
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=6phm20

Download by: [Tulane University] Date: 21 June 2016, At: 08:19

Philosophical Magazine Series 6

ISSN: 1941-5982 (Print) 1941-5990 (Online) Journal homepage: http://www.tandfonline.com/loi/tphm17

XCVI. Thermodynamics of radiation

H.L. Callendar M.A. LL.D. F.R.S.

To cite this article: H.L. Callendar M.A. LL.D. F.R.S. (1914) XCVI. Thermodynamics of radiation ,
Philosophical Magazine Series 6, 27:161, 870-880, DOI: 10.1080/14786440508635158

To link to this article:  http://dx.doi.org/10.1080/14786440508635158

Published online: 08 Apr 2009.

Submit your article to this journal 

Article views: 5

View related articles 

Citing articles: 1 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=6phm20
http://www.tandfonline.com/loi/tphm17
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14786440508635158
http://dx.doi.org/10.1080/14786440508635158
http://www.tandfonline.com/action/authorSubmission?journalCode=6phm20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=6phm20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/14786440508635158
http://www.tandfonline.com/doi/mlt/10.1080/14786440508635158
http://www.tandfonline.com/doi/citedby/10.1080/14786440508635158#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/14786440508635158#tabModule


870 Prof. H. L. Callendar on 

length. That is, they contract in a particular azimuth only, 
retaining in the azimuth normal to this the diameter of |he 
unstretched wire. The cross section of a wire behaving in 
this way appears to be roughly elfiptical~ so the contraction 
is approximately uniform across the wire. The minor axis 
of such a cross section is, in the case of tin, often only 0"4 of 
the major. The ring-shaped markings appear on the flatter 
surfaces of the wires, which are shown in the photographs ; 
they are similar on each flattened side and run together at a 
~harp angle at the edges of the flattened wire. The plane in 
which the flattening takes place must be determined by 
chance asymmetrical irregularities, for with fin two or more 
such different planes sometimes occur on the same wire, 
separated by small lengths in which the wire retains its 
original circular form, and shows no regular markings. 

Thus on extending wires of the soft pure metals mercury, 
tin, and lead (and also sodium and potassium, as shown by 
Baker), we are able to get surface markings of great regu- 
larity, accompanied by a contraction of the wire in one 
particular direction only. The markings present the appear- 
ance of a series of equal layers which have been sheared over 
one another, as would be the case with a half cylinder com- 
posed of semicircular plates if the plates were all tilted over 
to make an acute angle with the axis of the cylinder. They 
are probably due to large uniform crystals, of a size com- 
parable with the diameter of the wire, arranged in layers, 
which behave somewhat in the way suggested. I t  is notice- 
able that the metals which give the phenomenon are all very 
soft, a condition to which large crystals are known to be 
favourable. The purer lead which shows the markings is 
softer than ordinary commercial lead. The phenomenon has 
evidently nothing to do with the processes to which the wire 
is subjected during manufacture, as the specimens of lead 
and tin have to be thoroughly annealed if they are to show 
it well. 

XCVI. Thermodynamics of Radiation. By H. L. CALLENDAa, 
M.A., LL.D., _~\R.S., Professor of Physics at the Imperial 
College, S. W.* 

I N the number of this Journal for October 1913, p. 787, I 
gave a brief sketch of a theory of radiation and specific 

heat, which appeared to be worth recording on account of its 
simplicity and its good agreement with experiment. The 
formula given for the distribution of energy in full radiation 

** Communicated by the Author. 
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71'hermodynam{cs of Radiatiom 871 

was deduced, in the first instance, from a quasi-moleculal 
theory of radiation, and free use was made of the clost 
almlogy between full radiation and an ideal vapour, as being 
the method most likely to appeal to experimentalists familia~ 
with the application of the gas analogy to other branches of 
physics. The same result might have been deduced in a 
variety of other ways, since it is to a great extent independent 
of the particular analogy employed. It  now seems desirable 
to give an alternative method, which has the advantage of 
being more direct and of throwing more light on the 
essential points of difference between the proposed theory 
and that commonly accepted. 

In order to explain the notation and to indicate the 
assumptions which are taken as the basis of the present 
method, it will be well to give a brief sum,nary of the 
fundamental facts, which are generally accepted, and are to 
be found in many textbooks, such as Poynting's 'Hea t , '  
cap. xx. p. 333. 

The Energ:~/Stream Q.---A study of the laws of emission 
and absorption of radiation in relation to the equilibrium of 
temperature, has led to the conclusion that the condition 
existing inside a vacuous enclosure at a uniform temperature 
T may be represented by an isotropic.energy-stream Q per 
second per sq. cm., which is the same m every direction and 
in all parts of the enclosure, and is a function solely of the 
temperature. A similar proposition must be true for each 
separate frequency into which the radiation may be analysed. 
We may define q as the energy-stream of a particular 
frequency v per unit range of frequency, such that qdv 
represents the energy-stream included between the limits of 
frequency v and v+dv in full radiation. The partial stream 
q is a function only of the temperature T in addition to the 
frequency considered. Its rate of variation with temperature 
(dq/dT)~ at constant frequency is equally definite. 

The Energy Density U.- - I f  we suppose the radiation to be 
continually -travelling in all directions with the velocity of 
light c, the energy-density of the stream Q, or the quantity 
existing in the medium at any moment per c. c., will be 
4Q/c, for the full stream Q. Similarly the energy-density 
u per unit range of frequency will be" 4q/c, for the partial 
stream q. 

The _Doppler Effect.--The simplest case to consider is that 
of a perfectly reflecting sphere expanding symmetrically with 
uniform velocity, small compared with that of light, and 
filled with a homogeneous and isotropic mixture of different 
frequencies. As the sphere expands, the wave-length of 

3 M 2  
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872 Prof. H. L. Callendar on 

every component ill the mixture will increase in direct pro- 
portion to the radius of the sphere, whatever the angle of 
incidence. Each component may be regarded as retaining 
its identity while its frequency varies, and any arbitrary 
distribution of components will be permanent as regards tl[e 
ratio of the energies of the different components*. 

Law of Adiabatic Expansion.--The simplest assumption to 
make with regard to the variation of energy is that, when -t 
given quantity of radiation is admbatically compressed or 
expanded in a perfect reflector, the whole energy of each 
component which retains its identity varies directly as its 
frequency. This assumption is in agreement with electromag- 
netic theory, and is equivalenL to various other assumption,s 
which have been made [or the deduction of the pressure. 
The energy stream qdv of the component included between 
limits v and v +dr of frequency in an expanding sphere of 
radius r, is transformed into a stream q'dv' when the radius 
has increased to r', and is included in an interval dvl/v ' which 
is equal to duly, where v'/v=r/r' in virtue of the Doppler 
effect. The whole energy of the component qdv at any stage 
is the product of the volume 4vrr3/3 and the energy-density 
4qdv/c. By the above assumption the whole energy varies 
as l/r, so that raqdv is constant. The energy-stream qdv 
of each component varies directly as the fourth power of its 
frequency v, or inversely as the fourth power of the radius J'. 

The Radiation .Pressure.--The pressure pdv due to the 
stream qdr is directly deducible by equating the work done 
pdv x 4~rr2dr in a small expansion dr to the loss of energy 
of the stream. The express:on for the whole energy of 
the stream may be written (#qdv)16~r/3rc. Since r4qdv is 
constant, the loss of energy in a small expansion dr is 
(r4qdv)16dr/3r~c. Equating this to the work we obtain 
p=4q/3e, which is true for each component separately ; and 
similarly P=4Q/3c  for the whole radiation. I t  will be 
observed that the pressure and the work result essentially 
from change of frequency caused by the Doppler effect. 

The Temperature of trull Radiation.--It is shown in 
many textbooks (e. g. Poynting, p. 337) that "full radiation 
remains full radiation in any adiabatic change." I~; fol~ows 
by a direct application of (Jarnot's cycle to full radiation, 
that the temperature T, as defined by Carnot's principle, 
varies directly as the frequency of each component, or 
inversely as the radius of the expanding sphere. The energy- 
density and the pressure vary as the fourth power of the tem- 
perature for the radiation as a whole (the Stefan-Boltzmann 

* Larmor, Brit. Assoc. Rop. 1900, p. 657. 
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Thermodynamics of Radiation. 873 

law), and also for each component considered separately. 
The product XT, or the ratio v/T, remains constant for 
each component, which is Wien's displacement law. Both 
laws are summed up in Wien's general expression for the 
distribution in full radiation, which gives for q as already 
defined, 

q =  Cv3F(v/T) = CT~/(v/T), . . . (1) 

where F and f are undetermined functions expressing the 
distribution in'full radiation. 

Extensions of the Tl~eory. 

So far we have been considering only those theoretical 
relations which result from the Doppler effect on components 
of variable frequency which retain their identity in adiabatic 
expansion. These relations have been verified indirectly, and 
are universally admitted. The extensions which I have pro 
posed result from a consideration of isother/nal emission at 
constant frequency. In experimental work it is impossible 
to isolate and trace the components of variable frequency 
(v/T constant), or to perform an adiabatic expansion. We 
have to deal with rays of constant frequency, separated and 
measured under the condition of steady flow at constant 
temperature. 

The main points which I have endeavouced to establish are 
the following : - -  

(1) Since, so far as we know, each frequency is propagated 
without change in free space, the heat taken from the source 
by the emission of a steady stream of a particular frequency 
should, by the first law of thermodynamics, be equal to the 
heat evolved on condensation of the same stream in the 
receiver. Although it is not possible to trace all the steps of 
an irreversible process, such as radiation from a higher to a 
lower temperature, the change of total heat must be the s~me 
as that calculated by a reversible path. The first requisite, 
therefore, is to find the latent heat of isothermal emission of 
a particular frequency. 

(2) I t  has always been tacitly assumed that the energy- 
density of each frequency in an isothermal enclosure is 
directly proportional to the heat measured on absorption, 
which is equivalent to assuming the latent heat of emission 
per unitvolume proportional to the energy-stream q. I have 
maintained on the contrary, in the paper already quoted, that 
the latent heat of emission per unit volmne for each frequency 
should be that given by Carnot's principle, namely T(dp/dT)v, 
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874 Prof. H. L. Callendar o n  

which is proportional to T(dq/dT)~, but is not proportional 
to q. I t  may be objected, with apparent reason, that Carnot's 
principle cannot be applied to each particular frequency in 
isothermal emission under equilibrium conditions on account 
of the change of frequency caused by the Doppler effect at 
the moving piston or expanding wall of the enclosure. I t  is 
therefore necessary to show that the expression T(dp/dT)~ for 
the htterlt heat given by Carnot's principle, is not in conflict 
with the Doppler effect in adiabatic expansion, but tbllows 
directly from it. 

Latent_Heat I of Isothermal Emission o? a Partic~da~" 
Frequelw~.--Taking the perfectly reflecting sphere already 
considered, and supposed full of radiation in equilibrium at 
a temperature T, let the radius of the sphere expand by a 
small increment dr, so that the enclosed radiation falls to 
a lower temperature T--dT, where - -dT=Tdr / r  as already 
explained. The stream of energy q per unit range of a par- 
ticular frequency v at the original temperature T will be 
reduced at the lower temperature T--dT to the value 
q - (dq/dT)~dT, whe,'e (dq/dT)~ is the rate of change of q with 
temperature for a constant frequency, which has a perfectly 
definite value for each frequency in full radiation. I f  now 
the perfectly reflecting surface is replaced by an emitting 
surface at the original temperature T, equilibrium will be re- 
stored by the absorption of the existing stream q-- (dq/dT) ~dT 
and the emission of a stream q at constant volume. The 
volume, which remains constant during this process, may be 
taken as 4~rra/3. The fnal energy-density is 4q/c; The net 
energy emitted will therefore be 16~rr3(dq[dT)fl[[[3c, which 
reduces to 16~rr~T(dq/dT)~dr]3c, by substitutin~ tbr dT its 
value given above. The latent heat of emission 1 per unit 
~ncrease of volume is obtained by dividing this by the increase 
of volume, namely, 4~rr~dr, which gives l=4T(dq/dT)~]3c, or 
T(dp dT)~, since p = 4q/3c. 

The above method may appear at first sight to be 
unnecessarily circuitous, but it is really the most direct for 
deducing the required result from the admitted properties of 
the energy-stream and the Doppler effect in adiabatic expan- 
sion. The same procedure is applied in the reverse direction 
in elementary thermodynamics in deducing the fall of tem- 
perature dT for a small adiabatic expansion dv in the case of 
a perfect gas, by equating the heat, sdT, required to raise 
the temperature at constant volmne, to the work done pdv, or 
the heat absorbed RTdv/v, in the same expansion performed 
under isothermal conditions. 

Admitting the existence of i he Doppler effect in isothermal 
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Thermodynamics of Radlatlon. 875 

emission under equilibrimn conditions at the slowly expand- 
ing wall of the enclosure, it is easy to see why the latent heat 
of a particular frequency per unit volume should be different 
from the density of the energy-stream of the same frequency 
together with tile external work. The higher frequencies 
are being continually degraded into lower during the motion, 
so that the actual net amount of a high fl'equency emitted 
may be greatly in excess of the quantity 4p per unit volume 
which would be required if there were no degradation of 
frequency. On the other hand, for a low frequency, the 
amount required to maintain the energy-stream at its equi- 
libriuin value is greatly reduced by the return of energy 
degraded from the higher frequencies. The two effects 
balance in the case of full radiation at the mean point where 

The nature of the effect, considered may also be illus- 
trated by a consideration of the relation between the partial 
differential coefficients. If  (dp/dT)~ represents the rate of 
change of p with T in adiabatic expansion when XT or y/T is 
constant, we have the general relations, representing Wien's 
displacement law (1), 

T(dp/dT)x=3p=~,(dp,/d~@:= T(dp/dT)~ + ~,(dp/dv)~. (2) 

Similar relations hold for q and u, which are simply propor- 
tional to p. The latent heat T(dp/dT)~ is not equal to 4p, 
but to 3p--r,(dp/dr)~. The coefficient (dp/dr)T is obviously 
positive on the low frequency side of the curve representing 
p plotted against v at constant temperature, where the latent 
heat is less than 3p. I t  vanishes at the maximum of the 
pressure curve, where T(dp/dT)~= 3p, but it may attain large 
negative values for high frequencies. 

~17w 2F~ntropy, and Intrinsic Energy.--If the latent heat is 
represented by T(dp/dT)~ per unit range and volume, the 
entropy should be simply (dp/dT)~. The internal latent heat 
per unit volume, T(dp/dT),-p, or the intrinsic energy denoted 
by Ely in the previous paper, is the energy carried by the 
stream of a particular frequency, and given up on conden- 
sation in addition to the work p. It tbllows from Wien's. 
displacement law (1) that the ratio, E/pc, of the intrinsic 
energy to the pressure, must be some function of (v/T), 
depending on the distribution. It  was assmned in the pre- 
vious paper that E/pv for full radiation was of the form 
bv;T (where b is a constant required by the arbitrary nature 
of the units) on the ground that the intrinsic energy of a 
given quantity varies as the frequency. This assmnption 
fixes the distribution in full radiation, and leads to the 
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876 ProF. g .  L. Callendar on 

simplest relations between the various quantities, in addition 
to giving very good agreement with experiment. The in- 
trinsic energy of a volume v such that pv=-RT, is simply 
Rbv, and the corresponding expression for the entropy is 
a (1  + b#T). 

If  the latent heat equation, T(df/dT)~= E/v +p, is integrated 
at constant frequency on the assumption E/pv=bv/T, we 
obtain immediately the expressions previously given (lee. 
tit.) for the part~al pressure, intrinsic energy, and latent 
heat, per unit range of 9, namely, 

Partial Pressure, pdv~-(~v~Te-bv/Tdv, (4) 

Intrinsic Energy, (Ely)dr= (Jbr3e-b~/Tdv, (5) 

Latent Heat, ldv=Cv~T(1 + bv/T)e-bv/Tdv, (6) 

The partial pressure p is proportional to the energy- 
stream ~/in an isothermal enclosure, and is identical in form 
~i th  the expression originally proposed by Lord Rayleigh 
(Phil. Mag. xlix. p. 539, 1900) to represent the energy- 
stream. His method was founded on the doctrine of the 
equipartition of energy, and gave no explanation of the 
exponential term. This factor arises in the present inves- 
tigation directly from Carnot's principle, and is explained by 
the continual degradation of the higher frequencies owing to 
the Doppler effect in isothermal emission, which appears 
to afford a possible way out of the difficulty raised by Jeans 
in discussing the problem from the point of view of equi- 
partition. 

Comparison with Experiment. 
The quantity measured in experimental ,~'ork is either the 

rate of loss of heat of a more or less perfect adiator, or else 
the rate of reception of heat by a receiver absorbing a kno,vn 
fraction of the radiation from a source of the "black body"  
type. In either case the quantity measured is proportional 
to the latent heat of emission as already defined~ and not to 
ttm energy-stream existing in the state of equilibrium, except 
in the case of full radiation for which T(dQ/dT)=4Q. The 
full stream, Q = a T  4, emitted per second per sq. cm. from a 
small aperture in a black body at a uniform temperature T, 
is equal to c/4 of the full energy density U, or to 3c]4 of the 
full pressure P, and is the same as T(dQ/dT)[4. But the 
quantity measured for each separate frequency per unit range 
is not q=cu/4-=3cp/4, as generally assumed, but T(dq/dT)v/4, 
which is proportional to the latent heat of emission T(dp/dT)~ 
per unit volume. The value of the full pressure P, obtained 
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Thermod!/namics of Radiation. 8 7 7 

by integrating the partial pressure pdv from 0 to infinity at 
constant T, is 

P=2CT4/b~=4Q/3c=4o-T4/3c . . . . . .  (7) 

Whence the value of the constant C is 2ab3/3c. Substituting 
this value of the constant C in the equation for the latent heat 
~dv per unit volume, we obtain the equation for the latent 
heat of emission per second~ per sq. cm., in terms of the 
radiation constant o', 

2T (dq/dT)vdv= ab%:T(1 + bv/T)e-b~/Tdv, (8) 

which represents the curve of distribution of energy, as 
experimentally observed, plotted against the frequency as 
abscissa. The corresponding curve With the wave-length k as 
abscissa is obtained by substituting 1+ =- c/k, and dz, = --  cdk/k  2. 
The curve plotted in terms of wave-length has a maximum at 
the point where XT= (a/2 - l ) b c / 2 - -  "2071bc. The mean ot' 
various experimental determinations puts the maximum of 
the wave-length curve at kT----'290, when the wave-length 
is measured in cms. Whence the value of the constant 
bc=1"400. The curve obtained with this value of the 
constant bc gives very good agreement with experiment, both 
for the distribution curve at constant temperature, and for 
the variation with temperature of the energy of a particular 
frequency, both of which are included in the same formula 
(8) by putting either T or v constant, 

i t  is at once evident that a formula of the type shown 
in (8) must be capable of representing the distribution curve 
with considerable accuracy, since it reduces to the same type 
as Wien's when XT is small or b~,/T large, and to the same type 
as Rayleigh's when XT is large or bv/T small. I t  would be 
tedious and unnecessary to analyse all the observations 
(though this has been done)since it is generally admitted 
that Planck's formula fairly represents the experimental 
data. It  may be of interest~ however, to give curves showing 
the differences between the formulae, if only to illustrate the 
limitations of experimental verification. The formulae com- 
pared are those of Wien, Planck, l~ayleigh, Walker and 
Callendar. The value of the distribution constant b is 
calculated for each formula from the position of the maximum 
by taking the same value of X,,T, namely, "290, for all. I f  
the same absolute value of the Stefan constant ~ were also 
taken for all, the absolute value of the maximmn would be 
different for each formula. But since only relative values 
are obtainable experimentally in the distribution curve, the 
maximmn for each formula has been reduced to 100, and the 
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878 Prof. H. L. Callendar on 

differences from Planck's formula (represented by the base 
line), expressed as a percentage of the maximum, are plotted 
in the curves. The differences are plotted on a wave-length 
base tbr a temperature T----1000 ~ Abs., for which the 
maximmn occurs at the point X=2"9/z where all the ~ormul~e 
are made to agree. I t  is well known that the formul~ of 
Wien and Raylcigh (R) differ appreciably from experiment, 
but it is remarkable how closely the sum of the two, 
represented by curve (('), agrees with Planek's expression 
,]zl?~=kX-"(e~daT--1) -1. The maximmn difference of 1 per 
cent, which occurs on the short wave-length side of the 
nmximuln, would be difficult to verify in the distribution 
curve owing to its steepness on this side, and might be 
compensated by a very slight shift of the maximum. There 
are, however, several observations which indicate that 
Planek's formula gives results a little too low for short 
wave-lengths. 

Fig. 1. 
+10 l ~, 

ft I 

',, 

/ c  . . . .  --. 

o -" / / " - " - . \ l j S . . ~  " "  . . . .  ~- 

. _  . . . . .  

-50 CVx#wt~rm m M~r ~P 10ix 15,a 

Differences of Distribution'Formulae from Plauek's Formula at 1000 ~ Abs. 
on wave-length base, expressed in per cent. of maximum. 
R, I~ayleigh ; C, Callendar ; W~ Wien ; dotted, Walker. 

On the shor~ wave-length side, an interesting contrast is 
presented by the ingenious empirical formula recently 
proposed by G. W. Walker (Proc. R. S. A lxxxix, p. 393, 
1914) on dynamical grounds, as representing the harmonic 
analysis of an arbitrary series of disturbances with strictly 
aperiodic damping. Walker's fornmla is a modification of 
that of KSvesligethy, 1890, and is of the type, 

E~=kT~[XTI(X~-T2+a~-)~, .  . . . .  (9) 

which evidently satisfies the conditions laid down by Wien, bu~ 
does not otherwise conform to the present theory. The curve 
as shown by Walker is very similar in general appearance to 
the distribution curves of Lummer and Pringsheim, especially 
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Thermodynamic~ of I~adiation. 879 

on the side of long wave-lengths, where the comparison is 
fairly easy. But if the di~erer~ces are plotted as in figure (1) 
('dotted curve), they amount, on the short wave-length side, 
to something of the order of 20 per cent. of the maximum 
ordinate, which considerably exceeds the possible limits of 
error of the verification of Wien's or Planek's formulm in 
this region. According to Walker's formula the thermal 
intensity of the ultra-violet light of wave-length "29~ in the 
radiation from a black body at 727 ~ C. (a dull red heat) should 
be "154 per cent. of the maximmn ordinate, and might be 
detected with a sensitive thermopile. As a matter of experi- 
ment no radiation of this wave-length from such a source 
can be detected by the most delicate photographic methods, 
and it is much more likely to be of the order of 10 -15 of the 
maximum, as given by Wien's formula. The exponential rate 
of' diminution of the cur~e on the short wave-length side is 
one of the most certain results of experiment, and it is one of 
the strongest points of the present theory that the exponential 
terln in the formula follows so directly from the application 
of Carnot's principle. 

Another method of comparing the formulm with experi- 
ment is to observe the variation with temperature of the 
intensity of a particular wave-length. Among the best 
known applications of this method are the experiments of 
Rubens on the Reststrahlen of quartz, fluorite, and rocksalt. 
His experiments showed clearly that the distribution formula 
must reduce to the Rayleigh type k)~-4T for large values of 
XT, but indicated appreciable deviations from Planek's 
formula in the case of the quartz Reststrahlen. The di]erence 
between his results and Planck's formula is shown by the 
crosses representing the observations in fig. 2. t)lanck's 
formula itself is represented by the base-line as in the 
previous figure. 

Here again, as Rubens poblts out, comparison of the 
relative values alone is experimentally possible. The values 
given by the various formulm for radiation of wave-length 
b'85/L, corresponding to the quartz Iieststrahlen, with the 
source at 1000 ~ C. and the receiver at 0 ~ C., are accordingly 
reduced to a common value, so that all the curves agree 
at 0 ~ and 1000~ and the differences from Planck's 
tbrmula at intermediate points are plotted in terms of the 
radiation at 1000~ The observations are seen to agree 
distinctly better with the thermodynamical fornmla (8) than 
with Planck's. The observations on the Reststrahlen of 
fluorite and rocksalt show a similar result, but are not so 
decisive, because the formulse approximate so closely to the 
Rayleigh type for long wave-lengths, and the observations are 
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less concordant on account of the feebleness of the radiation 
to be measured, which is about 200 times less for rocksalt 
than for quartz at 1000 ~ C. 

Fig. 2. 
* ] 0  

C 

- 0  
0 2 5 0  ~ 5 0 0  ~ 7 5 0  ~ 1 0 0 0  ~ 

7*E]I4PERATUNE Cs 

Difference of :Rubens' Observations on Quartz Reststrahlea 
from P1anck's formula, compared with other formu[m. 

The agreement of the proposed formula (8)with direct 
experiments on radiation is seen to be satisfactory. As 
indicated in the previous paper, the agreement with atomic 
theory as regards (1) the number of atoms N=6"12 x 10 23 in 
a gramme atom, and (2) the atomic unit of energy per unit 
�9 Frequency Rbl N = 6"34 x 10 -:7, is equally.. . satisfactory,. ~ accord- 
mg to the estimates of these quantities obtained from other 
sources. The variation of specific heat at low temperatures 
can also be represented by the thermodynamical formula 
with fewer arbitrary hypotheses than by Planck's. These, 
however, are questions involving many speculative elements, 
and are of little weight compared with the thermodynamical 
argument on which the formula is founded�9 The Doppler 
effect must occur in the isothermal emission of an energy- 
stream, and has not been considered in this connexion. That 
it should lead directly to Carnot's expression T(dp/dT)~ for 
the latent heat per unit volmne, is too striking a confirmation 
of the principles of the classical thermodynamics to be 
disregarded. According to my view, it affords an additional 
relation, which suffices, in conjunction with Wien's law, to 
fix the distribution in full radiation. 
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