
The GridPP UserGuide

T Whyntie1

1Particle Physics Research Centre, School of Physics and Astronomy, Queen Mary
University of London, Mile End Road, London, E1 4NS, United Kingdom

E-mail: t.whyntie@qmul.ac.uk

Abstract. The GridPP Collaboration is a community of particle physicists and computer
scientists based in the United Kingdom and at CERN. This document is an offline version of the
GridPP UserGuide, written as part of GridPP’s New User Engagement Programme, that aims
to help new users make use of GridPP resources through the DIRAC, Ganga and CernVM suite
of technologies. The online version may be found at: http://www.gridpp.ac.uk/userguide

Spacer

Except where otherwise noted, this work is licensed under a Creative Commons Attribution
4.0 International License. Please refer to individual figures, tables, etc. for further information
about licensing and re-use of other content.

GridPP-ENG-002-UserGuide-v1.0 1

http://www.gridpp.ac.uk/userguide
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

CONTENTS CONTENTS

Contents

0 Introduction 3

1 Before We Begin 5

2 First Steps: Hello World(s)! 13

3 An Example Workflow: Local Running 19

4 Getting on the Grid 25

5 Moving Your Workflow to the Grid 32

6 Putting Data on the Grid 36

7 Using Grid Data in Your Workflow 49

8 What’s Next? 52

9 Troubleshooting 54

Appendix A Creating a GridPP CernVM 55

GridPP-ENG-002-UserGuide-v1.0 2

0 INTRODUCTION

0. Introduction

Welcome to the GridPP UserGuide. The GridPP Collaboration [1, 2] is a community of particle
physicists and computer scientists based in the United Kingdom and at CERN. It supports tens
of thousands of CPU cores and petabytes of data storage across the UK which, amongst other
things, played a crucial role in the discovery of the Higgs boson [3, 4] at CERN’s Large Hadron
Collider [5]. The aim of this document is to help new users - like you - join this community and
access these resources to make a difference to the world beyond the realm of particle physics.

So, if you have a data-intensive problem that could be solved using large-scale distributed
computing, read on!

0.1. Who is this guide for?

This guide is primarily aimed at people from user communities that have not previously engaged
with grid (a.k.a. distributed computing) technology. You could be:

• a researcher from a UK institution with a problem that could be solved by the application
of thousands of computers running software in parallel over large, structured data sets;

• a student from the UK who would benefit from being able to access computing and data
storage resources that your own institution cannot provide (i.e. your school);

• a tech entrepreneur from a start-up or Small-to-Medium Enterprise (SME) who would like
to test how your software or app scales to thousands of machines for zero cost and minimal
risk.

The GridPP UserGuide isn’t really aimed at:

• Members of scientific collaborations who already have a grid presence and infrastructure
in place (e.g. CMS, ATLAS, SNO++, T2K);

• Users from outside of the UK - you should refer to your own country’s National Grid
Initiative (NGI) to find out about the best way of getting on the grid,

although it may serve as a useful reference for members of these communities.

Assumed knowledge

While every effort has been made to cover as many bases as possible, some computing
knowledge is assumed. You can read more about what you might need to know in the
prerequisites section.

GridPP-ENG-002-UserGuide-v1.0 3

https://www.gridpp.ac.uk
http://cern.ch
http://cern.ch

0.2 What do I do next? 0 INTRODUCTION

0.2. What do I do next?

You should read Before We Begin (Section 1) to go over the Prerequisites (Section 1.1), the
conventions (Section 1.2), and how to get help from the GridPP community (Section 1.6). If
you do not have access to a Grid User Interface (UI) (or don’t know what that means), you
should then look at creating one following the instructions in Appendix A. Then it’s simply a
case of getting a grid certificate, joining a Virtual Organisation (VO), and getting on the
Grid!

What does this all mean?
Don’t worry, we’ll explain all of those terms as we go along - mostly using little
information boxes like this one. For now, though, you can start here.

GridPP-ENG-002-UserGuide-v1.0 4

1 BEFORE WE BEGIN

1. Before We Begin

• Prerequisites: This section gives a brief run-down of what you’ll need - and what you’ll
need to know - before we can get started on the grid with the UserGuide;

• Conventions in this guide: This section introduces some of the conventions used by the
UserGuide. A guide to the guide, if you will;

• Getting help: One of the great things about the GridPP project is the community of
experts who are there support grid users. This section looks at the various ways you can
get help if you get stuck, run into problems, or need advice on a grid-related issue.

GridPP-ENG-002-UserGuide-v1.0 5

1.1 Prerequisites 1 BEFORE WE BEGIN

1.1. Prerequisites

While we want to make the grid accessible to everyone, there are some things you are going
to need - and are going to need to know - in order to take full advantage of the resources on
offer. Let’s go through these now.

• A valid email address: This sounds kind of obvious - and who doesn’t have an email
address these days? - but you’ll need a valid email address from which you can send and
receive emails.

Which email address should I use?

If you can, use your institutional or organisational email account (such as that given to
you by your school, university, or company) as this will make life a little easier when it
comes to granting you access to grid resources.

• A GitHub account: GridPP is an Open Source project. Much of the software used by
the GridPP Collaboration is hosted on our GitHub repository - including the UserGuide
itself. It means we can track developments and issues in a public forum and so maximise
collaboration opportunities. You can sign up for a free GitHub account on their website.

Online code repositories

GitHub isn’t the only online code repository available. For example, BitBucket also offers
a similar git-based versioning system. CERN, too, have their own git system. GitHub
is used because they allow unlimited public repositories with an unlimited number of
collaborators - which is what GridPP is all about. BitBucket, on the other hand, offer
an unlimited number of private repositories for users, but limit the number who can
collaborate. Please get in touch if you’d like to know more.

• Experience with the command line: The command line allows you to type instructions
into your computer in order to get it to do things for you, rather than relying on clicking
on icons, buttons, and other graphical elements of a software package. In his guide, Learn
Enough Command Line to be Dangerous, Michael Hartl uses a nice analogy with magic.
While it is technically possible to use the Grid without using the command line (using,
for example, a web browser to access specific Grid systems), using the command line is
infinitely easier and gives you much, much more flexibility. Hartl’s tutorial, is well worth
following if you’ve not used it before (or even if you have!).

• A text editor: we’ll be writing scripts - series of commands to be executed one after
the other - and for this you’ll need a text editor of some description. Emacs, Vim, Vi -
whatever you feel most comfortable with. Vim, for example, allows you to edit text from
the command line.

GridPP-ENG-002-UserGuide-v1.0 6

http://github.com/gridpp
http://github.com
http://www.learnenough.com/command-line-tutorial
http://www.learnenough.com/command-line-tutorial
http://www.learnenough.com/command-line-tutorial

1.1 Prerequisites 1 BEFORE WE BEGIN

• Programming with Python: Once we start getting fancy with the Grid, we’re going to
use the Python programming language (via an Application Programming Interface) to do
a lot of the work for us. As such, some familiarity with Python will be handy. There are
plenty of (free!) online tutorials available that can get you started. We’ll provide plenty
of examples too, so don’t panic!

• Contact with GridPP: Before we can let you loose on GridPP’s vast computing resources,
it’d be nice to know who you are and what you’re doing with them. In fact, this is
a requirement of the UK Grid policy. You may already be in contact with a GridPP
representative at your local institution - if not, feel free to drop us a line.

• A Scientific Linux 6 command line with CVMFS access: This will either be provided
by your friendly GridPP contact (see above) or via a GridPP CernVM, a Virtual Machine
made by CERN that you can run yourself. The CernVM-File System, a.k.a. CernVM-FS
or CVMFS, gives you (and any grid node, for that matter) instant access to all sorts
of software without having to install anything. So it’s worth sorting out! You can find
instructions for creating a GridPP CernVM in this appendix.

Got all of that? Good. Now let’s look at the conventions used by the GridPP UserGuide.

GridPP-ENG-002-UserGuide-v1.0 7

https://www.gridpp.ac.uk/contact/
../gridpp-cernvm/gridpp-cernvm.html
http://cern.home
https://cernvm.cern.ch/
../gridpp-cernvm/gridpp-cernvm.html
../gridpp-cernvm/gridpp-cernvm.html

1.2 Conventions in this guide 1 BEFORE WE BEGIN

1.2. Conventions in this guide

The conventions used in the GridPP UserGuide are, by and large, self-explanatory. Here we’ll
look at a few that might not be.

1.3. The command line

Following Hartl, we’ll present command line examples using a Unix-style command line prompt
(a dollar sign), as follows:
$ echo "Hello, MoEDAL!"
Hello, MoEDAL!

i.e. you type what follows the dollar sign, and hopefully see the same (dollar sign-less) output
in your terminal.

Comparing the output

Computer systems are always going to vary from machine to machine, so you may not
see exactly the same output from a given command. We’ve tried to eliminate this as
much as possible by using the CernVM (see later) but more often than not a combination
of common sense and Googling the output should confirm if you’re on the right track.

Where possible we’ll use bash environment variables to account for differences in working
directories. However, if a particularly user-specific input is needed we’ll use square brackets to
denote parts of the command that require input specific to your circumstances. For example,
when setting your working directory environment variable WORKING_DIR, we’d write this:
$ export WORKING_DIR=[Your working directory.]
$ echo $WORKING_DIR
[The value of $WORKING_DIR , hopefully your working directory.]

which would actually be completed using:
$ export WORKING_DIR=/home/alovelace/grid-stuff/
$ echo $WORKING_DIR
/home/alovelace/grid-stuff/

1.4. Code listings

Generally speaking, we have tried to avoid listing large swathes of code in the UserGuide itself
- that’s what GitHub is for. From time-to-time it may be useful to include a code snippet like
the following:
#!/usr/bin/env python
print("* This works!")

GridPP-ENG-002-UserGuide-v1.0 8

https://www.railstutorial.org

1.4 Code listings 1 BEFORE WE BEGIN

Following Hartl, we will use vertical dots to represent code omitted for the sake of brevity:
#!/usr/bin/env python

class GridJob:
.
.
.
def submit(self, id):

self.id = id
.
.
.

These dots should not be copied into your code. Obvs.

1.4.1. Hints, warnings, and information

The GridPP UserGuide, like many instructional handbooks, uses little pop-out boxes to highlight
important points throughout the text.

Hint boxes
This is a hint. Hint boxes are used for pointing out things that might be useful while
carrying out the task being described (particularly where we have received user feedback
on a given step!).

Warning boxes

This is a warning. These are used to flag up potential pitfalls or issues you may need to
be aware of to avoid making mistakes or doing Something Bad.

Information boxes
This is a point of information. These boxes will generally present things that may not
directly relate to the topic being discussed but are nonetheless interesting.

1.4.2. Checklists

Once you’ve waded through the waffle associated with a given section, you’ll be presented with
a checklist section that will give you a simple, bullet-pointed list of the things you should be
able to do once you’ve read that section. You should go through these to make sure you have
done them and, more importantly, understood them. If not, re-read the section. Alternatively,

GridPP-ENG-002-UserGuide-v1.0 9

https://www.railstutorial.org

1.5 Testing 1 BEFORE WE BEGIN

you could plough on and try the tests - see below - to see if it makes more sense when you try
to actually do something based on what you’ve just read.

1.5. Testing

All well-written, well-packaged code should come complete with unit tests; scripts or bits of
code that can be run to test whether one’s software is working as expected (especially during
development as changes are made and new versions are produced). We can try to emulate this
approach by trying to test the success of each of the steps taken while following the instructions
presented in the UserGuide. At the end of each section you will therefore find a Testing page
that will present a number of tasks or tests for you to complete to verify that you have followed
the UserGuide. As a rule you should not proceed to the next section until you have passed all
of these tests.

If you’re struggling, there are plenty of ways to get help and support. We’ll find out more about
these in the next section.

GridPP-ENG-002-UserGuide-v1.0 10

1.6 Getting help 1 BEFORE WE BEGIN

1.6. Getting help

There are many ways of getting help and support if you run into problems while working through
the GridPP UserGuide. If you don’t happen to have a GridPP expert in the office down the
corridor, you can try the methods described below.

1.6.1. Check the troubleshooting guide

We’ve added a short troubleshooting guide for problems that users have come across that we
know are specific to particular systems, generally raised via the GitHub Issues page. It might
be worth checking here first for anything obvious.

1.6.2. Googling the error

We can’t possibly account for every error a user might encounter when working through the
UserGuide, so on encountering a problem your first port of call should be sticking the error
message into your Search Engine of Choice.

Errors on the Internet
This is actually a pretty good approach to software development in general. Thanks to
vibrant, enthusastic communities like those at StackExchange many common computing
gotchas have been documented and solved on the World Wide Web - so it’s always worth
checking!

1.6.3. Issue tracking via GitHub

The easiest way to report problems, make suggestions, or submit comments about the UserGuide
is by raising an issue on the GridPP UserGuide GitHub repository. Simply log in to GitHub,
visit the UserGuide issues page and click on the New issue button.

Submitting an issue to GitHub

Provide as much information as you can when raising an issue. You can also use the
MarkDown format to create hyperlinks and add formatting to your issue.

We’ll then have a public record of the issue which we can then aim to solve as soon as we can.
It’s also possible to link issues to the pull requests that fix them.

GridPP-ENG-002-UserGuide-v1.0 11

http://github.com/gridpp/user-guides/issues
http://github.com/GridPP/user-guides
https://github.com/gridpp/user-guides/issues
https://github.com/gridpp/user-guides/issues/new
https://help.github.com/articles/using-pull-requests/

1.6 Getting help 1 BEFORE WE BEGIN

Watching GitHub repositories

Don’t forget to Watch the repository too. You can do this by going to the repository,
signing in with your GitHub account, and clicking on the Watch button at the top-right
of the page. You’ll then be kept up-to-date with issues and new versions as the UserGuide
evolves over time.

1.6.4. Mailing lists

A great way to tap into the expertise represented by the GridPP Collaboration is to join one
of the mailing lists in the table below. You’ll need a valid email address, but if you’ve read the
prerequisites you know that already.

Table 1: The GridPP support mailing lists.

List Description Subscribe
GRIDPP-USERS A list for announcements and discussions JISCMail

aimed at UK Grid users.
GRIDPP-SUPPORT A list for discussion and support JISCMail

aimed at UK Grid users.

Using the mailing lists

These mailing lists are public, so keep it nice people!

1.6.5. Contact us

Finally, if none of the other methods yield results, drop us a line using the details here:

https:///www.gridpp.ac.uk/contact/

GridPP-ENG-002-UserGuide-v1.0 12

https://www.jiscmail.ac.uk/cgi-bin/webadmin?SUBED1=GRIDPP-USERS&A=1
https://www.jiscmail.ac.uk/cgi-bin/webadmin?SUBED1=GRIDPP-SUPPORT&A=1
https:///www.gridpp.ac.uk/contact/

2 FIRST STEPS: HELLO WORLD(S)!

2. First Steps: Hello World(s)!

It’s something of a tradition to start any new computing activity with an exercise that produces
the phrase, “Hello, World!” with whatever you’re doing. And it’s not a tradition we’ll be
breaking with now. Distributed computing, however, is all about doing things on a bigger scale
- so we’ll be saying “Hello” to many worlds all at the same time. We’ll do this using the Ganga
toolsuite. By the end of this chapter you’ll have used Ganga to submit multiple jobs with a
single command and check their output.

Jobs
A job is the term we use to describe a task, or set of tasks, we run on our local machine,
our cluster’s machines, or the grid’s Worker Nodes (WNs). We’ll come back to these
concepts later in the UserGuide.

We won’t be using the grid yet - they will run on your local machine - but thanks to Ganga and
the other tools used by GridPP making the switch to grid running is pretty straightforward.

Ready? Let’s say “Hello!”

2.1. Starting Ganga

Ganga is a Python-based toolkit used for submitting jobs and managing data on the grid. You
can read more about it on its CERN page here. The code is all on GitHub, of course. Crucially,
Ganga is available via CVMFS so you don’t even have to install it. On your terminal with
CVMFS access, Ganga can be started by simply typing

$ source /cvmfs/ganga.cern.ch/runGanga.sh

After various welcome messages have been presented, you should see the Ganga command
prompt:

Ganga In [1]:

iPython

If you’re familiar with iPython, this prompt style should look very familiar!

Numbered prompts

The number you see in the Ganga (iPython) prompt is the number of the command that
you’ve executed in the terminal. This is great for interactive running, but rubbish for
writing user guides. We’ll replace this is with an X in what follows.

GridPP-ENG-002-UserGuide-v1.0 13

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
http://ganga.readthedocs.io
http://ganga.readthedocs.io
https://ganga.web.cern.ch/ganga/
https://github.com/ganga-devs/ganga

2.2 Submitting a Hello, World! job 2 FIRST STEPS: HELLO WORLD(S)!

Quitting Ganga

To quit Ganga, press Ctrl-d and then type y or press Enter.

You will be using Ganga a lot. You may want to create an alias for the Ganga start command
in your ~/.bashrc file.

All good so far? Great. Now you’re ready to submit your first job.

2.2. Submitting a Hello, World! job

Ganga has an iPython-esque command line interface for real-time job management. Things
like jobs are modelled using Python objects. So creating and submitting a job is as simple as
this:

Ganga In [X]: j = Job()
Ganga In [X]: j.submit()

You should see an output that looks like something like this:

INFO submitting job X
INFO job X status changed to "submitting"
INFO Preparing Executable application.
INFO Created shared directory: [temporary directory name]
INFO Preparing subjobs
INFO submitting job X to Local backend
INFO job X status changed to "submitted"

What’s going on here? Well, the Job() object has a bunch of default settings that, on
instantiation, create a Hello, World! job that submits to the “Local” backend - i.e. the machine
you are running on.

Back-ends
The back-end is wherever you want your jobs to run - your local machine, your local
computing cluster, or the grid (via GridPP DIRAC). The beauty of Ganga is that you
have the same interface for whichever you are using - which makes switching between
them a case of tweaking some configuration files.

In the time it has taken to read the above, you should see the following output (press return if
not).

INFO job X status changed to "running"
INFO Job X Running PostProcessor hook
INFO job X status changed to "completed"
INFO removing: [temporary directory name]

GridPP-ENG-002-UserGuide-v1.0 14

2.3 Submitting the Hello, World(s)! jobs 2 FIRST STEPS: HELLO WORLD(S)!

Your job has finished. You can check this - and the status of any other jobs - using the jobs
command, which produces a neat little summary table of all of your jobs:

Ganga In [X]: jobs
Ganga Out [X]:
Registry Slice: jobs (1 object)

OK, so your job has run and finished, but where is the famous phrase that signifies success?
Well, Ganga manages your job output for you in a series of output directories. More on this
later, but you can peek at the output with the following command from Ganga:

Ganga In [X]: j.peek('stdout', 'more')
Hello World

Reading the output

We’ve used the more program to read the output, but you can specify your own if you
like…

Ta da! You’ve submitted, run, completed, and checked the output from, your first grid-like job.
OK, so it didn’t run on the grid this time, but thanks to Ganga the process isn’t actually that
different.

Local running for testing workflows

In fact the ability to run grid-like jobs locally is very useful for testing your workflow out
before unleashing it on the grid…

Finally, to tidy up:

Ganga In [X]: j.remove()
INFO removing job X

You can check with the jobs command that the job has gone from the list.

Congratulations - you’ve submitted your first job! But we can do better than that: with
distributed computing, the idea is to break your problem into bits and tackle them with multiple
jobs: divide and conquer. Let’s see how easy this is to do with Ganga.

2.3. Submitting the Hello, World(s)! jobs

We’re going to use a Python script to generate and submit multiple jobs to the Local backend
with Ganga. First, use your favourite editor to create the following script (which we will call
hello_worlds.py):

$ cat hello_worlds.py
worlds = ['Mercury', 'Venus', 'Mars', 'Earth', 'Jupiter', 'Saturn',

GridPP-ENG-002-UserGuide-v1.0 15

2.3 Submitting the Hello, World(s)! jobs 2 FIRST STEPS: HELLO WORLD(S)!

'Uranus', 'Neptune', 'Pluto']

for world in worlds:
j = Job()
j.name = "hello_%s" % (world.lower())
j.application.args = ["Hello, %s!" % (world)]
j.submit()

Two terminals
You may want to have two terminals running in your working directory – one to run
Ganga in, and one to write scripts in. This will save having to quit Ganga each time you
want to edit a script with a command-line editor (e.g. vim).

There are a few things to note here:

• We have given each job a name using the script. This will make life easier later on once
the jobs have finished.

• The executable used is still the default (echo), but now we have supplied varying
arguments for the different jobs.

Ganga can then run this script with the execfile command. The script uses a for loop to
create the jobs and submit them:

Ganga In [X]: execfile('hello_worlds.py')
[... updates on the job submission ...]

All being well, all nine jobs will run and complete. Using jobs to find the job ID, you can look
at the output as before:

Ganga In [X]: jobs(7).peek('stdout', 'more')
Hello, Neptune!

2.3.1. Job manipulation tips and tricks

Of course, now you’re able to create and submit potentially huge numbers of jobs, you may
want to think about how to keep on top of which jobs are which, how to remove jobs, etc.
This is where Ganga really comes in to its own. For example:

• Selecting jobs by name: remember how we gave each job a name? Well, this allows us
to select the jobs we want in one go:

Ganga In [X]: my_jobs = jobs.select(name='hello_*')

Ganga In [X]: my_jobs
Ganga Out [6]:
Registry Slice: jobs.select(minid='None', maxid='None', name="None") (9 objects)

GridPP-ENG-002-UserGuide-v1.0 16

2.4 Checklist 2 FIRST STEPS: HELLO WORLD(S)!

You can now use the my_jobs object to do things to your jobs, such as submit, copy,
resubmit, etc.

Tab complete

Use tab complete to see what’s possible with the my_jobs you’ve selected.

• Removing multiple jobs: To tidy up all the jobs in one go, use the slice you’ve created
with the select command:

Ganga In [X]: my_jobs.remove()
INFO removing job X
[...]
INFO removing job X+8

You can verify this has been successful with the jobs command.

So there we go - your first multiple job submission with Ganga. Obviously we are going to need
to incorporate more complicated features to adapt your workflow for grid running - using your
own executables and software libraries, uploading input data, extracting the output, etc. - but
hopefully you can see how we might go about this using Ganga and, ultimately, the Grid.

Now take a look at the following checklist to make sure you’ve got everything from this chapter
nailed. Then we’ll look at a more complicated workflow in Section 3.

2.4. Checklist

• I can start Ganga from my command line;
• I can submit a simple “Hello, World!” job using the Ganga default Job();
• I can give a job a name;
• I can write a script that creates and submits multiple jobs;
• I can select a group of jobs based on the name I assigned them on creation;
• I can remove multiple jobs with a single command operating on my selection of jobs.

2.5. Testing

• Running Ganga from the command line: if you have successfully run Ganga, you should
now have the following in your $HOME directory:

$ cd $HOME
$ ls ~/.gangarc
/home/alovelace/.gangarc
$ ls ~/gangadir
repository shared thread_trace.html workspace

GridPP-ENG-002-UserGuide-v1.0 17

2.5 Testing 2 FIRST STEPS: HELLO WORLD(S)!

• Looking at the output from local Ganga jobs: assuming you haven’t removed them
(you can always re-run them again if you have), you should be able to find the actual
output files from your jobs in your gangadir. So for user alovelace’s job 0, the output
can be found in:

$ ls $HOME/gangadir/workspace/alovelace/LocalXML/0/output/
__jobstatus__ stdout stderr __syslog__

You should see something similar (and you can look at the output in stdout directly if
you like!).

GridPP-ENG-002-UserGuide-v1.0 18

3 AN EXAMPLE WORKFLOW: LOCAL RUNNING

3. An Example Workflow: Local Running

Hello, World! jobs are all very well, but we’re guessing your workflows are more complicated
than a printing out a simple, if polite, greeting. We’re now going to demonstrate the capabilities
of Ganga and the CernVM-File System (CernVM-FS, or CVMFS) for running jobs with input
data, remotely-managed software, and output data.

3.1. An aside: what is the CernVM-FS?

The CernVM File System [6] is “a network file system based on HTTP and optimized to deliver
software in a fast, scalable, and reliable way”. It was developed to solve the problem of installing
and maintaining the software used by all of the different particle physics communities involved
with work at CERN. Simply put, systems with the CernVM-FS installed have instant access to
a given community’s software repositories via the command line. This means it can be used:

• by community members working on university computing clusters outside of CERN;
• by Worker Nodes (WN) anywhere on the grid where the repository is supported;
• by CernVM Virtual Machines.

You’ve already used CVMFS to run Ganga itself. But it can be used to host your own software
that will run anywhere on the Grid (or, indeed, anywhere with access to CVMFS).

The example workflow we’ll use comes from the CERN@school research programme. We’ll take
some raw particle detector data in ASCII format, turn it into some pretty images of detected
particles using the Python matplotlib software, and retrieve the frame information and images
as output.

3.2. The workflow itself

The workflow here is pretty straightforward:

• Input: raw detector data from a Timepix hybrid silicon pixel detector. These ASCII text
files represent the data (and detector settings) recorded by a Timepix detector during
a background measurement reading. The dataset we use here is hosted on the web at
FigShare. We will download a zip file containing the data and upload it with our job.

• Processing: the data is processed with a Python script in the CERN@school CVMFS
repository called process-frames.py. This script in turn uses Python modules (both
custom and standard) that are also hosted on and sourced from CVMFS.

• Output: process-frames.py produces a log file, a JSON containing information about
the processed data frames, and a directory of images representing the particles detected
in each frame.

GridPP-ENG-002-UserGuide-v1.0 19

http://cernvm.cern.ch/portal/startcvmfs
https://cern.ch
http://researchinschools.org/CERN/
http://medipix.web.cern.ch
http://figshare.com

3.3 Getting the input data 3 AN EXAMPLE WORKFLOW: LOCAL RUNNING

We will create a workflow in Ganga that uploads the input data we’ve downloaded from
FigShare, process it on our local machine, compress the images into a single tar archive,
and retrieve the log file, JSON file, and tar archive as output.

3.3. Getting the input data

In your working directory, which we will associate with the environment variable $WORKINGDIR,
download the dataset as follows:

$ export WORKINGDIR=$PWD
$ cd $WORKINGDIR
$ wget http://files.figshare.com/2600426/CERNatschool_backgroundrad_dataset.zip
$ unzip CERNatschool_backgroundrad_dataset.zip
$ rm CERNatschool_backgroundrad_dataset.zip
$ ls
B06-W0212 E09-W0092 README.md

Data and jobs

We could actually get our grid job to do this as part of the job. Or we could tell our
job to use input data that is already hosted on a grid storage element. For simplicity,
though, we will upload the data we have just downloaded to our working directory with
our job.

We’ll see how this is uploaded with the job below.

3.4. Writing the executable

With our Hello, World! job(s), we used the built-in executable echo to print a simple string.
This workflow will use the shell script below, run.sh, that contains the commands we want
our job to execute.

$ vim run.sh
$ chmod a+x run.sh
$ cat run.sh
#!/bin/bash
#
Add the Python packages from the CERN@school CVMFS
repository to the PYTHONPATH environment variable.
export PYTHONPATH=/cvmfs/cernatschool.egi.eu/lib/python2.6/site-packages/: \\
/cvmfs/cernatschool.egi.eu/lib64/python2.6/site-packages/:$PYTHONPATH
#
Add CERN@school libraries to the LD_LIBRARY_PATH.

GridPP-ENG-002-UserGuide-v1.0 20

3.5 Preparing the job 3 AN EXAMPLE WORKFLOW: LOCAL RUNNING

export LD_LIBRARY_PATH=/cvmfs/cernatschool.egi.eu/lib/: \\
/cvmfs/cernatschool.egi.eu/lib64/: \\
/cvmfs/cernatschool.egi.eu/lib64/atlas:$LD_LIBRARY_PATH
#
Add CERN@school libraries to the PATH.
export PATH=/cvmfs/cernatschool.egi.eu/lib64/:/cvmfs/cernatschool.egi.eu/lib/: \\
/cvmfs/cernatschool.egi.eu/lib64/atlas:$PATH
#
Unzip the uploaded input data.
unzip CERNatschool_backgroundrad_dataset.zip
#
Run the CVMFS-hosted Python script on the data.
python /cvmfs/cernatschool.egi.eu/code/particle-rate-plotter/process-frames.py \\
$1 ./.
#
Compress the images ready for retrieval.
tar -cvf output_images.tar PNG/

You should make run.sh in your $WORKINGDIR by copying and pasting the above into your
favourite text editor.

Executable scripts

Don’t forget to make the script executable with the chmod command.

3.5. Preparing the job

We’ll use Ganga’s execfile functionality to create, configure, and submit our job with a short
Python script called local_job.py, listed with explanatory comments below:

$ vim local_job.py # Copy and paste away!
$ cat local_job.py
The Ganga job.
j = Job()

Name the job.
j.name = "CERN@school_local_01"

Tell Ganga it's running an executable: run.sh
j.application = Executable()
j.application.exe = File('run.sh')

GridPP-ENG-002-UserGuide-v1.0 21

3.6 Getting the job output 3 AN EXAMPLE WORKFLOW: LOCAL RUNNING

run.sh takes one argument - the dataset directory.
j.application.args = ['B06-W0212/2014-04-02-150255/']

Specifiy which local files to upload with the job.
j.inputfiles = [LocalFile('CERNatschool_backgroundrad_dataset.zip')]

Specify which files should be downloaded as output from the job.
j.outputfiles = [LocalFile('frames.json'), \\
LocalFile('log_process-frames.log'), LocalFile('output_images.tar')]
j.submit()

You can then run this within Ganga using the execfile command as before:

Ganga In [X]: execfile('local_job.py')
[... job output messages ...]

Location location location
Make sure you are running Ganga from $WORKINGDIR so that it can find
local_job.py .

You can monitor the status of the job as before with the jobs command. As the job is actually
doing some work now, you may be able to see the job assume the running status.

3.6. Getting the job output

Once the job has finished, you can view the output of the text files as before with the peek
command:

Ganga In [X]: j=jobs(X)
Ganga In [X]: j.peek('log_process-frames.log')
INFO:root: * Creating directory '././PNG'...
INFO:root:
INFO:root:* Found 60 datafiles.

To view the images you’ve created, you’ll need to find where they have been downloaded to on
your local machine. If the job ID was “1”, you can do this with:

Ganga In [X]: j = jobs(1)
Ganga In [X]: j.outputdir
Ganga Out [X]: '/home/alovelace/gangadir/workspace/alovelace/LocalXML/1/output/'

$ cd $WORKINGDIR
$ cp /home/alovelace/gangadir/workspace/alovelace/LocalXML/1/output/output_images.tar
output_images.tar
$ tar -xvf output_images.tar

GridPP-ENG-002-UserGuide-v1.0 22

3.7 Checklist 3 AN EXAMPLE WORKFLOW: LOCAL RUNNING

PNG/
PNG/E09-W0092_2014-04-02-143123.png
[...]
PNG/E09-W0092_2014-04-02-142120.png

You can view these images with the following command, which will bring up the Eye Of Gnome
image viewer (assuming you have it installed on your local machine). Use the arrow keys to
move through the frames of data.

$ eog PNG/ &

So there we have it - we’ve run a (rather simple) workflow on our local machine using Ganga.
But here’s the thing: to move this workflow (and, indeed, most workflows) to the grid, we only
need to do three things:

1. Configure the job to use the GridPP DIRAC backend;
2. Put our input data on the grid and configure our job to use this;
3. Configure the job to write the output data to the grid.

2) and 3) take a bit more work, but are optional (it really depends on your input and output
data as to what actually needs to go on the grid. But once you’re setup for grid running, 1)
only takes a single line in your job configuration script:

j.backend=Dirac()

Ganga does the rest. Does that sound good? Let’s get you set up on the grid then.

3.7. Checklist

• I can create, configure, and submit a local job that uses local-sourced data as input and
software hosted on CVMFS using Ganga;

• I can view the output logs from my local job with the peek command;
• I can find and retrieve the output of my local job using the outputdir command in

Ganga.

3.8. Testing

• Successful running of the CERN@school example job: Once you have run and retrieved
the images from the example job, the first frame image should look something like that
shown in Figure 1.

For reference, that’s a beta particle in the bottom left corner, and five gammas in the rest of
the frame! You can also find the source code on the CERN@school GitHub page.

GridPP-ENG-002-UserGuide-v1.0 23

http://github.com/CERNatschool/particle-rate-plotter

3.8 Testing 3 AN EXAMPLE WORKFLOW: LOCAL RUNNING

Figure 1: The example output from the CERN@school job.

GridPP-ENG-002-UserGuide-v1.0 24

4 GETTING ON THE GRID

4. Getting on the Grid

We have run local jobs so far. Now it’s time to get on the grid - after which, we will be able
to configure Ganga to submit our jobs to the GridPP DIRAC system and so access all of the
computing and data resources GridPP has to offer. The following sections will cover:

• Getting a grid certificate (Section 4.1);
• Joining a Virtual Organisation (Section 4.2);
• Logging on to GridPP DIRAC.

We’ll find out more about what each of these steps mean and entail as we go.

Thinking ahead

Some of these steps require interaction with a human being. For example, to get a grid
certificate you have to visit your local Registration Authority in person with photographic
ID. Please bear this in mind before you begin - it is not an automated process and may
take a little time. It will be worth it though!

Let’s start by getting you a Grid certificate, shall we?

4.1. Your Grid certificate

Your grid certificate is your passport to the grid. It will give you access to the vast array of
computational resources that GridPP (and the wLCG) has to offer. As such, getting a grid
certificate is an understandably non-trivial, multi-step process. For example, you will need to
identify yourself to your local Registration Authority (RA) so that the grid knows who you are.

In concrete terms, a grid certificate is a .p12 file (i.e. a pkcs12 web browser certificate file) that
you will later convert into a user key file and a user certificate file. Encoded according to the
X.509 standard, these are used by the grid to confirm who are you are and so give you access
to grid resources.

4.1.1. Requesting a Grid certificate

Grid certificates in the UK are managed by the UK e-Science Certificate Authority†. To start
the process, you need to choose a web browser that you will have consistent access to. We
recommend Firefox as this process has been tested and confirmed to work with Firefox on most
Operating Systems. This is because you need to use the same system for both requesting your
certificate and retrieving it when it is ready.

† See http://ngs.ac.uk/ukca

GridPP-ENG-002-UserGuide-v1.0 25

http://ngs.ac.uk/ukca

4.1 Your Grid certificate 4 GETTING ON THE GRID

Temporary logins

Do not use a temporary login anywhere when requesting a grid certificate.

Using your browser of choice visit the CA portal† and select the Request New User Certificate
option. This almost goes without saying, but make sure you supply a valid email address
which you can access. You will also be asked to do things like supply a PIN and passwords that
you will need later on, so make sure you write everything down!

Registration Authroties

You will need to select a Registration Authority (RA) as part of this process. If your
institution does not have its own RA, select the nearest on the drop-down menu. You will
need to visit the RA in person with some photographic identification, so don’t pick one
that is too far away! If no contact information is listed for a given RA, they will almost
certainly be retrievable using a Search Engine of Your Choice or via their department’s
webpage. They will be delighted to hear from you!

Further instructions will then be emailed to you at the email address you have supplied during
the registration process. Once that has happened you should get a further email from someone
at the RA asking you to visit them in person to complete the validation process.

Who are you?

You may also be asked to supply a letter of recommendation (or, rather, an email from
a suitable authority) explaining why you need to use the grid and with whom you will be
working. If you are unsure about who to ask for this, please contact us† and we should
be able to help you out.
† See https://www.gridpp.ac.uk/contact

4.1.2. Installing your Grid certificate in your web browser

Assuming all has gone to plan, you should receive a confirmation email with a link that will
let you download your grid certificate file and install it in your browser. You will now be
able to export and backup your grid certificate using your browser’s certificate management
functionality. This process will vary from browser to browser and from OS to OS, so consult
the UK CA documentation if in doubt.

Congratulations - now you can be identified on the grid, you’re ready to join a Virtual
Organisation.
† See https://portal.ca.grid-support.ac.uk/caportal/

GridPP-ENG-002-UserGuide-v1.0 26

https://www.gridpp.ac.uk/contact
http://www.ngs.ac.uk/ukca/certificates
https://portal.ca.grid-support.ac.uk/caportal/

4.2 Joining a Virtual Organisation 4 GETTING ON THE GRID

4.2. Joining a Virtual Organisation

Your Grid certificate identifies you to the grid as an individual user, but it’s not enough on its
own to allow you to use grid resources; you also need to join a Virtual Organisation (VO).
These are essentially just user groups - typically one per experiment - and individual Resource
Centres (RCs) can choose to support work by users of a particular VO. Most RCs support the
four VOs associated with the Large Hadron Collider (LHC) experiments. The sign-up procedure
varies from VO to VO. UK-based VOs typically require a manual approval step, while LHC VOs
require an active CERN account. If you are already part of an experiment that is represented
by a VO, they should provide you with any specific instructions you need to join.

If you’re interesting in using the grid but are not (yet) working as part of a user community
already represented by a VO, worry not. GridPP have created a catch-all VO - gridpp - and
four Regional Virtual Organisations (RVOs) corresponding to the four Tier 2s that can be joined
to test out what the grid has to offer. Once you have used these “incubator” VOs to see if
the Grid meets your needs, you can then think about creating your own Virtual Organisation
to represent your user community.

Is there a VO for you already?

Your user community may already have a VO associated with it. Check the GridPP wiki
page of supported VOs to see if you can join that to speed things up.

4.2.1. Joining an incubator VO

Just browsing

Some users have reported that the VOMS registration described below fails using the
Safari web browser. We have tried and tested the process using Mozilla Firefox.

Trusting the VOMS servers

Please ignore any “untrusted connection” warnings when accessing the VOMS server
pages. GridPP is aware that the VOMS server uses unsigned certificates, but this
situation is unlikely to be resolved any time soon.

4.2.2. Joining the GridPP VO

To join the gridpp VO, visit this page using a browser that has your grid certificate installed
and follow the instructions.

GridPP-ENG-002-UserGuide-v1.0 27

https://voms.gridpp.ac.uk:8443/voms/gridpp/
https://voms.gridpp.ac.uk:8443/voms/gridpp
https://voms.gridpp.ac.uk:8443/voms/gridpp/register/start.action

4.3 Logging on with GridPP DIRAC 4 GETTING ON THE GRID

4.2.3. Joining a Regional VO

Likewise, you can join one of the four regional VOs:

• vo.londongrid.ac.uk

• vo.northgrid.ac.uk

• vo.scotgrid.ac.uk

• vo.southgrid.ac.uk

Confirming VO your membership

Your VO membership request needs to be confirmed manually by one of the VO
administrators, so please wait for the membership confirmation email to arrive before
proceeding. You may wish to keep an eye on your junk folder(s) too.

Once you have joined a VO, congratulations - you are ready to start using the Grid!

4.3. Logging on with GridPP DIRAC

There are many ways of accessing and using Grid resources. Larger organisations - such as the
four LHC experiments - have developed their own frameworks, architectures and mechanisms
to enable their members to run jobs and access experimental data.

One such framework – DIRAC [7] – is used by LHCb [8], but also many other Grid projects,
to manage grid jobs and storage. You can read more about DIRAC (Distributed Infrastructure
with Remote Agent Control) on their website† or in [7], but for our purposes all you need to
know for now is that DIRAC provides a way for you to access grid resources without worrying
too much about what’s going on behind the scenes.

4.3.1. The GridPP DIRAC instance

The Imperial College London GridPP Resource Centre (RC) hosts an instance of DIRAC on
behalf of GridPP [9, 10]. The GridPP DIRAC instance is is capable of serving multiple VOs,
providing grid job and data management capabilities for smaller, non-LHC user communities
wishing to make use of GridPP resources. As a new user, you are automatically registered with
the GridPP DIRAC instance and the Virtual Organisations you have joined. You can then test
out various bits of grid functionality to determine if grid computing will meet your needs and
the needs of your users.
† See http://diracgrid.org

GridPP-ENG-002-UserGuide-v1.0 28

http://diracgrid.org

4.4 Preparing your Grid certificate 4 GETTING ON THE GRID

You can interact with the Grid via the GridPP DIRAC web portal at:

https://dirac.gridpp.ac.uk

When you access the portal, you should see yourself listed as a Visitor in drop-down menu in the
bottom-right corner of the browser. Once you have joined one or more DIRAC-supported Virtual
Organisations, you will be able to select which VO you use DIRAC as using this drop-down
menu.

The GridPP DIRAC mailing list

You should also join the GridPP DIRAC mailing list to keep informed of the latest
developments and receive notices of any downtime. You can join the mailing list here.

So you’ve accessed the GridPP DIRAC web portal. Congratulations! However, as discussed,
we’ll be using GridPP DIRAC via the Ganga interface. In order to do that, you’ll need to install
your Grid certificate on your local machine - and the instructions for doing this are in the next
section.

4.4. Preparing your Grid certificate

Ganga will assume that your grid certificate is in a certain location and in a certain format in
order to use it. Your grid certificate therefore needs to be moved and prepared accordingly -
which you can do by following the instructions below.

4.4.1. Moving your Grid certificate to your UI

The first thing to do is move your Grid certificate (the one you got after following the
instructions in Section 4.1) to the ~/.globus/ directory in your home folder.

$ cd ~
$ pwd
[Your home directory.]
$ mkdir .globus
$ cp [The location of your certificate file.]/[Your certificate filename].p12 ./.globus/.

Certificates on CernVMs
If you are using a CernVM and have moved your personal Grid certificate file to it, you
should change the password of the gridpp account so that no-one else can use it. This
can be done in the standard UNIX way with the passwd command.

GridPP-ENG-002-UserGuide-v1.0 29

https://dirac.gridpp.ac.uk

4.5 Checklist 4 GETTING ON THE GRID

4.4.2. Converting your Grid certificate

In order to use your Grid certificate, you need to convert them into separate certificate and key
files. Don’t worry, this straightforward enough to do with the following commands:

$ cd ~/.globus
$ openssl pkcs12 -in [Your certificate filename.].p12 -clcerts -nokeys -out usercert.pem
Enter Import Password:
MAC verified OK
$ openssl pkcs12 -in [Your certificate filename.].p12 -nocerts -out userkey.pem
Enter Import Password:
MAC verified OK
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You will then need to change the file permission settings on the two newly-generated files:

$ chmod 400 userkey.pem
$ chmod 600 usercert.pem

And that’s it! You’re now ready to use GridPP DIRAC with Ganga. It may have seemed like a
lot of work, but hopefully the next section will demonstrate it will all have been worth it.

4.5. Checklist

4.5.1. Your Grid certificate

• I have requested a grid certificate from the UK Certificate Authority (UKCA).
• I know where my nearest Registration Authority (RA) is.
• I have visited my nearest RA and confirmed my identity.
• I have downloaded my grid certificate .p12 file and installed it in my browser.
• I have backed up my grid certificate .p12 file in a secure location.

4.5.2. Joining a Virtual Organisation – Checklist

• I have submitted a request to join a Virtual Organisation (VO).
• My request has been approved by a VO manager and I have received email confirmation

of the approval.
• I have followed all of the instructions in the confirmation email.

4.5.3. First steps with GridPP DIRAC

• I have accessed the GridPP DIRAC web portal with my Grid certificate-enabled browser.
• I am recognised by the GridPP DIRAC web portal as a Visitor.

GridPP-ENG-002-UserGuide-v1.0 30

http://ngs.ac.uk/ukca
https://portal.ca.grid-support.ac.uk/caportal/pub/viewralist
https://dirac.gridpp.ac.uk
https://dirac.gridpp.ac.uk

4.6 Testing 4 GETTING ON THE GRID

• I have joined the GridPP DIRAC mailing list.

4.6. Testing

4.6.1. Your Grid certificate

• Viewing your certificate details: visit this website with the broswer in which your
certificate is installed. You should see your grid certificate details displayed.

4.6.2. Joining a Virtual Organisation

• Joining the GridPP VO: Click here. If your request has been approved and confirmed,
you should be listed as a VO member.

• Joining a Regional VO: Click on vo.londongrid.ac.uk, vo.northgrid.ac.uk,
vo.scotgrid.ac.uk, or vo.southgrid.ac.uk (depending on which VO you have
attempted to join). If your request has been approved and confirmed, you should be
listed as a VO member.

4.6.3. First steps with DIRAC

• Accessing the GridPP DIRAC server: access https://dirac.gridpp.ac.uk with your
browser. If your grid certificate has been successfully installed in your browser, you should
be asked to identify yourself with the certificate in question. You will then see the GridPP
DIRAC server homepage. Check the bottom right-hand corner - if you can only see Visitor
and not your username and DN, something has gone wrong and you are not (or rather,
your certificate is not) not registered with the GridPP DIRAC server.

• Joining the GridPP DIRAC mailing list: once you have subscribed and have been
approved, you should be able to view the subscribers list from the list homepage and
confirm that you are indeed on it.

GridPP-ENG-002-UserGuide-v1.0 31

https://mailman.ic.ac.uk/mailman/listinfo/gridpp-dirac-users
https://portal.ca.grid-support.ac.uk/caportal/cert_owner
https://voms.gridpp.ac.uk:8443/voms/gridpp/user/search.action
https://voms.gridpp.ac.uk:8443/voms/vo.londongrid.ac.uk/user/search.action
https://voms.gridpp.ac.uk:8443/voms/vo.northgrid.ac.uk/user/search.action
https://voms.gridpp.ac.uk:8443/voms/vo.scotgrid.ac.uk/user/search.action
https://voms.gridpp.ac.uk:8443/voms/vo.southgrid.ac.uk/user/search.action
https://mailman.ic.ac.uk/mailman/roster/gridpp-dirac-users
https://mailman.ic.ac.uk/mailman/listinfo/gridpp-dirac-users

5 MOVING YOUR WORKFLOW TO THE GRID

5. Moving Your Workflow to the Grid

Now that you have your Grid certificate, and it is installed in your browser and in your
~/.globus directory, you’re ready to try submitting a job to the Grid with DIRAC.

5.1. Activate DIRAC!

Thanks to CVMFS and the Ganga team, activating the GridPP DIRAC functionality is easy:

$ source /cvmfs/ganga.cern.ch/dirac_ui/bashrc

You should now be able to tab-complete dirac- to see all of the DIRAC commands that are
available.

DIRAC on CVMFS

The inclusion of the pre-configured DIRAC UI in the Ganga CVMFS repository means
that you no longer need to install your own DIRAC UI. Which makes life a lot easier…

5.1.1. Generate a Grid proxy

With DIRAC activated via CVMFS, you should now be able generate a DIRAC-specific proxy
to be used as a member of a DIRAC-enabled VO. Your proxy is a file that identifies you on the
Grid, letting the system know that you’re good for using its resources. If, for example, you were
a member of the gridpp catch-all VO you would use the following commands to generate a
proxy as a gridpp_user:

$ dirac-proxy-init -g gridpp_user -M
Generating proxy...
Enter Certificate password:
Added VOMS attribute /gridpp
Uploading proxy for gridpp_user...
Proxy generated:
subject : /C=UK/O=eScience/OU=QueenMaryLondon/L=Computing/CN=ada lovelace/CN=proxy
issuer : /C=UK/O=eScience/OU=QueenMaryLondon/L=Computing/CN=ada lovelace
identity : /C=UK/O=eScience/OU=QueenMaryLondon/L=Computing/CN=ada lovelace
timeleft : 23:53:59
DIRAC group : gridpp_user
path : /tmp/x509up_u501
username : ada.lovelace
properties : NormalUser
VOMS : True
VOMS fqan : ['/gridpp']

GridPP-ENG-002-UserGuide-v1.0 32

https://github.com/ganga-devs/

5.2 Run your job on the Grid 5 MOVING YOUR WORKFLOW TO THE GRID

If you get output that looks like the above, then it has all worked.

Proxy status

You can check the status of your DIRAC proxy at any time with the dirac-proxy-info
command.

5.1.2. Configuring Ganga to use the DIRAC backend

There’s just one more step required before you can enjoy Grid running with Ganga - you need
to add the following to your ~/.gangarc configuration file:

[Configuration]
RUNTIME_PATH = GangaDirac

[LCG]
GLITE_SETUP = /cvmfs/ganga.cern.ch/dirac_ui/bashrc

[DIRAC]
DiracEnvSource = /cvmfs/ganga.cern.ch/dirac_ui/bashrc

[defaults_DiracProxy]
group = <dirac user group>

[defaults_DiracFile]
defaultSE = <your SE of choice>

where <dirac user group> should be replaced by your default VO (e.g. gridpp_user)
and <your SE of choice> should be replaced by a suitable Storage Element, e.g.
UKI-LT2-QMUL2-disk.

Finding an SE

You can find a list of Storage Elements names by using the dirac-dms-show-se-status
command from the command line.

You can then re-start Ganga; it will now be ready to connect to the DIRAC backend.

5.2. Run your job on the Grid

Now you’re ready to run your job on the Grid. First, make a copy of the local_job.py script:

$ cd $WORKINGDIR
$ cp local_job.py dirac_job.py
$ vim dirac_job.py

GridPP-ENG-002-UserGuide-v1.0 33

5.2 Run your job on the Grid 5 MOVING YOUR WORKFLOW TO THE GRID

All you need to do is add the line j.backend=Dirac() before submitting. That’s it. That’s
all there is to it.

$ cat dirac_job.py
j = Job()
j.name = "CERN@school_dirac_01"
j.application = Executable()
j.application.exe = File('run.sh')
j.application.args = ['B06-W0212/2014-04-02-150255/']
j.inputfiles = [LocalFile('CERNatschool_backgroundrad_dataset.zip')]
j.outputfiles = [LocalFile('frames.json'), LocalFile('log_process-frames.log'),
LocalFile('output_images.tar')]
j.backend = Dirac()
j.submit()

(Oh, you may want to change the job name too.)

If all has gone to plan, not only will you now be able to monitor your job via your local Ganga
instance (i.e. with the jobs command), you can see it on the GridPP DIRAC web portal. Select
Jobs from the top-left menu below the URL bar, then Job Monitor.

Submission time
Job submission to the Grid is not an instant process - a bit annoying when you’re
submitting one or two test jobs (which is why local testing wit Ganga is great!), but not
such an issue with thousands of jobs. You may wish to make a cup of tea, or do a bit
of washing up.

Once the job shows up as green in the web portal, it’s completed and you can retrieve the
output exactly as before.

So there you go - your first bona fida grid job. Note that:

• Once your Grid stuff/DIRAC configuration was done, all it took to switch to Grid running
was a single line of code.

• Thanks to CVMFS, you didn’t have to do anything extra to deploy your software to the
Grid;

• You didn’t need to care about where the job actually ran - Ganga and DIRAC sorted that
all for you.

There’s only one more thing to look at now before we’ve covered all of the Grid-bases - getting
data on and off the Grid. We’ll look at that in the next section.

GridPP-ENG-002-UserGuide-v1.0 34

http://dirac.gridpp.ac.uk

5.3 Checklist 5 MOVING YOUR WORKFLOW TO THE GRID

5.3. Checklist

• I can activate DIRAC by sourcing the DIRAC bashrc script from CVMFS;
• I can generate a Grid proxy using the dirac-proxy-init command;
• I can submit the CERN@school example workflow job to the Grid using Ganga;
• I can monitor my Grid job(s) using the GridPP DIRAC web portal.

5.4. Testing

• Sourcing the DIRAC environment: You can test the DIRAC environment variables have
been set using the echo command. For example:

$ echo $DIRAC
/cvmfs/ganga.cern.ch/dirac_ui/

If the DIRAC home directory on CVMFS is not listed, the environment variables have not
been set correctly.

• Generating a DIRAC proxy: You can test if your proxy generation has been successful
by using the dirac-proxy-info command.

• Successful running of the CERN@school example job: As with the locally-run example,
once you have run and retrieved the images from the example job the first frame image
should look something like that seen in Figure 1.

GridPP-ENG-002-UserGuide-v1.0 35

https://dirac.gridpp.ac.uk

6 PUTTING DATA ON THE GRID

6. Putting Data on the Grid

We’ve now moved the local example workflow to the Grid. However, we’ve still only used data
that’s been present on our local system, and we’ve manually retrieved the output to our local
system. To harness the full power of the Grid, we’ll need to put data on it. We’ll use tools
provided with DIRAC to do this, namely:

• The DIRAC File Catalog Command Line Interface (DFC CLI);
• The DIRAC command line tools;
• Some first steps with the DFC’s metadata functionality.

First, though, let’s look at some basic concepts in grid-based data management.

6.1. Storage Elements, File Catalogs, and Replicas

The first thing to wrap one’s head around with distributed computing is the notion that you
don’t really need to care about where your data is stored. You may well be used to this
concept if you’ve dealt with cloud-based storage services such as Dropbox, Google Drive, or
even Amazon S3 storage. Your files are on one or more servers somewhere, and all that you
need to know are the file names and the directories that they’re in to access them later.

It’s the same with the grid. You upload your files to a grid Storage Element (SE) and label
them with a Logical File Name (LFN) that gets registered in something called a File Catalog.
If you make copies of a particular file - a replica - on one or more additional SEs, the locations
of these replicas are recorded in the File Catalog too.

Storage Elements and replicas

With most cloud-based storage services, you won’t even really care about the Storage
Elements (or their non-grid equivalents, whatever the they happen to be called) and
file replicas. However, when considering running grid jobs at a particular grid site, the
location of your replicas can matter (you’ll want to make sure your data is available at
sites that will run jobs for your Virtual Organisation). We’ll come back to all of these
concepts - and provide concrete examples - later.

The GridPP DIRAC system provides a suite of tools to help you manage all of this. If you’re
familiar with UNIX-based file systems you should find it all pretty straightforward. We’ll start
with the DIRAC File Catalog Command Line Interface.

GridPP-ENG-002-UserGuide-v1.0 36

6.2 The DFC Command Line Interface 6 PUTTING DATA ON THE GRID

6.2. The DFC Command Line Interface

The DIRAC File Catalog (DFC) Command Line Interface (CLI), a.k.a. the DFC CLI, provides
a way of interacting with DIRAC’s File Catalog via - you guessed it - the command line. The
DFC CLI lets you manually upload and download files to Storage Elements (SEs), browse the
DFC associated with your Virtual Organisation (VO), create and remove directories in the DFC,
and manage the replicas associated with each entry in the DFC.

Using the DFC CLI

The DFC CLI is great for small-scale tasks such as creating and tweaking test data sets,
but ultimately we will want to use scripts to help coordinate large-scale upload operations
and managing metadata (i.e. data about the data).

6.2.1. Getting started with the DFC CLI

Accessing the DFC CLI

The DFC CLI is accessed via a DIRAC command, so we’ll need to source our DIRAC environment
and generate a DIRAC proxy.

$ source /cvmfs/ganga.cern.ch/dirac_ui/bashrc
$ dirac-proxy-init -g gridpp_user -M
Generating proxy...
Enter Certificate password: # Enter your grid certificate password...
.
. [Proxy information-based output.]
.

Which VO?

If you wish to use a different VO, replace gridpp with the name of the VO in the
commands in this section.

The DFC CLI is then started with the following DIRAC command:

$ dirac-dms-filecatalog-cli
Starting FileCatalog client

File Catalog Client $Revision: 1.17 $Date:

FC:/>

GridPP-ENG-002-UserGuide-v1.0 37

6.2 The DFC Command Line Interface 6 PUTTING DATA ON THE GRID

DIRAC command groupings

We’ll come back to the DIRAC command line tools in the next section, but the
dirac-dms- at the start of the command refers to the DIRAC Data Management
System tools. All DIRAC commands are grouped in this way which, combined with tab
completion, can be very handy for finding the command you’re looking for!

The FC:/> at the command prompt tells you that you’re in the DFC CLI. You can now explore
the DFC using commands that are very similar to those used with a typical UNIX file system.
Let’s do this now.

6.2.2. Finding your user space in the DFC

Let’s start by listing the root directories in the DFC, which will give us a list of the Virtual
Organisations supported by GridPP DIRAC:

FC:/> ls
cernatschool.org
gridpp
vo.londongrid.ac.uk
vo.northgrid.ac.uk
vo.scotgrid.ac.uk
vo.southgrid.ac.uk

We’re using GridPP DIRAC as a member of gridpp VO, so let’s move into that directory.

FC:/> cd gridpp/user

If one hasn’t been created for you already, you can create your own user space on the VO’s File
Catalog like so:

FC:/gridpp/user> cd a
FC:/gridpp/user/a> mkdir ada.lovelace
FC:/gridpp/user/a> chmod 755 ada.lovelace
FC:/gridpp/user/a> ls -la
drwxr-xr-x 0 ada.lovelace gridpp_user 0 2015-12-16 10:24:54 ada.lovelace
FC:/gridpp/user/a> exit

Your DIRAC username

If you don’t know your DIRAC username (which should be used as your user directory),
exit the DFC CLI and use the dirac-proxy-info command.

GridPP-ENG-002-UserGuide-v1.0 38

6.2 The DFC Command Line Interface 6 PUTTING DATA ON THE GRID

Listing files

Using the -la option with the ls command works just as it does with the normal
command line, allowing you to see file owners, groups (VOs), permissions, etc.

File permissions

Don’t forget to change the file permissions on your files so that other users can’t modify
them.

You’ve now got your own space on the GridPP DFC. Let’s put some files in it.

6.2.3. Uploading files

Firstly, we’ll need a file to upload. Any file will do, but to keep things simple let’s create one
in a temporary directory:

$ cd ~
$ mkdir tmp; cd tmp
$ vim TEST.md # Or whichever editor you use...
$ cat TEST.md
#Hello Grid!
This is a test **MarkDown file**.

Next we’ll need to know which Storage Elements are available to us.

Storage Elements

Storage Elements “are physical sites where data are stored and accessed, for example,
physical file systems, disk caches or hierarchical mass storage systems. Storage Elements
manage storage and enforce authorization policies on who is allowed to create, delete
and access physical files. They enforce local as well as Virtual Organization policies
for the use of storage resources. They guarantee that physical names for data objects
are valid and unique on the storage device(s), and they provide data access. A storage
element is an interface for grid jobs and grid users to access underlying storage through
the Storage Resource Management protocol (SRM), the Globus Grid FTP protocol, and
possibly other interfaces as well.”
Credit: Open Science Grid (2012)

We can list the available SEs with the following DIRAC command:

$ dirac-dms-show-se-status
SE ReadAccess WriteAccess RemoveAccess CheckAccess
===

GridPP-ENG-002-UserGuide-v1.0 39

6.2 The DFC Command Line Interface 6 PUTTING DATA ON THE GRID

[... more disks ...]
UKI-LT2-QMUL2-disk Active Active Unknown Unknown
[... more disks ...]
UKI-NORTHGRID-LIV-HEP-disk Active Active Unknown Unknown
[... more disks ...]

While we don’t need to know the details of where and how our data will be stored on an SE,
we do need to know its name. We’ll use the UKI-LT2-QMUL2-disk SE for now. We add the
file to the DFC as follows using the add command, which takes the following arguments:

add <LFN> <Local file name> <SE name>

where:

• <LFN> is the Logical File Name (LFN) of the file in the DFC. This can either be relative
to your current position in the DFC (which can be found with the pwd command in the
DFC CLI), or made absolute by preceeding the name with a slash /;

• <Local file name> should be the name of the local file you want to upload. Again,
this can be relative to wherever you were on your local system when you started the DFC
CLI, or the absolute path to the file on your local system;

• <SE name> is the name of the SE as retrived from the dirac-dms-show-se-status
command.

Let’s add our file to the grid now.

$ dirac-dms-filecatalog-cli
Starting FileCatalog client

File Catalog Client $Revision: 1.17 $Date:

FC:/> cd /gridpp/user/a/ada.lovelace
FC:/gridpp/user/a/ada.lovelace> mkdir tmp
FC:/gridpp/user/a/ada.lovelace> cd tmp
FC:/gridpp/user/a/ada.lovelace> add TEST.md TEST.md UKI-LT2-QMUL2-disk

File /gridpp/user/a/ada.lovelace/tmp/TEST.md successfully uploaded...
FC:/gridpp/user/a/ada.lovelace/tmp>ls -la
-rwxrwxr-x 1 ada.lovelace gridpp_user 47 2015-12-16 11:47:28 TEST.md

And there we go! Your first file has been uploaded to a Storage Element on the grid. Have a
biscuit. You’ve earned it.

6.2.4. Replicating files

Part of the joy of using the grid is being able to distribute computational tasks to different
sites. However, if you want to look at the same data with a different task at different sites in
an efficient manner, ideally you’d need copies of that data at those sites. This strategy also

GridPP-ENG-002-UserGuide-v1.0 40

6.2 The DFC Command Line Interface 6 PUTTING DATA ON THE GRID

makes sense from a backup/redundancy perspective. We can achieve this on the grid by using
replicas.

Replicas

A replica is a copy of a given file that is located on a different Storage Element (SE).
The file is identified by its Logical File Name (LFN) in the DIRAC File Catalog (DFC).
Associated with each LFN entry is a list of SEs where replicas of the file can be found.

To list the locations of replicas for a given file catalog entry, we use the replicas command
in the DFC CLI:

replicas <LFN>

so continuing with our example:

FC:/gridpp/user/a/ada.lovelace/tmp>replicas TEST.md
lfn: /gridpp/user/a/ada.lovelace/tmp/TEST.md

We replicate files with the replicate command:

replicate <LFN> <SE name>

Let’s replicate our test file to the Liverpool disk and check that the replica list has been updated:

FC:/gridpp/user/a/ada.lovelace/tmp>replicate TEST.md UKI-NORTHGRID-LIV-HEP-disk

Replicas can be removed with the rmreplica command:

rmreplica <LFN> <SE name>

Let’s remove the Liverpool disk replica:

FC:/gridpp/user/a/ada.lovelace/tmp>rmreplica TEST.md UKI-NORTHGRID-LIV-HEP-disk
lfn: /gridpp/user/a/ada.lovelace/tmp/TEST.md
Replica at UKI-NORTHGRID-LIV-HEP-disk moved to Trash Bin

Finally, we can remove a file completely using the (somewhat familiar) rm command:

rm <LFN>

Let’s tidy up our test file:

FC:/gridpp/user/a/ada.lovelace/tmp>rm TEST.md
lfn: /gridpp/user/a/ada.lovelace/tmp/TEST.md
File /gridpp/user/a/ada.lovelace/tmp/TEST.md removed from the catalog

6.2.5. Downloading files

Finally, we can download files using the DFC CLI with the get command:

GridPP-ENG-002-UserGuide-v1.0 41

6.3 The DIRAC Command Line Tools 6 PUTTING DATA ON THE GRID

get <LFN> [<local directory>]

Note that the local directory argument is optional. Let’s download a test file from the gridpp
examples directory now:

FC:/> get /gridpp/userguide/WELCOME.md ./.
FC:/> exit
$ cat WELCOME.md
#Welcome to GridPP!

It looks like your download has worked. Congratulations!
$ rm WELCOME.md

As we said earlier, the DFC CLI is only useful for small-scale operations. On our way to scaling
up, we can look at starting to automate our workflows using scripts. In the next section we’ll
look at how the DIRAC command line tools can help with this.

6.3. The DIRAC Command Line Tools

So you’ve mastered the DFC Command Line Interface. Great stuff. What you’ll have probably
noticed is that, while it’s great for small-scale operations, it’s not ideal for doing things with
lots of files on any sort of scale. We will therefore want to take a look at the DIRAC command
line tools for data management.

The command line tools
All of the DIRAC command line tools start with dirac- . The data management tools
start with dirac-dms- , as in Data Management System. Press the tab key after
typing dirac-dms- to see all of the available commands.

Why are these commands useful? Well, it means you can use scripting to automate large-scale
tasks involving many files. There are many ways to script the DIRAC (or indeed any command
line) commands. You’ve probably got your own preferred method that reflects your coding
background. For the purposes of the UserGuide, we’ll use simple bits of Python code (along
with Python-based file management libraries) to generate some simple bash scripts that can
then be run to perform the DIRAC operations we want to perform.

Scripting DIRAC commands

Of course, bash experts will be able to write scripts that perform all of the operations
below purely in bash. This is left as an exercise for the reader - answers on a punch card
please! (Also, we’ll be using Python for the DIRAC Python API, so it’s not a bad thing
to use Python at this stage!)

GridPP-ENG-002-UserGuide-v1.0 42

6.3 The DIRAC Command Line Tools 6 PUTTING DATA ON THE GRID

6.3.1. Uploading files

The DIRAC file upload command takes the following form:

$ dirac-dms-add-file <LFN> <FILE> <SE>

where:

• <LFN> is the Logical File Name (LFN) of the entry for the file in the DIRAC File Catalog
(DFC);

• <FILE> is the path to the file on your local machine, and;
• <SE> is the name of the destination Storage Element (SE).

Finding SE names

Remember, you can find the names of the available SEs with the dirac-dms-show-se-
status command.

Suppose we have a number of files on our local machine in /home/gridpp/mydata/ that we
want to upload to the grid. The following Python code will generate a bash script that will
upload them to one of the Queen Mary Storage Elements:

$ cat make_upload_script.py
#!/usr/bin/env python
-*- coding: utf-8 -*-

import os, glob

data_path = '/home/gridpp/mydata'

lfn_dir = '/gridpp/user/a/ada.lovelace/mydata/'

se = 'UKI-LT2-QMUL2-disk'

s = "#!/bin/bash\n"

for my_file in sorted(glob.glob(data_path + "/*")):
base_name = os.path.basename(my_file)
upload_lfn = os.path.join(lfn_dir, base_name)
s += "dirac-dms-add-file %s %s %s\n" % (upload_lfn, my_file, se)

with open("upload_script.sh", "w") as sf:
sf.write(s)

After you’ve generated a proxy and sourced the DIRAC environment, you can run the generated
script as follows:

GridPP-ENG-002-UserGuide-v1.0 43

6.3 The DIRAC Command Line Tools 6 PUTTING DATA ON THE GRID

$ python make_upload_script.py
$ chmod a+x upload_script.sh
$. upload_script.sh

The results of this will, of course, depend on the contents of /home/gridpp/mydata/, but
all being well you should see the message:

Successfully uploaded file to UKI-LT2-QMUL2-disk

(or whichever SE you specified in your Python code) after each file has been uploaded.

Using Screen

If you’re uploading a lot of files, you may wish to consider using something like the screen
tool so that you can log off your terminal session and come back to it later.

And there we go! Multiple file uploads, all registered in the DIRAC File Catalog, using a DIRAC
command line tool and a bit of (admitedly slightly clumsy) coding.

6.3.2. Replicating files

Now, as we did with the DFC CLI, we can also make replicas of files, list information about the
replicas of a given file, and remove replicas with the following command line tools:

dirac-dms-replicate-lfn <LFN> <SE>
dirac-dms-lfn-replicas <LFN>
dirac-dms-remove-replicas <LFN> <SE>

Likewise, we can take the same approach with…

6.3.3. Downloading and removing files

dirac-dms-get-file <LFN>
dirac-dms-remove-files <LFN>

i.e. the DIRAC command line tools exist for these operations. However, getting information
from the DFC about which files you would like to replicate, download, remove, etc. is non-trivial
when taking the command line approach. This is especially true if you’re writing scripts.

One approach is to use the metadata functionality the DIRAC File Catalog provides to find
files of interest.

GridPP-ENG-002-UserGuide-v1.0 44

6.4 First steps with the DIRAC metadata 6 PUTTING DATA ON THE GRID

Metadata
Metadata is data about the data. By assigning metadata to the files we upload to
the DIRAC File Catalog, we can perform queries that will select only the files we are
interested in. It also helps us to manage our data. We’ll find out more about the DFC’s
metadata functionality later.

The dirac-dms-find-lfns command finds LFNs based on the DFC path and metadata query
supplied as options. For example, to find all files in the DFC that have been assigned to the
experiment UserGuide, we can type:

dirac-dms-find-lfns Path=/ "experiment=UserGuide"
{'experiment': 'UserGuide'}
/gridpp/userguide/WELCOME.md

experiment here is the metadata element or index. This is a string assigned to the file’s
LFN that, in this case, has the value UserGuide. We can use the results of this to download
the files we want.

$ dirac-dms-get-file /gridpp/userguide/WELCOME.md
{'Failed': {},
'Successful': {'/gridpp/userguide/WELCOME.md': '/home/gridpp/tmp/WELCOME.md'}}

$ cat WELCOME.md
#Welcome to GridPP!

It looks like your download has worked. Congratulations!

Let’s take a closer look at the DFC’s metadata functionality using the DFC CLI.

6.4. First steps with the DIRAC metadata

6.4.1. Finding files using metadata

When you’re uploading vast amounts of data, it’s nice to be able to find it later. Metadata -
data about the data - can help with this. DIRAC allows you to assign metadata such as strings,
integers, and floating point numbers to files and directories (via their Logical File Names in the
DIRAC File Catalog). You can then query the DFC to return a list of the files you want.

For example, once you have sourced your DIRAC environment, generated a proxy, and started
the DFC CLI, you can find all files associated with the UserGuide experiment like so:

FC:/> find / experiment=UserGuide
Query: {'experiment': 'UserGuide'}
/gridpp/userguide/WELCOME.md
QueryTime 0.98 sec

GridPP-ENG-002-UserGuide-v1.0 45

6.4 First steps with the DIRAC metadata 6 PUTTING DATA ON THE GRID

We have assigned the value UserGuide to the file WELCOME.md for the experiment element
or index. The find command in the DFC CLI performs the query for us.

FC:/> help find
Find all files satisfying the given metadata information

usage: find [-q] [-D] <path> <meta_name>=<meta_value> [<meta_name>=<meta_value>]

FC:/> exit

In our query above, <path> was / (i.e. search the entire catalog from the base directory),
<meta_name> was experiment (i.e. a metadata string index indicating to which experiment
the data belongs), and <meta_value> was UserGuide (OK, so the UserGuide isn’t really
an experiment - at least not in the scientific sense - but you get the idea!).

Getting help with the DFC CLI

You can get a list of all of the available commands in the DFC CLI by using the
help command. To list the instructions for a given command (as above), type help
[command].

There is only one file belonging to the UserGuide experiment in the DFC, and it’s a pretty
harmless MarkDown file. But you can hopefully see how, particularly when we start using
multiple metadata indices with different types, DIRAC’s metadata functionality is going to be
pretty useful.

6.4.2. Assigning metadata to a file

We can also use the DFC CLI to assign metadata to our files. Let’s create a file with our
favourite text editor and upload it to the grid using the DFC CLI:

$ vim TODO.md
$ cat TODO.md
ToDo
====
* Email Charles re. engine
* Re-do punchcards
* Write to Dad
$ dirac-dms-filecatalog-cli
Starting FileCatalog client

File Catalog Client $Revision: 1.17 $Date:

FC:/> add /gridpp/user/a/ada.lovelace/TODO.md TODO.md UKI-LT2-QMUL2-disk
File /gridpp/user/a/ada.lovelace/TODO.md successfully uploaded...

GridPP-ENG-002-UserGuide-v1.0 46

6.5 Checklist 6 PUTTING DATA ON THE GRID

We can now set the owner index for the LFN using the meta set command:

FC:/> meta set /gridpp/user/a/ada.lovelace/TODO.md owner ada.lovelace
/gridpp/user/a/ada.lovelace/TODO.md owner ada.lovelace

We can now find the file again using the find command:

FC:/> find / owner=ada.lovelace
Query: {'owner': 'ada.lovelace'}
/gridpp/user/a/ada.lovelace/TODO.md
QueryTime 0.01 sec

As we’ve said before, the DFC CLI is useful for small-scale operations on your data. Hopefully,
though, you can start to appreciate the power of metadata when it comes to organising your
data and performing analyses on it.

The most important thing for the moment, though, is that we can now put data on the Grid
(i.e. on a Storage Element). This means we can use it in our Grid jobs without needing to
upload with our job as an inputfile. We’ll now complete making our example workflow fully
Grid-enabled in the next section.

6.5. Checklist

• I know what a Grid Storage Element (SE) is;
• I know what the DIRAC File Catalog (DFC) is and what it is used for;
• I know what LFN stands for and what it means with respect to the DFC;
• I can access the DIRAC File Catalog Command Line Interface (DFC CLI);
• I can find the Grid Storage Elements (SEs) available for me to use;
• I can use tab-complete with dirac-dms- to find the available DIRAC command;
• I can list the contents of my Virtual Organisations’s area in the DFC
• I can create a user area within this area and set the permissions accordingly;
• Using both the DFC CLI and the DFC command line tools, I can:
• upload and download files to and from an SE;
• replicate files to another SE;
• remove a replica from a specified SE;
• remove a file from the DFC.
• I know how to assign metadata to an LFN using the DFC CLI.

6.6. Testing

• Accessing data on a GridPP Storage Element (SE): If everything is setup correctly,
the following commands should result in the output below:

$ cd ~
$ mkdir tmp

GridPP-ENG-002-UserGuide-v1.0 47

6.6 Testing 6 PUTTING DATA ON THE GRID

$ cd tmp
$ dirac-dms-get-file LFN:/gridpp/userguide/WELCOME.md
{'Failed': {},
'Successful': {'/gridpp/userguide/WELCOME.md': '/home/alovelace/tmp/WELCOME.md'}}

$ cat WELCOME.md
#Welcome to GridPP!

It looks like your download has worked. Congratulations!

You should have been able to follow everything else in the previous subsections too, of course -
but much of the input and output will depend on your username, VO, etc. - the real test come
when you start putting data in your own user area in the next section!

GridPP-ENG-002-UserGuide-v1.0 48

7 USING GRID DATA IN YOUR WORKFLOW

7. Using Grid Data in Your Workflow

The example workflow we’ve used so far isn’t particularly sophisticated, but it does allow us
to demonstrate the final key concept we’ll look at here: incorporating Grid-based data in your
workflows. Below we’ll go through:

• Putting the initial input data onto the Grid;
• Using that data as the input to your workflow;
• Writing the output data from your workflow to the Grid;
• Retrieving the output from the Grid.

You’ll need to have worked through Section 5 first – mainly because we actually only need to
tweak a few lines to achieve what we want!

7.1. Putting our input data onto the Grid

The first thing to do is put the ZIP file containing the raw frame data into your user area on the
DFC. You know how to do this (if not, have another look at Section 6) so now we’re getting
into the realm of user areas, VOs, etc. we’re not going to give the explicit commands for this
part. We’ll also leave you to come up with a LFN for the file, and choose which SE to use (you
might have a favourite by now).

• Download the ZIP file to your working directory;
• Upload it to your user area in your VO’s area in the DFC;
• Note down the LFN you assigned the file. You’ll need this below.

Structuring your LFNs

While the directories don’t strictly exist with LFNs, it’s useful to keep things organised
with sensible structuring/naming conventions. Use the DFC CLI to create directories in
your user area as required.

7.2. Getting data from the Grid

Thanks to Ganga, there’s actually not much to using a Grid-hosted data file as input. All you
need to do is add a DiracFile to the job’s inputputfile list with the LFN as the input
argument. So Ada’s modified dirac_job.py script would have the line:

j.inputfiles = [DiracFile('LFN:/.../CERNatschool_backgroundrad_dataset.zip')]

Replacing the ... in the LFN with the full path. The job will now retrieve the ZIP file from
whichever Storage Element 1) has a replica of the file and/or 2) is closest to the site running
the job to the working directory, just as it would with the LocalFile.

GridPP-ENG-002-UserGuide-v1.0 49

7.3 Writing data to the Grid 7 USING GRID DATA IN YOUR WORKFLOW

Replica loaction and management

In fact, GridPP DIRAC will work out where is best to send your job based upon where
you have replicas of the file (i.e. which SEs you added/replicated it on). So once you’re
into optimisation territory, replica management is something to think about.

7.3. Writing data to the Grid

What about the output data? If you have an intermediary data layer (i.e. output that is used as
input for another job/workflow) you may wish to write the output to the Grid. This is possible
with a few tweaks, but there’s a slight subtlety: GridPP DIRAC will assign LFNs for your job
output based on the DIRAC job ID and an LFN base specified in your .gangarc file. This can
be set with something like the following:

[DIRAC]
DiracLFNBase = /gridpp/user/a/ada.lovelace

Preparing to submit

Make sure you set this before starting Ganga and submitting your job(s).

Specifying which files get written to the Grid is then pretty similar to specifying the input files
- switch the LocalFile to DiracFile:

j.outputfiles = [DiracFile('output_images.tar')]

With these changes made (and maybe a change of job name), you can now submit your job.

7.4. Retrieving the output from the Grid

You already know how to retrieve files from the Grid. The only extra detail you’ll need to know
is the DIRAC job ID. This is different to the job ID in Ganga. Both can be obtained with
the following commands within Ganga:

Ganga In [X]: j.id
Ganga Out [X]: 1

Ganga In [X]: j.backend.id
Ganga Out [X]: 1234567

(i.e. the DIRAC ID will have many more digits.)

The DIRAC ID will determine the LFN the output files are assigned. So once the job has
finished running, you should end up with something like this:

GridPP-ENG-002-UserGuide-v1.0 50

7.5 Checklist 7 USING GRID DATA IN YOUR WORKFLOW

$ dirac-dms-filecatalog-cli
Starting FileCatalog client

File Catalog Client $Revision: 1.17 $Date:

FC:/> cd gridpp/user/a/ada.lovelace/
FC:/gridpp/user/a/ada.lovelace>ls
1234
FC:/> ls 1234
1234567
FC:/> ls 1234/1234567
frames.json
output_images.tar

So the full LFN for the image archive is:

LFN:/gridpp/user/a/ada.lovelace/1234/1234567/output_images.tar

This can be used to retrieve the file in the ways we have described already - or used as an
inputfile to another job.

So there we go - we’ve completely Grid-ified our example workflow. You should now have all
of the tools you need to start making your own workflows Grid-ready. Of course, there’s a lot
more that can be done and we’ll mention some of the more advanced topics in the next section.
But you should have plenty to get your teeth into for now!

7.5. Checklist

• I can successfully modify the Grid workflow example to:
• use an input DiracFile to with an lfn corresponding to data I have uploaded to the Grid;
• write the output data to my user area on the DFC.
• I can set the output LFN base in my Ganga configuration file;
• I can run the modified Grid workflow example and retrieve the output from the Grid.

7.6. Testing

• Successful running of the CERN@school example job: Does Figure 1 look familiar?
It really should do by now.

GridPP-ENG-002-UserGuide-v1.0 51

8 WHAT’S NEXT?

8. What’s Next?

8.1. Uploading your software to CVMFS

To start with, and if your software package/packages is/are small enough, you can probably
get away with uploading your software as LocalFiles with your Grid job (perhaps using an
archive file). In fact, you may prefer this approach as http-based CVMFS repositories are
world-readable.

However, at some point you and/or your Virtual Organisation are going to want your own
CVMFS repository. For small, UK-based VOs the best way to do this is on the RAL Tier-1
Stratum-0. Contact us to find out more about doing this - access to the repository is governed
by your Grid certificate.

In short, the process of uploading your software amounts to:

• Generating a proxy with DIRAC: as this will be used to determine who you are and
which repository you are accessing;

• Logging in to the repository: You can then log in to your CVMFS repository with:
$ gsissh -p 1975 cvmfs-upload01.gridpp.rl.ac.uk
Last login: [Date/time] from [hostname]

_. _. o| _ ._
(_|(_||_|||(_)| |

|

Location: r89.harwell.europe hpd r89rack137
Branch: cc34/cvmfs-uploader (sandbox)

Archetype: ral-tier1
Personality: cvmfs-uploader

Operating System: sl640-x86_64
Snapshot Date: 2016-10-26

[{vo-name}sgm@cvmfsXXXXX ~]$ cd cvmfs_repo
bin lib code README.md

• Retrieve your software: You can now place your software in the repository, arranging
it however works best for you. If your code is hosted in an online Git-based repository,
simply git clone it straight to an appropriate directory.

Looking at other CVMFS repositories

You can take inspiration from other VOs. For example, you can browse the ATLAS
experiment’s (CERN-hosted) CVFMS repository with: code$ ls /cvmfs/atlas.cern.ch/
and so on.

GridPP-ENG-002-UserGuide-v1.0 52

https://www.gridpp.ac.uk/wiki/RAL_Tier1_CVMFS
https://www.gridpp.ac.uk/wiki/RAL_Tier1_CVMFS
mailto:info@gridpp.ac.uk

8.2 Advanced DIRAC functionality 8 WHAT’S NEXT?

Upload times

Once put into the repository, it can be several hours before it becomes available on the
worker nodes - it’s not instant. Make sure your software is well-tested before putting it
up - CVMFS is not appropriate for software under development!

However, once it is on there, it’s available everywhere. Which is nice.

8.2. Advanced DIRAC functionality

DIRAC has a great deal of functionality of its own, particularly when you start looking at the
Python API. However, Ganga provides a nice wrapper for much of this so you shouldn’t need
to touch it. You can find out more on the DIRAC homepage, and check out the source code
on their GitHub page.

8.3. Advanced Ganga functionality

Likewise, there is a lot more to Ganga than we have covered here. Ganga has its own
documentation page:

http://ganga.readthedocs.io

which features things like:

• Configuration;
• Job manipulation;
• Splitters;
• Post-processors;
• Queues;
• Etc.

The GitHub repository is also worth watching for the latest updates and developments, as well
as raising any bugs or problems you may have in the Issues section.

8.4. And finally…

Moving your workflow to the Grid won’t necessarily be straightforward, but at GridPP we’re
here to help – if you’ve got a problem, just ask! To keep up to date with the UserGuide, watch
the UserGuide GitHub repository to be notified of Issues and Pull Requests relating to additions
or improvements to the UserGuide.

Many thanks for reading so far, and happy Gridding!

GridPP-ENG-002-UserGuide-v1.0 53

http://diracgrid.org/
https://github.com/DIRACGrid
http://ganga.readthedocs.io
https://github.com/ganga-devs/ganga
https://github.com/ganga-devs/ganga/issues
https://github.com/gridpp/user-guides
https://github.com/gridpp/user-guides/issues

9 TROUBLESHOOTING

9. Troubleshooting

This section contains brief notes on specific problems users have encountered when working on
specific systems, generally raised via the GitHub Issues page.

9.1. Ganga

Ganga isn’t working.

If you’re having problems with Ganga, the best thing to do is to raise an issue with the Ganga
dev team through the GitHub repository. At the time of writing, we’ve been using Ganga
version 6.3.1 - but as Ganga is under active development this may change so you may want to
watch the repository too.

Ganga throws errors relating to not being able lock files.

If the file system your cluster is based on can’t handle (or hasn’t been set up to allow) file
locks, which Ganga uses. If your home directory is on such a file system (e.g. NFS), files in
your ~/gangadir won’t be lockable and Ganga won’t work. Assuming your cluster can’t be
reconfigured, the simplest thing to do is change the location of your gangadir to somewhere
that can handle file locks, such as a scratch directory on the cluster. To do this, set the
gangadir option in ~/.gangarc to something like:

gangadir = /scratch/alovelace/gangadir

and restart Ganga in the usual way.

9.2. Miscellaneous problems

My problem isn’t listed here and search engines aren’t helping either.

Raise an issue on the GitHub issues page and we’ll see if we can help!

Good luck!

GridPP-ENG-002-UserGuide-v1.0 54

http://github.com/gridpp/user-guides/issues
https://github.com/ganga-devs/ganga/issues
https://github.com/ganga-devs/ganga/
https://github.com/ganga-devs/ganga
http://github.com/gridpp/user-guides/issues

A CREATING A GRIDPP CERNVM

A. Creating a GridPP CernVM

If you don’t have an account on a grid-ready cluster, don’t worry - this section will show you
how to create a Virtual Machine (VM) that will, essentially, act as a grid User Interface (UI)
within whatever operating system you happen to be using at the moment. We will do this
using the CernVM service [11], and create a guest CernVM on your host system. There are a
number of reasons to do this:

1. The CernVM can act as a pre-built Grid User Interface (UI) that will give you all the tools
you need (e.g. a command line terminal, text editors, etc.) to get the most out of the
Grid;

2. Your CernVM will also give you instant access to the CernVM-File System (CVMFS). A
lot of the software we will use to manage our grid jobs and data is provided using this,
with the huge bonus of not needing any installation by you.

3. Most of the Grid tools we will use are compiled to run on Scientific Linux 6; With a
CernVM you’ll be able to use them out of the box;

4. The standard Grid Worker Nodes you’ll be using to run your software on use SL6 machines.
If your code runs on your CernVM, it will run on the Grid;

5. What’s more, if everyone uses the CernVM as their Grid UI, we at GridPP will only have
to support one operating system (i.e. the SL6 supplied with the CernVM). If we’re singing
from the same (virtual) hymn sheet, we’ll be able to recreate your problems and help you
solve them more easily.

All you need to provide is the RAM and the hard disk space on your local host machine.

SL6 cluster access?

If you already have access to a user account on an SL6 terminal, for example on a
university computing cluster, you can probably skip this section.

A.1. An overview of the process

To create and configure a CernVM that will meet our needs, you will need to:

1. Install some virtualisation software on your host machine;
2. Download the appropriate CernVM Virtual Machine baseline image from the CernVM

service;
3. Create a new guest CernVM using the CernVM image;
4. Configure the guest CernVM so that it has access to the host hard disk;
5. Configure the CernVM for Grid use by applying the GridPP contextualisation.

Let’s look at each of these stages in a bit more detail.

GridPP-ENG-002-UserGuide-v1.0 55

A.2 The virtualisation software A CREATING A GRIDPP CERNVM

A.2. The virtualisation software

You can find a list of compatible virtualisation software solutions on the CernVM image
download page here. It doesn’t really matter which you use but we’ve had success with this
version of VirtualBox (Windows 7).

Setting up the virtualisation software

This is the one bit that’s a bit tricky for us to support - how you do this will depend
on your local machine and its setup. Remember, search engines and StackOverflow are
your friends here.

A.3. Creating your CernVM

Depending on the virtualisation solution you picked (and got working) above, download the
baseline CernVM image file from here.

Then use your virtualisation software to create a new VM from the downloaded image. You
should be able to find instructions for how to do this from your virtualisation software provider.
Use as much RAM as you can spare (up to about half of your host machine’s total RAM) and
use a virtual hard disk of about 30 GB.

Once you have created your CernVM, but before you start it, you will need setup the
contextualisation for your CernVM.

A.4. Contextualising your CernVM

The CernVM service offers the ability to contextualise a CernVM with pre-defined settings,
environment variables, etc. that are put in place when the CernVM is first booted. This is
known as pairing the VM. You can create your own contextuallisations, but it is also possible
for individuals to create public contexts (e.g. for LHC experiments, open data initiatives, etc.)
that anyone can use.

We have created such a context for GridPP. You can use it to get going with the Grid.
Importantly, you do not need a CERN account to do this, so it is possible for anyone with
a grid certificate to use it!

To pair your local CernVM with the GridPP context:

1. Log in to the CernVM service: You can do this here. If you don’t have a CERN account,
you can register here.

2. Visit the CernVM Marketplace: This can be found here.

GridPP-ENG-002-UserGuide-v1.0 56

http://cernvm.cern.ch/portal/downloads
http://download.virtualbox.org/virtualbox/4.3.12/VirtualBox-4.3.12-93733-Win.exe
http://download.virtualbox.org/virtualbox/4.3.12/VirtualBox-4.3.12-93733-Win.exe
https://cernvm-online.cern.ch/user/login
https://cernvm-online.cern.ch/user/register
https://cernvm-online.cern.ch/market/list

A.5 Two final things A CREATING A GRIDPP CERNVM

3. Select the GridPP CernVM context: Select Experimental from the panel on the right,
and then click on the gridpp-cernvm context.

4. Boot up your local CernVM: Once the boot process has finished, you should be presented
with a login prompt. Don’t enter anything yet.

5. Pair with the GridPP context: Returning to the GridPP CernVM Marketplace, click on
the Pair button on the panel on the right. This will generate a six-figure PIN.

6. Apply the context to your VM: Returning to your booted-up CernVM, enter the PIN
(preceeded by a hash, as instructed at the login prompt). The CernVM webpage will now
update indicating the VM has been successfully paired. Your VM will then be restarted
and contextualised.

7. Log in to your GridPP CernVM: Once the context has been applied to your CernVM,
you will be presented with a graphical login screen (as opposed to the text login prompt).
Use the username gridpp and password gridpp to log in to your CernVM.

And that’s it! You now have a shiny new GridPP CernVM from which you’ll be able to access
the Grid.

A.5. Two final things

A.5.1. Configure git

We’ll be using git (and GitHub) to access various pieces of code and scripts. The CernVM
comes with git installed but you’ll need to configure it with your username and email address.
This can be done with the following commands:

$ git config --global user.name "Ada Lovelace"
$ git config --global user.email alovelace@qmul.ac.uk

A.5.2. Local hard disk access

Before we move on, it’s important to note that you will need to be able to access the hard disk
of your host machine from that of your guest CernVM. This is so that you can move any files
that you need across to the CernVM - most importantly, your Grid certificate file.

With VirtualBox, for example, this is achieved using the Shared Folders functionality.

Before proceeding, you should make sure that you can access the parts of your local hard disk
that contain any software or data that you want to copy across.

A.6. Checklist

• I have installed some virtualisation software on my local machine that is compatible with
the CernVM images listed at:

GridPP-ENG-002-UserGuide-v1.0 57

A.7 Testing A CREATING A GRIDPP CERNVM

http://cernvm.cern.ch/portal/downloads.
• I have downloaded the corresponding CernVM image to my local machine from the CernVM

image download page;
• I have created a new guest VM on my local machine using the CernVM image;
• I have registered with the CernVM service (or I am a CERN computing account holder);
• I have generated a six-digit PIN to pair my CernVM with the GridPP context via the

CernVM Marketplace;
• I have entered the six-digit PIN (preceeded by the hash symbol) into the login prompt of

my newly-booted CernVM;
• I have logged in to my new GridPP CernVM using the gridpp user account;
• I have accessed folders from my local machine’s hard disk from my GridPP CernVM.

A.7. Testing

• Downloading the CernVM image: Your Downloads folder (or whichever location you
chose to download the CernVM image file) contains the image file.

$ cd ~/Downloads
$ ls -l | grep cernvm
cernvm-3.5.1.iso

• Creating the CernVM: When you start up your CernVM from your virtualisation software,
you are eventually presented with a login screen.

Welcome to CERN Virtual Machine, version 3.5.1.4
based on Scientific Linux release 6.6 (Carbon)
Kernel 3.18.20-18.cernvm.x86_64 on an x86_64

IP Address of this VM: [IP address]
In order to apply cernvm-online context, use #<PIN> as user name.

localhost login: _

• Registering with the CernVM Service: You can login via this page. When you access
this page you are redirected to the CernVM Dashboard.

• Pairing your CernVM with the GridPP CernVM context: After selecting the GridPP
CernVM context in the CernVM Marketplace and clicking on the Pair button on the right-
hand panel, you are presented with a six-digit number. After entering the PIN into your
CernVM’s login screen (preceeded by the hash symbol), your CernVM reboots to display
a graphical CernVM login screen. Meanwhile, the CernVM Pairing web page has updated
to display the message, > Setup instance - Completed > > Your vm is now paired with
CernVM Online! Upon logging in to your new CernVM with the username gridpp and
the password gridpp, you are presented with the CernVM desktop.

GridPP-ENG-002-UserGuide-v1.0 58

http://cernvm.cern.ch/portal/downloads
https://cernvm-online.cern.ch/user/login
https://cernvm-online.cern.ch/
https://cernvm-online.cern.ch/dashboard
https://cernvm-online.cern.ch/market/list

A.7 Testing A CREATING A GRIDPP CERNVM

• Accessing your local machine’s hard disk from you CernVM: You can access (from
the command line or otherwise) folders on your local machine’s hard disk on the GridPP
CernVM. So (for example) if you’re using VirtualBox with the Shared Folders functionality,
after adding the folders you want access to via the VM’s Settings and rebooting the VM
you’ll do something like this:

$ sudo usermod -a -G vboxsf gridpp
[sudo] password for gridpp: # Enter 'gridpp' here.

before loggin out and logging in again. You’ll then be able to access the folders you
specified.

$ cd /media/sf_alovelace/ # Shared Folder "alovelace"
$ ls
punch-card-01.dat dad-poem-001.txt my-poem-005.txt

GridPP-ENG-002-UserGuide-v1.0 59

A.7 Testing A CREATING A GRIDPP CERNVM

References

[1] The GridPP Collaboration. GridPP: Development of the UK Computing Grid for Particle Physics. J.
Phys. G, 32:N1–N20, 2006.

[2] D. Britton et al. GridPP: the UK grid for particle physics. Phil. Trans. R. Soc. A, 367:2447–2457, 2009.
[3] CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the

LHC. Phys. Lett. B, 716:30, 2012.
[4] ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson

with the ATLAS detector at the LHC. Phys. Lett. B, 716:1, 2012.
[5] L. Evans and P. Bryant. LHC Machine. JINST, 3:S08001, 2008.
[6] J. Blomer et al. The Evolution of Global Scale Filesystems for Scientific Software Distribution. Computing

in Science and Engineering, 17:61–71, 2015.
[7] Tsaregorodtsev, A. and others. DIRAC pilot framework and the DIRAC Workload Management System.

J. Phys.: Conf. Ser., 219:062049, 2010.
[8] The LHCb Collaboration. The LHCb Detector at the LHC. JINST, 3:S08005, 2008.
[9] D. Bauer et al. The GridPP DIRAC project: Implementation of a multi-VO DIRAC service. J. Phys.:

Conf. Ser., 664:062009, 2015.
[10] D. Bauer et al. The GridPP DIRAC project - DIRAC for non-LHC communities. J. Phys.: Conf. Ser.,

664:062036, 2015.
[11] G. Ganis et al. Status and Roadmap of CernVM. J. Phys.: Conf. Ser., 664:022018, 2015.

GridPP-ENG-002-UserGuide-v1.0 60

A.7 Testing A CREATING A GRIDPP CERNVM

Acknowledgements

The author would like to thank GridPP Collaboration members Steve Jones (Liverpool) and
Steve Lloyd (QMUL), as well as the students from the Institute for Research in Schools, for
providing invaluable feedback on the initial drafts of the GridPP UserGuide. Andrew McNab
(Uni. Manchester) has provided invaluable technical support for the operation and maintenance
of the GridPP website on which the online version of this guide is hosted†. Much inspiration
for the structure and philosophy of the GridPP UserGuide has been drawn from Michael Hartl’s
Ruby on Rails Tutorial - an excellent read (even if you’re not particularly fussed about Ruby on
Rails). We are also grateful to GitHub for our Organizational Repository – thanks!

This work was supported by the UK Science and Technology Facilities Council (STFC) via the
GridPP Collaboration [1, 2] and grant ST/N00101X/1 as part of work with the CERN@school
research programme.

About the author

Tom Whyntie is Public Engagement Fellow at the School of Physics & Astronomy, Queen
Mary University of London. He is supported by the UK’s Science and Technology Facility
Council (STFC) through their Public Engagement Fellowship programme and through the
GridPP Project. Having used the Worldwide LHC Computing Grid (WLCG) extensively during
his time on the Compact Muon Solenoid (CMS) experiment at CERN’s Large Hadron Collider,
Tom works as part of the GridPP Community to engage as many people as possible with the
Grid through GridPP’s New User Engagement Programme. He is also consultant scientist for
the CERN@school programme, Scientific Officer for the Institute for Research in Schools, and
Software Coordinator for the MoEDAL Collaboration.

† See http://www.gridpp.ac.uk/userguide

GridPP-ENG-002-UserGuide-v1.0 61

http://researchinschools.org
http://www.gridpp.ac.uk
https://ww.railstutorial.org
http://github.com
http://github.com/gridpp
http://ph.qmul.ac.uk
http://www.qmul.ac.uk
http://www.qmul.ac.uk
http://www.stfc.ac.uk
http://www.stfc.ac.uk
http://www.stfc.ac.uk/funding/fellowships/public-engagement-fellowships/public-engagement-fellows/
https://www.gridpp.ac.uk
http://cms.web.cern.ch/
http://cern.ch
http://researchinschools.org
http://researchinschools.org
http://moedal.web.cern.ch
http://www.gridpp.ac.uk/userguide

A.7 Testing A CREATING A GRIDPP CERNVM

Version History

Table 2: Version history.

Version Description DOI Author
1.0 Initial version. 10.5281/zenodo.222702 TW

GridPP-ENG-002-UserGuide-v1.0 62

http://dx.doi.org/10.5281/zenodo.222702

	Introduction
	Before We Begin
	First Steps: Hello World(s)!
	An Example Workflow: Local Running
	Getting on the Grid
	Moving Your Workflow to the Grid
	Putting Data on the Grid
	Using Grid Data in Your Workflow
	What's Next?
	Troubleshooting
	Appendix Creating a GridPP CernVM

