ^ 1; and thus Laplace's test gives the correct result in
this case.

Hamburger's investigations, which are limited to differential equations
in which the coefficients are algebraic, do not apply to the other two equa-
tions, mentioned by Laplace.

In one of these -f- = <?(log y)~r (r > 0);

therefore 0 = g (log y^-rtfy-1 (log y)-»~\

80 that -j-*5 = oo , when y = 0.

d?y
But the solution y = 0 makes T J = 0.

Hence y = 0 is a singular solution, and Laplace's test gives the
correct result.

In the other case -f- = qe~lly.

Consequently the first and every following differential coefficient tend to
zero as y tends to + 0 .
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If Laplace's test could be relied on, this would make y = + 0 a par-
ticular integral.

But the equation is not integrable, and I do not know of any method
of deciding the question. It should also be observed that, since e~llv is
undefined when IJ = 0, it is probably useless to call y = 0, or even
IJ — 4- 0, an integral.

I discuss in detail a somewhat similar case : see Example 9 below.

III. Construction of Differential Equations with Singular Solutions not
obtainable from the Differential Equations by the Condition

Dp

8. Differential equations with transcendental coefficients have not, I
believe, been studied with the object of determining their singular
solutions.

As has been said Hamburger's investigations are definitely limited to
differential equations with algebraic coefficients.

With regard to Darboux's investigations the passages referred to above
would seem to indicate that he held the view that the theory he con-
structed completely covered all cases of whatever kind.

If, then, the existing theory is incomplete it will be best tested by
considering cases in which the differential equations have transcendental
coefficients.

Some preliminary theorems which are required are proved in §§ 9-12.

Preliminary Theorems, §§ 9-12.

9. If v be an analytic function of x, y, such that all the values of x, y

which make v = 0, also make — = 0, then they also make ^ - = 0, and
ax ay

(h? dy2 \dxdy)

For suppose x, y and x-{-$x, y-\-Sy to be neighbouring points on v = 0.
Then we must have v = 0 at x-\-Sx, y+Sy ; therefore

v+Sx -K- -\-Sy 5- -f- higher powers of Sx, Sy — 0.

But v = 0, P- = 0
ox



158 PROF. M. J. M. HILL [Jan. 18,

Hence Sy ̂ - +higher powers of Sx, Sy = 0.

This cannot be satisfied unless — = 0.

dv n dv
oyAgain, — = 0, ^ = 0, at x+Sx, y+Sy; therefore

of Sx>Sy ~ °
and sr- + 5~^~ oa;+ "r-ady+higher powers of ox, oy = 0.

These reduce to ^§<5a;+ ^-^- o?/+... = 0,
ox2 ex vu J

c^y „
^-5(>w+... = 0 ,

and cannot be simultaneously true unless

ax2 a /

at all points for which v = 0.
If u be a rational integral function of x and y, then the geometrical

interpretation of the conditions

y = 0, ^ = 0, ^ ^ = 0 , and x— ^-T, — -, -v = 0 ,
ax oy ex- cy XcxcyJ

is that every point on the curve represented by v = 0 is a cusp. But
this is impossible.

The equation v = 0 cannot represent a proper curve. Consequently
v must break up into factors ; and as every point on 0 = 0 satisfies the
above conditions, it is necessary that every factor in u should be repeated
twice at least.

As examples of functions of v satisfying the above conditions which
are not rational, we may take

t> = (l+«?«)*-1,

or v = (x

where ic is a rational function of x and y, and the radicals are all taken
with the positive sign.
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10. If v be any analytic function of x, y which does not satisfy the
conditions in the preceding article, and u be any function of x, y which is

(j (it 1)̂
not infinite when v = 0, and -K-T-1—r = 0 when v = 0, then some con-

o(x, y)
stant k exists such that u—k = 0 when v = 0.

It is supposed, as in § 9, that all the values of x. y which make v = 0
ov

do not make K- = 0. Such values define y as a function of x, say
y = \fs(x).

Then the equation v(x, y) = 0 gives v[x, \fs(x)] = 0, and therefore

ov . ov . t n

when y = yjr{x). Now we wish to examine the value of u when v = 0,
i.e. y = yjr{x). Then

u(x, y) = u[x, yfs(x)] = U(x),

, , dU(x) on , du . . . .
say. And now —5— = ~ + 3 - r W>

J «x ex d//
where y = ^-(x). But ^ ' ( ^ — ~ T~/~, where // = , and therefore

dU{x) _ /o!t 3v o^ 3v\ /^£
dx ~ \dx dy cy dx/ / dy'

where y = \ls(x). But ^ " ^ »̂ w n e n y = 0, i.e. when y = ^(^5 and

o/t ov du dv _

when v = 0, by hypothesis. Thus —^— = 0, i.e. a (x, y) is a constant,

say k, when v(x, y) = 0 : i.e. the integral v = 0 is included in the in-
tegral u (x, y) = k.

The application which will be made of this theorem is the following.
If u = const, is a complete primitive of (III), and v = 0* any solution

* The case where v satisfies the conditions of § 9 is excepted. For if all the values of

x1, y which make v = 0 also make — = 0, then, as has been shown, they also make — = 0,
dx dy

and in this case the Jacobian f>"t> v-' vanishes, but the vanishing of the Jacobian when
h (x, y)

v = 0 implies no relation between u and v. I give two examples (Nos. 6 and 7), in which v
is taken to have the form referred to.
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of (III) such that 5-7—2—- vanishes when v = 0, then a particular in-
1 o(x, in *

tegral J

11—k = 0

exists which includes the integral v = 0.
11. The converse of the preceding theorem is required.

If the integral of v = 0 be included in the integral n = k, then

d (u, v)
d (x, y)

will vanish when v = 0.

We proceed as in the preceding article as far as the point

u(x, y) = u[x, \{f(x)].

Then, if v = 0 is included in u = k,

u[x, \js(x)] = k,

and the left-hand side of this equation does not include x at all.

Consequently 4 - + ^ - \fs'{x) = 0,

where y = \fs(x). But, as in the preceding article,

dv . dv .,. .

where y = V^^)* Hence, since — f̂c 0 when v = 0, t.e. </ = ifs(x), we

get, by the elimination of \fs'(x),

v{u, v)
o (a;, y)

when v = 0.*

= 0,

12. The two preceding theorems make it possible to construct a test
for distinguishing a singular solution from a particular solution of a
differential equation of the first order, whenever it is possible to express
the complete primitive in the form

a = k.

For, let v be any solution of the differential equation, and then take u in
such a form that u is not infinite when v = 0, and then form

dtyi, v)
d (x, y)'

* I have substituted the argument of §§ 10 and 11, which was suggested to me by
Mr. G. H. Hardy, for that contained in the original version of the paper.
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v (u i)}
It follows from the preceding work that if -̂—-—r vanishes when v

v(x, y)
vanishes, then v is included in the complete primitive (.§ 10) ; and if v is

** i \
included in the complete primitive, then v ' . vanishes when v vanishes

c(x, y)
(§ 11). This gives the following test.

If ^r-1—v do not vanish when o vanishes, then the solution v = 0 isJ c(x, y)
not included in the complete primitive, and therefore it is a singular
solution.

13. It some times happens that a solution of a differential equation is
both a particular and a singular solution of a ditt'erential equation.

E.g., IJ = 0 is both a particular integral and a singular solution of
the differential equation

of which the complete primitive is

Hamburger, I.e., p. 218, gives tests by which a solution could be
recognised as boch singular and particular.

In the example just referred to, the solution y = 0 arises in two ways :—

(1) by putting c = 0, which shows it is a particular integral;

t/2) by putting c = x, which shows it is a singular integral, and
possesses the envelope property.

In this paper I am concerned solely with those solutions which can
only be obtained from the complete primitive by replacing the arbitrary
constant by a function of the variables. In special cases, as in the one
referred to above, a solution may have a double origin, but these are not
considered here.

14. The following primitive has a considerable degree of generality,
but it is not quite so general as that discussed in § 19 below, of which it
is a particular case.

Consider the equation

fix, y) + <t> (to) yfr (x, y) = c, (XVIII)

SER. 2. VOL.17. NO. 1312. M
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where w is some function of x and y which is such that all the values of

sc, y, which make w = 0, do not make 3 - = 0 or x - = 0 ; where <p{w)

vanishes when iv = 0 ; where 0' (w) is infinite when w = 0; where
/(.r, ?/) neither vanishes, nor reduces to a constant, nor becomes infinite
when tv = 0; and where yjs (x, y) neither vanishes nor becomes infinite
when w = 0.

Differentiating (XVIII), we get

(XIX)

The last term is indeterminate when w = 0, because 0' (w) is infinite, and

9w . dip dy _ .
3rc dy dx

Dividing (XIX) by 0'(w), the equation can be put into the form

0 V U ?/ 0 3y dx) ^{dx+dy dx
(XX)

Now w = 0 is an integral of (XX).

But «; = 0 is not a particular case of the complete primitive, for if we
put w = 0 in the complete primitive, then in order that the equation may
be satisfied c must be equal to the value of f(x, y) when w = 0. But, by
hypothesis, f(x, y) is not constant when 10 =• 0. Hence iv = 0 is not
included in the complete primitive, and must therefore be a singular
solution.

To see whether w = 0 satisfies the condition (IX), we observe that
diithe equation (XX), after putting -j- = p, becomes

dio . dw\ .

ai +P Si,) +^ 9) = 0.

The condition (IX) is therefore

w) d\ls dw A3 / , cb(w) d\ls . . . dw

which, when w = 0, reduces to

y) ^ = 0.
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But, by hypothesis, neither \Js (x, y) nor — vanishes when w = 0.

Hence the condition =r*- = 0 cannot be satisfied.
Dp

[Let us see whether the condition TT li=r = 0 c a n he satisfied. IfL Dpi Dy

we calculate ^ , then one of the terms contains the expression
Dy

<p"(w)l\<f>'(w)\2.

It will be seen in § 16 that, in all the cases which I have been able to
construet, this expression becomes infinite when 10 = 0. So that it may

be expected that r=^- will be infinite, and therefore that the condition
Dy

•fr*- /r=3- = 0 will be satisfied.]Dpi By

For the primitive (XVIII), the condition (V) reduces to the equation
— 1 = 0, which cannot be satisfied. But, in all the cases which I have
been able to construct, I have found it possible, after transforming the
primitive, and taking Lagrange's form of the complete primitive, to derive
the singular solution from the equation

8y A
-r- — U.
Sc

15. It will next be shown that the solution w = 0 possesses the
envelope property.

For writing u = f(x, y)-\-<f>(w)\{s(x, y),

Now, when w = 0, <f>' (iv) = <x>.

Hence at a point at which w = 0 meets one of tlie primitives u = const.,
we have

<hi jdu _ dw Jow_
dxf dy ~ dxl dy

M 2
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so that, at a point where a complete primitive u = const, meets ir = 0,
these two curves have the same tangent.

It might at first sight appear likely that it would follow from (XXI) that

d(u, w)
d(x, y)

would vanish where w = 0. but that is not the case, for

d (u, ir) 3(/ , w) ?{\f,, ir)

TT u A ^(u, w) 3(/, w)Hence, when w = 0, —.— -' = -Jf— ••-..
O(x, y) d(x, y)

Now, if -^j2—- = 0, when w — 0, then, by § 10, a constant k exists

such that f(x, y) = k when w = 0; but this is contrary to the hypothesis
in § 14 regarding/(.r, y).

Hence ^—2—- does not vanish when w = 0 ; and therefore ir = 0
d (x, ij)

is a singular solution, according to the test of § 12.

16. Let us now consider the conditions 0(/r) = 0, >md </>' (w) = ~s- ,
when w = 0.

(i) If <f>(iv) be an algebraic function of ir, these conditions require that
(j>(ir) must contain a factor irn

: where 0 < n < 1.

Let us take* 0(w) = ir".

Then the equation (XYIID becomes

therefore «• = [c-f{x, y)\ 1 / ( 7 • ^ {x, y))I/B.

If now we differentiate the primitive in this form with regard to r,
then, since 1/n is greater than 1, the resulting equation can be satisfied In-
giving to c the value f{x, y), leading to the singular solution //; = 0.

Thus the primitive can in this case be transformed into one in
which the ordinary method for deducing the singular solution from the
primitive is applicable.

* The remaining factors of tp (w) may be included in \f/(x, ?/).
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The cases <j>(w) = sin (wn) (0 < n < 1),

and (j> (w) = tan (ion) (0 < n < 1),

are not essentially different from this case.

(ii) Taking next the case

<p(w) = (\ogio)-r ( r>0 ) ,

then <p'{w) = —r(\ogw)~r~x io~\

In this case the equation (XVIII) becomes

(log^rr= \c-f(x,y)\lxf,(x,y).

Therefore log w = \ yfr(x, y) \1/r/ \ c -fix, y) \ ''r;

and therefore w = exp [-|\fr{x, y)}1/?'/ \c—f(x, y)\1/r] .

If we differentiate the primitive in this form with regard to c, the
condition to be satisfied is that the exponential last written, multiplied by

shall tend to zero as c is made to approach f(x, y).
Examples are given below where this is the case : see Examples 1, 4, 6.
In these examples only one curve of the family of complete primitives

passes through each point of the plane. Cases of exception may arise in
consequence of an indeterminacy (see -Example 7).

(iii) Consider next the case,

0(/r) = w(log ic)" (n > 0).

Here <j>'iw) — (log w)v+n (log w)"~\

Taking the primitive in the form

•w (log w)n = \ c —f(x, y)\lir(x,y),

it is apparently impossible to satisfy the condition (V). Bearing in mind
the remark at the end of § 1, we take in place of (V) the condition

§M - A
Sc

Differentiating the primitive with regard to c, treating x as a constant,
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it follows that

[dog «>)•+» (log «,)-•] | ? &

Therefore

Sc ~ . _

Since neither 3— nor yjs{x, y) vanish when w vanishes, the great

square bracket becomes infinite when w = 0; and therefore the con-
Sy

dition -7T = 0 leads to the singular solution w = 0 (see Example 8).

Cases of the same kind can be constructed by taking

(j>(w) = w(\og w) (log(log w)\",

0 (10) = w (log 10) \ log (log *c)} [log I log (log«»)} ] '\ ....

where n > 0.

In cases (ii) and (iii) the locus w = 0 is such that, as a point on any
one of the curves represented by the complete primitive approaches
w = 0, the tangent line to the curve tends to coincide with the tangent
line to w = 0, but the curve usually ends abruptly at the point at which
it meets w = 0, because if w be negative, log 10 is imaginary.

For cases of exception see Examples 6 and 7.

17. A similar phenomenon to that noticed in parts (ii) and (m) of
the preceding article occurs if a certain arbitrary restriction be made, in
the ca3e of complete primitives which are algebraic*

Suppose that, instead of considering the equation

p2x—py-\-l = 0,

we consider the equation obtained by solving it for p, but that we make
the restriction that the radical shall always be taken with the positive
sign, so that we consider

P= i//+(/-4x)4}/(2a;).

* Boole, Finite Differences, 2nd edition, ch. x, §22.
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Then the integral is c = {y+iy*—4a)*}/(2a;),

and this represents only that portion of a tangent line to the parabola

y2—4z = 0,

which lies oip one side of the point of contact.

18. A noteworthy result is obtained by taking the same form for the
complete primitive as in § 14, but with a different hypothesis as to the
nafture of <f>(w).

Suppose that 0 (w) = e~llw\

so that $' (w) = 2wr3e-1'w\

In this case both 0(u>) and 0'(w) tend to zero as to tends to 0.
The differential equation is now

(XXII)
This equation is not satisfied by ic = 0.

If, however, the equation is written in the form

O3c ay dx) \ox ay ax/

dydw dy\
dy ax)

then w = 0 satisfies this equation.
The question arises whether 10 = 0 is to be regarded as an integral

of the equation (XXIII) or not.
Goursat, in his Leqons sur Vintegration des equations aux derivees

partielles du premier ord-re, has on p. 35, 11. 8-15, a passage from which
it seems to follow that he would regard a solution of this kind as an in-
tegral of the equation.

As against this point of view it may be observed—

(i) That w = 0 does not satisfy the equation in virtue of the value
it gives for dy/dx, for it causes the term independent of d\j\dx and the
coefficient of dyfdx each to vanish.

(ii) That the curve ic = 0 does not touch the curves of the complete
primitive where it meets them.
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In fact the value of dy/dx, at a point on a complete primitive where it
meets w = 0, is

ox

which is not equal to — T - # •*-.
ox] oy

These are two reasons for not regarding w = 0 as an integral of
the differential equation (XXIII).

It seems to me that equation (XXIII) should be regarded as resoluble
into (XXII) and w = 0 ; and that ic = 0 ought not to be regarded as
an integral of (XXIII).

19. A more general form of complete primitive than the one in § 14
is the following:—

/ (x, y, c) + <f> (w) f (x, y, c) = 0, (XXIV)

where <p(7u) has the same properties as in that section, whilst fix, y, c)
and yjr(x, y, c) only differ from f(x, y) and \}s{x, y) by containing c
algebraically, and f(x, y, c) does not vanish when w vanishes.

The result of differentiating (XXIV) becomes, after division by <p' {w),

1 /df , of dy\ . <j> {w) (oyjs . o\Js dy\
to cy dx) <p'{w) \ox oy dx)

If we find the values of c which satisfy (XXIV), and put each of them
in the left-hand side of (XXV), then the result in each case vanishes when
iv = 0, and therefore the differential equation obtained by eliminating r
between (XXIV) and (XXV) will be satisfied by >r = 0.

Now w = 0 is not obtainable from (XXIV) by giving to c any par-
ticular constant value, since fix, y, c) does not vanish when we put
w = 0.

Consequently ic = 0 is a singular solution of the differential equation
of which (XXIV) is the complete primitive. A particular example of this
case is Example 5.
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EXAMPLE 1.

Illustration of §§ 7, 14, and 16 (ii).

Consider the differential equation

P = y (log ijf.

The complete primitive can be expressed in either of the forms

x+(I/log y)—c = 0,

or y = exp[ —1/(2—c)].

It represents the family of curves obtained by moving the curve
y = exp (—1/x) parallel to the axis of x.

This curve has a salient point at the origin, and touches the axis of x
there. Hence y = 0 is an envelope of the family.

It is not possible to derive the solution y = 0 from the complete
primitive by giving to c any constant value.

If we put f{x, y, c) =. x-\-{\j\ogy)—c, we cannot obtain the singular
solution from the condition (V); but if we put

fix, y, c) = y—exp[—l/(x — c)] ,

the condition (V) is satisfied by putting c = x. As x tends to c-j-O, y
tends to 0.

If we apply the test of § 12, and put

u = x-\r (I/log//), o = y,

then ~. = -1-,
o (*, y)

so that y = 0 ranks as a singular solution.

[It should be observed further that as .r tends to c—0, log?/ tends to
infinity, and that we may have not only y = 0 but y = oo as a singular
solution. For, if we put y = ljY and .>• = — X, the differential equation
becomes , v

— = Ydoo- Y)*
dX K n ; '

so that its form is unaltered. Hence Y = 0 is a singular solution of this
equation. Consequently y = x should rank as a singular solution of the
original equation. The fact that y = oo is a part of the envelope is per-
haps more readily seen by transforming the primitive by replacing y by
(y + D/(y- l ) . See Ex. la.]
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If we put </> (x, y , p) = p-y (log y)2,

it is impossible to satisfy the condition

Dp

[In this caBe j % = — (log yf—2 (log y).

Hence the condition TT~ TT- = 0,
Dpi Dy

leads to the condition that log y = oo; and therefore y = 0 or y = oo,
both of which are parts of the envelope.]

In this case Laplace's Test for a Singular Solution fails. All the
differential coefficients of y with regard to x as determined from the differ-
ential equation vanish when y = 0. But y = 0 is not a particular in-
tegral as required by Laplace's test. The explanation is that the point
in which a complete primitive meets the singular integral is a point of
discontinuity on the complete primitive, and the expansion which must be
possible if Laplace's argument is to apply is here impossible.

EXAMPLE la.

[Consider the differential equation

where v = {y+V}j{y—\).

The integral can be expressed in either of the form

<r + (I/log v) = c,

or y = Lel/(<-

Now y = 1 and y = — 1 are both integrals of the differential equation.
They are singular integrals, as they cannot be obtained from the complete
primitive by giving to c any constant value.

The integral y — 1 is obtained by making c — x = +0, and the in-
tegral y = — 1 is obtained by making c—x = — 0.

The primitive has two salient points, viz., at x = c, y = ± 1 .
At each of these points the tangent is parallel to the axis of x. Hence

y = + 1 and y = — 1 are parts of the envelope.
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The condition -^ = 0 is satisfied by c—x = ± 0 , and so givee the

singular integrals.

The condition -=\ — 0 cannot be satisfied, but the conditionUp

Dp/Dy ~u

is satisfied by y = ± 1.]

EXAMPLE 2.

Illustration of § 7.

Consider the equation p = ?/ log y.

The integral is log (log y) = x — c, if */ > 1,

but log [logC?/"1)] = x—c, if 0 < y < 1.

If y <. 0 the integral is imaginary.
Now ?/ = 0 is obviously a solution of the differential equation.
Let us examine its relation to the integral

log [log (y-1)] =x-c.

This integral can be expressed in the form
1)] = const.,

and so y = 0 is the particular integral given by making the constant
vanish.

In this case the second and all higher differential coefficients of y with
respect to x vanish when y =• 0.

Thus Laplace's method furnishes a correct result in this case.

If we put u = ex/\\og(y~1)'], v = y,

d(u, v)
then ^7 : = u;

and therefore vanishes when y = G. Therefore

d(M, v) _ n
d(x, y) ~ U'

when v = 0, and so the test of § 12 makes y = 0 & particular integral.
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If we had taken for u the form

u — log [log iy'1)]—x, v = y,

we should have found ^ ^ = - 1 ,
6{x, y)

and the integral would have appeared to be a singular integral. But with
this form of u, the condition that u must be taken in a form which is
finite when v = 0 is not fulfilled, and therefore the Jacobian has not
been calculated in accordance with the directions in § 12.

EXAMPLE 8.

Illustration of §§7, 14, and 16 (iii).

Consider the equation p = (1-f-log y)~l-

This is a particular case of the equation noted by Laplace,

! = <? (log//)-',

where r > 0 and q is neither zero nor infinite when y = 0.

The integral is y log y—x-\-c = 0.

Now y = 0 is an integral of the differential equation.
It can only be derived from the complete primitive by putting c = / .

It is therefore a singular solution.
If we take the primitive in the form

fix, y, c) = y log y — J+c = 0,

we cannot satisfy the condition (V).
Si/If, however, we calculate r2 from the primitive, we get

and therefore the condition -^ = 0 requires log?/ to be infinite, and con-

sequently y to be zero or infinite.
The former gives the singular solution ; the latter can be regarded as

the particular integral corresponding to an infinite value of c.
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It is impossible to satisfy the condition

Dp

[But f ^ r M l + logy)-2.

therefore l ^ / i t y = u ( 1 + l o g y^'

Hence the condition Y) jf = 0 requires that y = 0, and thus gives the

singular solution.]

It may be observed that in this case

and is therefore indeterminate when y — 0, p = 0. It would not be per-
missible before examining the value of this expression to put

because this value of p does not arise directly from the solution under con
sideration, viz., y = 0.

EXAMPLE 4.

Illustration of §§ 14 and IB ^ii).

Consider the equation

jp[14-?/(log/y)2] = y(\ogyf.

The complete primitive is

+a/l) = c.
There is a salient point at x — c, y = 0. The tangent at this point is
the axis of x.

The family of curves is obtained by moving any one of their number
parallel to the axis of x.

The curve has two asymptotes, viz..

y=l, y = x-c.

Starting from the salient point, y increases towards 1, while x tends
to +oo.
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The curve then passes to the other end and to the upper side of the
asymptote y = 1.

As x increases from — oo to + oo, y increases from + 1 to + °°. and
the curve approaches the asymptote y = x—c.

Since the solution y = 0 can only be obtained from the primitive by
putting c = x, it is a singul'ar solution.

The same result follows from the test of § 12.
It is not possible to satisfy the condition (V) with the primitive ki

the form taken above.

But if we calculate -f-, we get
oc

ig = -yQogy)2l[l+y(\ogy)2],

so that ~- = 0 gives the singular solution y = 0.

The solution y = 0 will not satisfy the condition

Dp °-

[But ||2/J5*=

so that the condition ^ T V T ^ = 0 leads to y = 0, and thus gives theDp/Dy J 6

singular solution.]

EXAMPLE 5.

Illustration of § 19.

p2x+py log«/—y2 (log y)4 = 0.

The complete primitive is

x+ic/logy) — c2 = 0,

and y = 0 is an integral of the differential equation.
But it is a singular integral because to obtain it from the complete

primitive it is necessary to put c = xh. So also is y = oo.

The complete primitive can be written

y = exp[c/(c2—x)].

If the curve be transformed to the point x = c2, y = 0 as origin, it
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beeomes v . ,VN

Y = exp(—c/X),
a curve of the same nature as that of Example 1.

The curves obtained by taking c — + #> c — — a are reflexions of
each other in the line x = a2.

Thus in this case the salient point is confined to the positive part of
the axis of x.

There is, however, another singular solution obtainable by making the
values of c or of p equal. To obtain it we observe that the point in which
the curve

meets the curve x+(a/log y) = a2,

is given by x = — ac, y = exp [l/(a.-fc)] .

Hence the point at which the curve

z+(c/log y) = c2

meets the envelope is

x = — c2, y = exp [l/(2c)].

The equation of the envelope is

Tbis curve satisfies Lagrange's conditions.
On the other hand the singular integral y = 0 will satisfy the condi-

tions

which contains the indeterminate term p* log ?/, since p = 0, log ?/ = GO ,
when y = 0.

Both singular integrals can be obtained from She primitive, taken in
the form r ,. 2 .-,

by using the equations (IV) and (V).

The reason why yr^ = 0 is satisfied in this case is that the two primi-

tives through the point x = a-2, y = 0, for which c = -\~ a and c = — a,

meet and touch the same line y = 0. In this case ?/ = 0 is not only an
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envelope, but seems to rank also as a tac-locus, inasmuch as the tangent
lines to the two curves tend to coincide with the same line, as their points
of oontact approach the salient points.

EXAMPLE 6.

Illustration of §§9 and 16 (ii).

where v = (l-f-y2)*—1.

The complete primitive is

a:+(l/logiO = c.

There is a cusp at x = c, y — 0 ; the tangent at the cusp being the
axis of x.

There are three asymptotes

x = c, y = 8*, y = — 3*.

The family of curves is formed by moving any one of their number
parallel to the axis of x, which touches each of them, so that it is their
envelope.

The figure when c = 0 is very similar to that which would be obtained
by taking the curve

b y
together with its reflexion in the axis of x, and then multiplying each
ordinate by 3*.

The function v is of the kind considered in $ 9, and therefore, if we take

u = x + (I/log v),

then ^T-^—. = 0 when v = 0, tor both ^- and 5- vamsn when r = 0,c(a;, y) ox ay
and it would seem that v = 0 is a particular integral.

But the only values of x and y which make r = 0 are given by

and therefore by y = 0.

Suppose therefore we take
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then ^ = 1,
c) (x, y)

showing that y — 0 is a singular solution.
If the complete primitive be thrown into the form

,/ = 2el/(e-'>+c2'(-••••>,

then the singular solution can be obtained from the equations (IV) and (V).
If the differential equation be written in the form

p=y(v+l)(\ogv)2/(v

Dp

Thus the condition TS /T» = 0
Dpi Dy

requires that logw should be infinite, and therefore gives the singular
solution y = 0. And y — oo is also a singular solution.

EXAMPLE 7.

Illustration of §§ 9 and 16 (ii).

—y) = xy(v+l)(\ogv)*,

( VVwhere « = (l-f--5^) — 1-

The primitive is a;-f (I/log y) = c,

and can be put into the form

The point a; = c, ?/ = 0 is a cusp on every curve of the family, the tan-
gent at the cusp being the axis of x.

The origin is a double point on every curve of the family (a cusp
when c = 0).

There are three asymptotes,

x = c, y=^3 [x—(2/8)1 y = - V3 [ > - (2/3)].

Since y = 0 makes p = 0, and v = 0 so that y (logv)2 ;= 0, it is an in-
SEU. 2. VOL, 17. NO, 1313. N,
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tegral. Moreover as y = 0 touches the curve at x = c, it is an envelope,
and it is also a cusp-locus.

The function v belongs to the class of functions discussed in § 9.

If we take u = a;+(l/log v),

then a ) = 0,
3 («, y)

when v = 0, because both 5- and y vanish when u = 0; but v = 0 is

not a particular integral.
When v = 0, it is necessary to have y = 0 or x = ao. If now we

then ? ^ | = l+»-I(» + 2)(»+l)-1(log»)-8,
^v^j y)

which becomes equal to 1 when v = 0, and so iudicates that y = 0 is a
singular solution.

In this case, putting

x, y, p) = (t> + 2)(xp—y) —a;y(i> + l)(log u)2,

77 = xwe get 7)7

which does not vanish when y = 0.

[But 5 ^ = tB!tf)-

which becomes infinite when y = 0, so that the condition

log «,

gives the singular solution y = 0. And y = 00 is also a singular solu-
tion.]
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EXAMPLE 8.

Illustration of § 16 (i).

r cos (yr) p = yl~r (0 < r < 1).

The primitive is x—ainiy1) = c,

and can be written y = [arc sin (a;—c)]1/r;

and since the exponent 1/r is greater than 1, the condition Sy/8c = 0 gives

c = x,

and therefore leads to the singular solution y = 0.

The condition •— = 0
Dp

requires that r cos (t/r) = 0 when y = 0, which cannot be satisfied.

[On the other hand the condition jy/j^ = 0 is satisfied by y = 0.]

Taking the case r = £ as the simplest, we have

Treating this equation as /(a, y, c) = 0, then — = 0 gives

therefore //-̂  = 57r,

where s is zero or a positive or negative integer.
If s = 0, we get the envelope y = 0.
If we take any other value of s we do not get a solution of the equation

at all, but a node-locus.
The equation is, if. r = £,

cos («/*) p = 2yh.

Squaring to remove the irrational powers of y, we get

N 2



180 PUOF. M. J. M. HILL [Jan. .1,8,

If we now make 7 ^ = 0, we get
Dp h

Thus (i) p = 0 gives the singular solution y = 0. And (ii) we have
also

i.e. l+cos(2i/4) = 0,

whence cos (y*) = 0 ;

therefore y* = (2H-D-77-,

which gives p = 0, but, on putting this value of y in the differential equa-
tion, we get

0 j[> = 0 0 .

In this case the differential equation is not satisfied.
We have, in fact, a tac-locus, the difference between the values of the

parameters of two touching curves being 2.
If r = £, the curve has a simple contact with the envelope.
If r = g, the envelope coincides with an inflexional tangent to each

curve.
If r = §, the envelope coincides with the tangent at a cusp on each

curve. In this case the envelope is at the same time a cusp-locus.
If r be negative, y = 0 is still a solution of the differential equation,

but in this case the complete primitive has a point of indetermination at
the point where it meets the singular solution.

EXAMPLE 9.

Illustration of § IB.

Let 2p+yV1'*1 = 0.

The integral is y~2 = log(c-r-a:).

For y to be real, we must have x ^ X—c. When x = 1—c, y = + <» .
If y > 0, p < 0, and as y tends to -f-0, p tends to —0 and x to

+ co. If y < 0, p > 0, and as y tends to —0, p tends to + 0 and x
to + QD .

The curve is symmetrical with regard to the axis-of x. As x increases
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from 1 —c to +QO, y decreases from +oo to + 0 for one branch, and
increases from — oo to —0 for the other branch.

One asymptote is x = 1—c. The curve tends to opposite ends of the
side of this asymptote for which x > 1 — c.

Another asymptote is y = 0. The curve tends to opposite sides of
the end of this asymptote for which « = + oo.

y == 0 is a solution of the differential equation. It is u, particular
integral, obtainable by putting c = + oo.

Since y = [logic-\-x)]~K

so that -J- = 0 when c = -\- oo.
oc

It might seem therefore that // = 0 was a singular solution. But
ij = 0. though it touches all the curves of the system, touches them all
at infinity, for p = 0 when // = ± 0, x = 4* oo .

It is not however an envelope in the usual sense, viz., that in which
every point of the envelope is the point of contact of one curve of the
system.

EXAMPLE 10.

The integral is x-\-exlv = c.

The family of curves is obtained by moving the curve x-\-elly = 0
parallel to the axis of x. If we change x into — Y, and y into — X, we
get the curve of Example 1, viz.:—

As x passes from — oo to — 1 , y increases from + 0 to +oo, and
approaches the upper end of the asymptote x = — 1. The curve then
passes to the other side of the lower end of this asymptote. Then, as x
increases from — 1 to — 0, y increases from — oo to —0.

The tangent at the origin is the axis of y.
Consequently y = 0 is not a singular solution of the differential

equation.
But y = 0 is an asymptote to every curve of the family.
The question noticed in § 18, as to whether y = 0 can be regarded as
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a solution of the equation
^ ,„ — . 2 - l / v

U — it fj

at all, presents considerable difficulty.

Since the integral is x-\-exly = c,

as y tends to +0 , x tends to — oo, and p to zero.

The only point, however, at which the curve actually reaches the axis
of z is at x = c, when y tends to —0, but in this case p = + °° •

To obtain the solution y = -f- 0 from the primitive, it is necessary to
put c = -f- °° •

And so, if y = 0 is to be regarded as a solution, it must be regarded
as a particular integral.

But since the family of curves is obtained by moving the curve

x + e1'* = 0

parallel to the axis of x, there is no point of that axis, at a finite distance
from the origin, which both lies on a complete primitive and is such that
the complete primitive touches the axis at it.

The equation considered in this example is the most similar in form to
that mentioned by Laplace (viz.

ax 3

where q is neither zero nor infinite when y = 0) which I have been able
to integrate.

Both in the equation considered by Laplace and in the one here studied,
where q is zero when y = 0, the values of all the differential coefficients
tend to 0 as y tends to -4-0.

As has been seen in the study of Example 1, this does not make it
certain that y = 0 is a particular integral.

EXAMPLE 11.

The complete primitive is

x y e = c.

There is a salient point at x = c, y = 0.
The tangent here is y = x—c.
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There are two asymptotes y = 0 and y = x — c—1.
Starting from the salient point, as x increases to + oo, y increases to

•+• °°. and the curve approaches the upper end of the asymptote

y = x—c — 1.

The curve then passes to the lower end of this asymptote, and then, as
x increases from —oo to -+• oo, y increases to —0 and tends to approach
the asymptote y = 0.

The question noticed in § 18 arises.
Is y = -j- o to be regarded as an integral ?

It satisfies the equation (y2+e~llv) p = y*,

but does not satisfy the equation

Moreover y = -f- 0 is certainly not an envelope, for each member of
the complete primitive meets it at an angle of 45°.

My view is that the equation

(i/+e"ll») p = if

should be regarded as being resoluble into

and y = 0.


