
SPEX Cookbook

J. de Plaa, J. Ebrero, Y. Grange, C. Pinto, J. Kaastra, K. Steenbrugge, L. Gu, M. Mehdipour

August 19, 2016

2

Contents

1 How to run SPEX 1

1.1 The SPEX data format . 1

1.2 Loading spectra into SPEX . 2

1.3 Plotting the data . 2

1.4 Ignoring and rebinning . 2

1.5 Defining a model . 3

1.6 Fitting the data . 5

1.7 Calculating errors . 5

1.8 Making life easier. 5

1.9 Saving your work . 6

1.9.1 Saving a plot . 6

1.9.2 Saving commands . 6

1.9.3 Saving output . 7

1.10 Quitting the program . 7

1.11 Tips & Tricks . 7

1.12 References . 7

2 How to run trafo 9

2.1 Input files . 9

2.2 Running the program . 9

2.2.1 Re-arranging the response matrix . 10

2.2.2 Reading the spectra . 10

2.2.3 Bad channels and grouping . 11

2.2.4 Read response and effective area files . 11

2.2.5 Writing res and spo files . 12

2.3 Scripting . 12

2.4 Special situations . 13

2.4.1 XMM-Newton EPIC MOS spectra . 13

ii CONTENTS

3 Combining RGS spectra using rgsfluxcombine and rgsfmat 15
3.1 Goal . 15
3.2 SPEX solution . 15

3.2.1 Data preparation . 16
3.2.2 Combining data from the same RGS . 16
3.2.3 Combining different instruments . 18
3.2.4 Creating the response matrix . 18

3.3 References . 19

4 Modeling absorption spectra 21
4.1 Goal . 21
4.2 SPEX solution . 21

4.2.1 Running trafo . 21
4.2.2 Running SPEX . 22
4.2.3 The cold gas . 22
4.2.4 The warm-hot gas . 23
4.2.5 Dust and Molecules . 24

5 Fitting RGS spectra of a group of galaxies 27
5.1 Goal . 27
5.2 SPEX solution . 28

5.2.1 Running trafo . 29
5.2.2 Running SPEX . 30

6 Sectors in AGN spectroscopy 33
6.1 Goal . 33
6.2 Creating sectors . 33

6.2.1 Introduction . 33
6.2.2 Running trafo . 33

6.3 Running SPEX . 36

7 High-energy exponential cut-off power-law in SPEX 41

8 Modeling particle background 43
8.1 Goal . 43
8.2 SPEX solution . 43

8.2.1 Running trafo . 43
8.2.2 Running SPEX . 45

9 User model 49
9.1 Goal . 49
9.2 SPEX solution . 49

9.2.1 Importing an Xspec local model written in Fortran (ismabs) 50
9.2.2 Connecting the SPEX user model to Xspec . 52
9.2.3 Interpolate an APEC-like table model . 53
9.2.4 Troubleshooting . 59

10 Calling SPEX from Fortran 61
10.1 Goal . 61
10.2 Solution . 61

Chapter 1

How to run SPEX

SPEX is a spectral fitting program used to fit high-resolution X-ray spectra. The code contains several
simple and detailed models that are able to deal with the radiative processes observed in the X-ray band.
Because SPEX has a command-line interface, a first-time user should get familiar with the syntax of the
commands to be able to work with it. This chapter provides some basic commands and threads to fit
X-ray spectra.

1.1 The SPEX data format

The data files containing the spectrum of the source and the response need to be in the correct format.
In the SPEX installation, we provide a program called trafo to convert OGIP standard fits files into
SPEX format (see Chapter 2 for an explanation of trafo). In this chapter, we assume that you already
have spectra in SPEX format. For example, the demo spectra from the SPEX web site.

SPEX needs two files per spectrum:

• <filename>.spo – This file contains the countrate per energy bin for the source (Di), as well as
the background countrate and the errors (σi).

• <filename>.res – This file contains the instrumental response: the energy redistribution and
effective area (Rij Aj).

In order to calculate the observed model spectrum, SPEX uses this integral equation to account for
the imperfections caused by the instrument:

D(c) =

∫
R(c, E)A(E)S(E)dE (1.1)

Di =

n∑
j=1

RijAjSj (1.2)

The .res and .spo files are so-called FITS files. This is a data format widely used in Astronomy.
FITS files can contain images as well as data tables. The software package FTOOLS provided by NASA
contains a large number of tools to manipulate FITS files (see references). If you are interested, then you
can launch flaunch to see which tools are available.

2 How to run SPEX

1.2 Loading spectra into SPEX

The SPEX program is started by entering spex in a linux terminal window. In the following sections we
describe one run of the program. To start SPEX do this:

user@linux:~> spex

Welcome user to SPEX version 3.00.00

SPEX>

First, we have to load the data files. This is done using the command data. It is a general thing in
SPEX that filename extensions are not typed explicitly when issuing a command. If you have a file called
filename.spo and filename.res then you type:

SPEX> data filename filename

The responsefile (.res) is entered first and then the file containing the spectrum (.spo). You can avoid
confusion by giving the same filename to both .res and .spo files. Remember that the order of the words
in the commands is very important!

To save you from typing a lot, many commands can be abbreviated by typing just the first few
characters. For example, da is equivalent to dat and data.

1.3 Plotting the data

If the data command was successful, we can now have a look at the spectra. SPEX offers a lot of different
plot commands through the PGPLOT package (known from, for example, Fortran programs). Below is
a simple example to create a linear-linear plot in Å:

SPEX> plot dev xs

SPEX> plot type data

SPEX> plot x lin

SPEX> plot y lin

SPEX> plot ux a

SPEX> plot uy a

SPEX> plot rx 8.:35.

SPEX> plot ry 0.:0.05

SPEX> plot set 1

SPEX> plot cap ut text "This is my plot"

SPEX> plot cap lt disp false

SPEX> plot cap id disp false

SPEX> plot

The sequence above opens a PGPLOT window (dev xs) and tells SPEX that the plot will contain
data with linear axes (x lin and y lin) in unit Å (ux a and uy a). rx and ry are the ranges on the x
and y axes, respectively. Then the color of the data, background spectrum and model are set. The last
commands beginning with plot cap remove some standard titles and other text around the plot. After
you define the plot like in the example above, you can plot it with a single plot command.

The y-axis in this plot is in counts s−1 Å−1. Ångstrom is not the only unit used in high-energy
astrophysics. Usually, the energy of the photons is expressed in keV. In SPEX you can use keV by
writing k instead of a in all commands. For example, plot ux k to use keV for the x-axis.

1.4 Ignoring and rebinning

High-resolution X-ray spectra from Chandra and XMM-Newton are usually oversampled (e.g. the energy
bins are much smaller than the spectral resolution) and contain a lot more channels then is useful.

1.5 Defining a model 3

Therefore, it is necessary to remove wavelength intervals which contain bad data and rebin your spectrum.
In the next example we bin the spectrum over the 8–35 Å range with a factor of 5 and ignore the rest
of the spectrum:

ign 0:8 unit a

ign 35:100 unit a

bin 8:35 5 unit a

The words unit a tells SPEX that the ranges (for example 8.0:35.0) are given in Å. If you work with
more than one spectrum (from more than one instrument), you can add an extra instrument statement:

ign ins 1:2 0:8 unit a

ign ins 1:2 35:100 unit a

bin ins 1:2 8:35 5 unit a

Here, instrument 1 to 2 are binned with a factor of 5 over the 8–35 Å range.

1.5 Defining a model

Now we have a clean and rebinned spectrum that is ready to fit. Before we can start fitting, we first
need to define a model. It’s equivalent to S(E) in Eq. 1.1. The model can contain one or more of these
components:

• absm Model for interstellar absorption.

• reds Redshift.

• po Powerlaw.

• ga Gaussian.

And there are more (see the SPEX manual)! The following command sequence defines a simple
powerlaw model at a certain redshift and absorbed by the interstellar medium. The individual components
of the model are loaded one-by-one with the com command:

SPEX> com reds

SPEX> com absm

SPEX> com po

SPEX> com rel 3 1,2

The last command (com rel 3 1,2) tells SPEX that component 3, the powerlaw, is first redshifted
by component 1 and then absorbed by component 2. The order of the 1 and the 2 is important! Always
think what happens in which order on the way from the source to the telescope.

For most sources the distance is more or less known. To get a right luminosity estimate for the source,
the expected distance has to be provided to SPEX:

SPEX> dist 0.1 z

Distances assuming H0 = 50.0 km/s/Mpc and q0 = 0.500

Sector m A.U. ly pc kpc Mpc redshift cz

1 1.894E+25 1.266E+14 2.002E+09 6.139E+08 6.139E+05 613.8689 0.1000 29979.2

With this command, the distance to the source is set to a redshift of 0.1. The derived distances for
this cosmology are in the output of the dist command.

Now we have to estimate the initial parameters. With the command par show we can see which
parameters there are:

4 How to run SPEX

SPEX> par show

--

sect comp mod acro parameter with unit value status minimum maximum

1 1 reds z Redshift 0.000000 frozen -1.0 1.00E+10

1 2 absm nh Column (1E28/m**2) 9.9999997E-05 thawn 0.0 1.00E+20

1 2 absm f Covering fraction 1.000000 frozen 0.0 1.0

1 3 pow norm Norm (1E44 ph/s/keV) 1.000000 thawn 0.0 1.00E+20

1 3 pow gamm Photon index 2.000000 thawn -10. 10.

1 3 pow dgam Photon index break 0.000000 frozen -10. 10.

1 3 pow e0 Break energy (keV) 1.0000000E+10 frozen 0.0 1.00E+20

1 3 pow b Break strength 0.000000 frozen 0.0 10.

1 3 pow type Type of norm 0.000000 frozen 0.0 1.0

1 3 pow elow Low flux limit (keV) 2.000000 frozen 1.00E-20 1.00E+10

1 3 pow eupp Upp flux limit (keV) 10.00000 frozen 1.00E-20 1.00E+10

1 3 pow lum Luminosity (1E30 W) 1.000000 frozen 0.0 1.00E+20

--

Fluxes and restframe luminosities between 2.0000 and 10.000 keV

sect comp mod photon flux energy flux nr of photons luminosity

(phot/m**2/s) (W/m**2) (photons/s) (W)

1 3 pow 0.00000 0.00000 0.00000 0.00000

We can set the parameters using the par command. The first “1” in column “sect” can usually be
ignored. The commands then look like this:

SPEX> par 1 z val 0.1

SPEX> par 2 nh val 2.E-3

SPEX> par 3 norm val 1.E+10

SPEX> par gamm val 1.5

The last component number used is saved, so in the last line we can skip typing the number 3 after
par. Then, we run par show again to see what happened:

SPEX> par show

--

sect comp mod acro parameter with unit value status minimum maximum

1 1 reds z Redshift 0.100000 frozen -1.0 1.00E+10

1 2 absm nh Column (1E28/m**2) 2.0000001E-03 thawn 0.0 1.00E+20

1 2 absm f Covering fraction 1.000000 frozen 0.0 1.0

1 3 pow norm Norm (1E44 ph/s/keV) 1.000000E+10 thawn 0.0 1.00E+20

1 3 pow gamm Photon index 1.500000 thawn -10. 10.

1 3 pow dgam Photon index break 0.000000 frozen -10. 10.

1 3 pow e0 Break energy (keV) 1.0000000E+10 frozen 0.0 1.00E+20

1 3 pow b Break strength 0.000000 frozen 0.0 10.

1 3 pow type Type of norm 0.000000 frozen 0.0 1.0

1 3 pow elow Low flux limit (keV) 2.000000 frozen 1.00E-20 1.00E+10

1 3 pow eupp Upp flux limit (keV) 10.00000 frozen 1.00E-20 1.00E+10

1 3 pow lum Luminosity (1E30 W) 5.6014867E+08 frozen 0.0 1.00E+20

1.6 Fitting the data 5

--

Fluxes and restframe luminosities between 2.0000 and 10.000 keV

sect comp mod photon flux energy flux nr of photons luminosity

(phot/m**2/s) (W/m**2) (photons/s) (W)

1 3 pow 0.00000 0.00000 0.00000 0.00000

Finding the right initial values for the parameters is a game of trial and error. To see whether you
are going in the right direction, you can calculate the model with the command calc and plot again.
If you see the model appear in your screen, then the model is close enough to be fitted. Especially the
normalization of the powerlaw (3 norm) can vary a lot depending on the countrate of the source.

1.6 Fitting the data

We are ready to fit the data! SPEX has a nice feature to look at the progress of the fit. To activate this
feature you have to give the command fit print 1. If your initial parameters were acceptable, you can
see the model converge to the data in the plot window after you entered the fit command. When the
fit is done, then the parameters and χ2 are printed on screen. If the χ2 value is close to the number of
degrees of freedom, then your fit is acceptable. Sometimes more runs of the command fit are necessary
after changing some initial parameters. This is especially true when using complex models. Again this is
a game of trial and error.

You also might want to fix or free certain parameters to see if they can be constrained. In SPEX
fixing is f (frozen) and freeing is t (thawn). You can free the redshift and fix the NH by the following
commands:

SPEX> par 1 z stat t

SPEX> par 2 nh stat f

1.7 Calculating errors

When the fit is acceptable, you might want to know the uncertainties on your fitted parameters. Errors
are determined one-by-one by fixing the parameter to some value and calculate the ∆χ2 with respect to
the best fit. If you want to know the 1σ error on the parameter, you need to know its values at ∆χ2 =
1. This is done by the error command. First you have to set the desired ∆χ2 in SPEX: error dchi 1.

After this you can calculate the error for each parameter. For example redshift:

SPEX> error 1 z

1.8 Making life easier. . .

In this short manual you have seen a lot of commands, but to avoid typing too much you want to use
some identical series of commands every time you fit a certain spectrum. For example, you don’t want
to type all plot commands again when making a plot. Therefore, the program has a command to solve
this problem. With the command log exe filename you can execute a number of commands at the
same time. The numbers are read from a normal text file with (in this case) the name filename.com.
Again the extension .com should not be typed explicitly. Below is an example to setup a plot for an
EPIC spectrum (range 0.2–10.0 keV) with a small frame that shows residuals. Note that you can put
any command in such a command file and you can make comment lines by putting a # sign in front of
the line.

This is a command file that creates a plot with residuals.

plot dev xs

6 How to run SPEX

plot type data

plot x log

plot y log

plot rx 0.2:10.

plot ry 0.0001:10.

plot back disp t

plot set 1

plot data col 1

plot model col 2

plot back col 1

plot set all

plot frame new

plot frame 2

plot type chi

plot uy rel

plot x log

plot rx 0.2:10.

plot ry -0.5:0.5

plot view def f

plot view x 0.08:0.92

plot view y 0.1:0.3

plot cap y text "Rel. Error"

plot cap ut disp f

plot cap lt disp f

plot cap id disp f

plot frame 1

plot view def f

plot view x 0.08:0.92

plot view y 0.3:0.9

plot cap x disp f

plot cap id disp f

plot cap ut disp f

plot box numlab bot f

1.9 Saving your work

There are several ways in SPEX you can save your work. Below you find a few examples to save your
commands, output or plots.

1.9.1 Saving a plot

These commands open a PostScript plot device with filename filename.ps, then they plot your figure
in the PS file and closes the device:

SPEX> plot dev cps filename.ps

SPEX> plot

SPEX> plot close 2

1.9.2 Saving commands

If you want to save all commands that you execute to an ASCII file (filename.com), then type log save filename.
Do not forget to close the file at the end of the session by typing log close save. The saved commands
in the textfile can be executed again by the log exe filename command.

1.10 Quitting the program 7

1.9.3 Saving output

In the same way as in the previous example, you can also save the output on your screen by typing
log out filename (the file will be an ASCII file called filename.out). You can close the file with
log close out. This command is very useful to save your parameters and errors.

1.10 Quitting the program

Just type quit. . .

1.11 Tips & Tricks

• If you make a typo in a command or you want to do the same command again, then push the
arrow-up button on your keyboard. There is an entire history of your commands there.

• The Tab key is able to automatically complete the command you are typing. In case there are more
possibilities, it shows them all.

1.12 References

• The full SPEX manual can be found here:
http://www.sron.nl/files/HEA/SPEX/manuals/manual.pdf

• FTOOLS software package to open and manipulate FITS files:
http://heasarc.nasa.gov/lheasoft/ftools/ftools_menu.html

8 How to run SPEX

Chapter 2

How to run trafo

SPEX uses its own format for spectra and response matrices. The main advantage is that the SPEX
format is more memory efficient than the common OGIP format. This means that SPEX can reach a high
performance level, especially for high-resolution spectra that consume a lot of memory. It is even possible
to rearrange response matrices to reduce the CPU time spent on the convolution of the model spectra
with the instrument response. A slight disadvantage is that your OGIP spectra have to be converted into
SPEX format before SPEX is run. The SPEX package therefore contains a tool to do this conversion:
trafo.

2.1 Input files

Before trafo is started, you need the OGIP spectra and responses first. Please read the documentation
regarding your dataset for more information on how to create OGIP files. The minimum that trafo needs
is a spectrum (.pi or .pha) and a response matrix (.rmf or .rsp). If you want to subtract background
spectra or if you have an additional arf file, then please also collect these files in your working directory.

If applicable, you can use the FTOOL grppha to group the spectra before trafo is run. Note that most
problems with trafo occur when spectra or responses do not exactly conform to the OGIP standard.
There is a large number of OGIP varieties, which makes it difficult to support all OGIP spectra.

2.2 Running the program

The easiest method is to run trafo in the directory where your OGIP files are. It is an interactive program,
so it will ask the user for information when the program is run.

user@linux:~> trafo

Program trafo: transform data to SPEX 2.0 format

This is version 1.02, of trafo

Are your data in OGIP format : type=1

Old (Version 1.10 and below) SPEX format: type=2

10 How to run trafo

The first questions are quite straightforward. In the case of OGIP spectra, the type is always 1. In
principle, it is possible to put more than one spectrum in a spo and res file, but for most simple cases
transforming a single spectrum is sufficient.

Enter the type: 1

Enter the number of spectra you want to transform: 1

Enter the maximum number of response groups per energy per spectrum: 100000

The maximum number of response groups should just be large in nearly all cases, unless there is a special
reason to put a small number here.

2.2.1 Re-arranging the response matrix

The following feature is present in trafo since version 1.02 (SPEX version 2.02). It allows the user
to re-arrange the response matrix to increase speed. There are three options: 1. Keep the matrix as
provided. 2. Try to re-arrange the matrix into contiguous groups. The program tries to identify physically
distinctive components and avoids overlapping data. 3. Split the matrix into N equal-sized components.
This is particularly useful for grating spectra (RGS) and allows for efficient matrix multiplication on
multi-core processors. Any power of 2 between 8 and 32 should provide a fast response matrix. In the
terminal, this option is provided in the following way:

How should the matrix be partioned?

Option 1: keep as provided (1 component, no re-arrangements)

Option 2: rearrange into contiguous groups

Option 3: split into N roughly equal-sized components

Enter your preferred option (1,2,3): 1

Option number 1 is the safest option to choose, but also the slowest. Option 2 and 3 can provide a
significant increase in performance, but results should be carefully checked. More information about
re-arranging response matrices can be found in the SPEX Manual.

2.2.2 Reading the spectra

Then, trafo asks for the filenames of the source and background spectra. First, provide the file name
of the source spectrum. trafo will return some of the basic properties of the spectral file, like exposure
time and values of the most important FITS keywords.

Enter filename spectrum to be read: PN-source.pi

Exposure time (s): 2.10571992E+04

Assuming Poissonian Errors

Areascal: 1.00000000E+00

Backscal: 1.00000000E+00

No BACKFILE keyword found

Corrscal: 1.00000000E+00

No CORRFILE keyword found

No RESPFILE keyword found

No ANCRFILE keyword found

No background specified in pha-file.

A background spectrum can be provided (optional), which will be subtracted from the source spectrum.
If a background file is already specified in the FITS header of the source spectrum, this question will not
be asked.

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: PN-background.pi

Exposure time (s): 2.10572832E+04

Assuming Poissonian Errors

2.2 Running the program 11

Areascal: 1.00000000E+00

Backscal: 1.00000000E+00

No BACKFILE keyword found

Corrscal: 1.00000000E+00

No CORRFILE keyword found

No RESPFILE keyword found

No ANCRFILE keyword found

2.2.3 Bad channels and grouping

Depending on the instrument used, there is a chance that the spectrum contains bad channels. This is
especially true for grating spectra. Sometimes the background spectrum can have a different number of
bad channels than the source spectrum. It is therefore important that a particular bad channel in either
of the two spectra is ignored. In this example, there are no bad channels, so either yes or no will do.

Checking data quality and grouping ...

Ogip files have quality flags. Quality 0 means okay

Your spectrum file has 0 bins with bad quality

Your background file has 0 bins with bad quality

Your combined file has 0 bins with bad quality

Shall we ignore bad channels? (y/n) [no]:y

If grppha has been used on the spectrum, trafo will also ask whether the spectra should be binned
according to the groups defined in the PHA file.

2.2.4 Read response and effective area files

In the next step, the response matrix is read. Sometimes, the response matrices start at channel 0, which
can be somewhat confusing. Especially when some arrays start at channel 0 and others at channel 1. If
both data sets start at zero, it is best to shift the channel numbers with 1 unit. For most instruments this
is fine, however, there are situations when this does not apply. In that case, please check your energy grid
by loading a delta line component in SPEX and check the energy of the line manually. Then, compare
the output with a delta line defined in XSPEC.

Determining background subtracted spectra ...

No response matrix file specified in pha-file.

Enter filename response matrix to be read: PN.rmf

Reading response matrix ...

Warning, ebounds data started at channel 0

Warning, response data started at channel 0

Possible response conflict; check xspec/spex with delta line!

Enter shift to response array (1 recommended, but some cases may be 0):1

No effective area file specified in pha-file.

Sometimes, also an effective area file needs to be provided separately:

Read nevertheless an effective area file? (y/n) [no]: y

Enter filename arf-file to be read: PN.arf

Reading effective area ...

Determining zero response data ...

Total number of channels with zero response: 373

Original number of data channels : 4096

Channels after passing mask and omitting zero response channels: 3723

Rebinning data where necessary ...

Rebinning response where necessary ...

old number of response elements: 435950

12 How to run trafo

new number of response elements: 435950

old number of response groups : 1481

new number of response groups : 1481

Correcting for effective area ...

Determine number of components ...

Found 1 components

Enter any shift in bins (0 recommended): 0

order will not be swapped ...

If there are bins with zero response, then they are excluded from the resulting file. Also here a shift in
bins can be set, but the recommended value is 0.

2.2.5 Writing res and spo files

The final step is writing the spectra in SPEX format. The file names should be provided without an
extension. The .spo and .res extension will be added automatically.

Enter filename spectrum to be saved (without .spo): PN

Enter filename response to be saved (without .res): PN

Final number of response elements: 435950

2.3 Scripting

If one needs to transform a lot of similar spectra, it can be very worthwhile to write a script. The BASH
example below basically fills in the questions of trafo automatically. Of course, one needs to know the
answers beforehand. Every line in the script is connected to one answer in trafo. In this case, we loop
over spectra from different extraction regions, which is common for extended source analysis. But one
can also loop over spectra obtained in different epochs. Here we have three extraction regions with files
named PN_1.pi, PN_2.pi, and PN_3.pi.

#!/bin/bash

Loop over all extraction regions

for region in 1 2 3

do

/opt/bin/trafo << EOF

1

1

100000

1

PN_${region}.pi

y

PN_${region}_background.pi

y

PN_${region}.rmf

1

y

PN_${region}.arf

0

PN_${region}

PN_${region}

EOF

done

2.4 Special situations 13

We assume for the moment that the trafo binary is installed in the /opt/bin directory. Please use the
path to your local SPEX installation here.

2.4 Special situations

Since the OGIP standard is not always strictly followed, trafo may ask additional questions or even
crash with some FITS files. Below there is a small list of questions or errors that you may encounter.

2.4.1 XMM-Newton EPIC MOS spectra

The first bin in EPIC MOS data has a zero bin boundary. Therefore, trafo asks an additional question
after reading the response matrix:

Reading response matrix ...

Lower model bin boundary for bin 1 must be positive; current values: 0.00E+00 5.00E-03

Enter new bin boundary values manually: 3.E-5 5.E-3

Since this is the first bin, which is usally ignored, the values that are put in here are not very important,
as long as the values are contiguous. Here, the lower boundary is raised from 0. to 3.E-5. The value of
3.E-5 is arbitrary, as long as it is non-zero and smaller than 5.E-3.

14 How to run trafo

Chapter 3

Combining RGS spectra using
rgsfluxcombine and rgsfmat

Author: K. C. Steenbrugge (katrien.steenbrugge@gmail.com)
Keywords: RGS spectra – combining – effective area – errors

3.1 Goal

For longer exposure times it quite often happens that the data were obtained over several orbits and
thus separate RGS spectra are produced when reducing the data. The purpose of rgsfluxcombine is
to correctly add the RGS 1 and 2 for both spectral orders of one or multiple observations to obtain
a higher signal-to-noise spectrum. rgsfmat produces the corresponding, but much smaller, response
matrix. This allows for much faster fitting of the spectrum compared to fitting the different RGS spectra
simultaneously. The program avoids creating artificial emission or absorption lines in spectra with varying
emission properties due to the presence of bad pixels. As an option one can correct for the unreliable χ2

values obtained for high signal-to-noise spectra due to the smoothing of the data when the binning on
detector pixels is transferred to the binning in wavelength scale. The program also allows to correct for
the difference between the effective area between RGS 1 and 2 and second order.

3.2 SPEX solution

To combine the fluxed RGS spectra obtained by rgsfluxer of the XMM-Newton SAS software using the
rgsfluxcombine combine program, which is used instead of trafo before running SPEX to fit the data.
The output of rgsfluxcombine is the input for rgsfmat program, which creates the response matrix and
assures the spectrum and response matrix are in the SPEX readable format. For normal bins the exposure
time is used as weights in combining the spectra. However, for bins that have at least in 1 spectrum a
bad pixel or fall in a CCD gap, the weights are determined assuming that the spectral shape across the
bad bin did not change between spectra. rgsfluxcombine uses the neighboring good pixels to determine
the total flux and the flux contribution per spectra, and thus the weights. This avoids creating artificial
emission or absorption features due to a varying flux of the source and the presence of bad pixels. This
procedure does go wrong if the spectral shape between the good neighboring pixels did change between

16 Combining RGS spectra using rgsfluxcombine and rgsfmat

the observations, for instance if the bad pixel is located at a line of varying equivalent width. To be able
to still combine spectra in this case one has the option to ignore all the spectral bins that have a bad
pixel in at least 1 spectrum. This does lead to many spectral bins without data, some of the data gaps
will be close to or at astrophysical important features, limiting the results one can obtain from fitting
the spectra. To optimize the number of bins retained without biasing the results, rgsfluxcombine gives
the option to enter a minimum fractional exposure time that the pixels need to have to be included in
the combined spectrum. Choosing 0 means that all spectral bins will be included, while for a value of 1
only spectral bins for which there is no bad bin in any of the spectra will be included.

rgsfluxcombine gives an option to correct for the differences in the effective area between the first
order RGS1 and RGS2 as well as second order spectra. The assumed correct effective area is the average
effective area. In the same step the program also applies a correction for the smoothing caused by the
slightly different binning between the detector space and wavelength space. This leads to a too low χ2

value for an acceptable fit in high signal-to-noise spectra. To counter this, the error bars are multiplied
0.85. Both these corrections are only noticeable for high signal-to-noise spectra. For a detailed description
of both corrections as well as how the spectra are combined, please see Kaastra et. 2011b.

Using rgsfluxcombine and rgsfmat one does not need to run trafo, however, it is always a good
idea to run trafo on at least the 1st order spectra of the different observations to ensure that the spectra
are similar, to check for variability and that the final spectrum is consistent with expectations from the
individual spectra.

3.2.1 Data preparation

Fluxed RGS spectra are automatically produced by either the rgsproc or xmmextract commands of
the XMM-Newton SAS software. However, to be able to use rgsfluxcombine rgsfluxer must be run
with 3400 bins and with a minimum and maximum wavelength of 5 and 38 Å. One can either alter the
standard input .xml file using odfParamCreator or by rerunning the rgsfluxer command in the SAS
software. Assuming you have already run xmmextract we will show how to rerun rgsfluxer. We assume
you have done the start-up treat for the SAS software and that the spectrum and background spectrum
are called P0655590201R1S004SRSPEC1001.FIT and P0655590201R1S004BGSPEC1001.FIT; and the re-
sponse matrix is P0655590201R1S004RSPMAT1001.FIT. We will call the new file rgs1

−
o1

−
obs1

−
flux.fits.

One can run rgsfluxer with the following command:

rgsfluxer pha=P0655590201R1S004SRSPEC1001.FIT \

bkg=P0655590201R1S004BGSPEC1001.FIT \

rmf=P0655590201R1S004RSPMAT1001.FIT \

file=rgs1_o1_obs1_flux.fits mode=wavelength min=5 max=38 bins=3400

The above command must be done for all the RGS spectra, first and second order that one wants
to combine. Thus if we want to combine RGS1 and RGS2 and 1st and 2nd order for 2 observations,
rgsfluxer needs to be run 8 times.

Another required input for rgsfluxcombine is the exposure times, which can be obtained from the
header named SPECTRUM of the spectrum files using fv. Note that the exposure times for RGS1 and
RGS2 and 2nd orders are different, and that we need the exposure time in seconds and specified up to a
hundredth of a second.

3.2.2 Combining data from the same RGS

rgsfluxcombine has 2 options, both of which you need to use if you want to combine RGS data from
different observations. We will assume that we are combining the RGS spectra for an AGN for 2 different
observations taken in consecutive orbits. We thus do not expect spectral differences across narrow bands
in the spectrum. One first needs to combine the spectra of the same RGS and same order. Thus if we
want to have 1 spectrum containing RGS1 and RGS2 for both orders, we need to run rgsfluxcombine

four times using option 1. This is independent of how many observations one wants to combine. Option
1 requires an ascii file as input which contains on the first line the number of spectra to be combined, i.e.
the number of different observations you want to combine. Then there should be a line per observation

3.2 SPEX solution 17

containing the exposure time using the F9.2 format a space and the filename. In our example the filenames
are rgs1

−
o1

−
obs1

−
flux.fits and rgs1

−
o1

−
obs2

−
flux.fits, so the file, which we will call com

−
rgs1

−
o1.txt,

should look like:

2

084081.36 rgs1_o1_obs1_flux.fits

053751.80 rgs1_o1_obs2_flux.fits

Note that due to the required format both exposure times start with 0. With this we are ready to
run rgsfluxcombine by typing at the prompt rgsfluxcombine. As we are combining spectra from the
same instrument and order, we chose option 1. Because we know that the spectral shape across bad bins
did not vary between the different observations, we use a minimal exposure time of 0. Finally, we decide
to do the effective area correction and correct the error bars, specify that we are combining the 1st order
RGS1 data and name the new file rgs1

−
o1.fits.

Welcome to rgs_fluxcombine. This program has two basic options:

Option 1: combine fluxed RGS spectra from the same RGS and spectral order

Option 2: combine fluxed RGS spectra from different RGS and/or spectral orders

For this option, there is a maximum of 1 spectrum for each combination.

If you have multiple data, first combine them for the same RGS & order

using this program with option 1, then rerun with option 2.

Enter your option (1/2): 1

You should provide an ascii file containing the following info:

First line: number of spectra that must be combined

Next lines: for each observation, a line with the following info:

Exposure time (s) and file name (outpur of SAS task RGSFLUXER

This MUST have format (F9.2,1X,A) (xxxxxx.xx aaaaaaa....)

It is REQUIRED that you have run RGSFLUXER with 3400 bins from 5-38 Ang

This also holds for second order spectra!

Now give filename: com_rgs1_o1.txt

VERY IMPORTANT: if the spectral SHAPE varies, there is NO guarantee

that data bins with incomplete exposure are accounted for properly.

Therefore, you can enter a minimum exposure fraction. If you put

this to 1, you will have no bias but may miss important lines.

If you put this to 0, you have most lines but are in trouble if these

are variable in equivalent width

Now give mininum exposure (0-1): 0

Total exposure time is: 137832.80 s

You can apply some preliminary RELATIVE effective area corrections, that bring the

individual spectra of RGS1 versus 2 and/or order 1 versus order 2 in better

agreement. Results are not yet perfect, but it helps in several situations.

You also can apply a NOMINAL correction to the error bars, to compensate the

smoothing effect of the binning procedures applied within SAS.

Do you want to apply these corrections? (y/n): y

Now effective area corrections; enter RGS (1/2) and order (1/2): 1 1

Enter file name combined fluxed spectrum: rgs1_o1.fits

Please note down the total exposure time as we will need it in the final step with rgsfluxcombine

using option 2. As we want to combine the RGS1 and RGS2 and 1st and 2nd order, we need to repeat
the above steps three more times, but with a different ascii input file, the name of the output file, and
changing the input for RGS (1/2) and order (1/2) accordingly.

18 Combining RGS spectra using rgsfluxcombine and rgsfmat

3.2.3 Combining different instruments

Once we have run the rgsfluxcombine for the different RGSs and orders, we need to rerun rgsfluxcombine,
but now with option 2. This is also the option needed if you want to combine the data from the different
instruments and orders for one observation. Before we run rgsfluxcombine we need to create another
ascii file. This file should contain on the first line the number of spectra to be combined: 4, because we
want to combine both orders and both RGSs. The next 4 lines should contain the number of the RGS, of
the order, exposure time (same format as before) and filename, which is the filenames given during the
runs of rgsfluxcombine with option 1. An example is com.txt:

4

1 1 137832.80 rgs1_o1.fits

2 1 138045.20 rgs2_o1.fits

1 2 137833.16 rgs1_o2.fits

2 2 138045.20 rgs2_o2.fits

We then run rgsfluxcombine. As we are combining different RGSs and orders, there should be no
spectral variability between the spectra to be combined, and thus we chose again a minimum fractional
exposure time of 0.

Welcome to rgs_fluxcombine. This program has two basic options:

Option 1: combine fluxed RGS spectra from the same RGS and spectral order

Option 2: combine fluxed RGS spectra from different RGS and/or spectral orders

For this option, there is a maximum of 1 spectrum for each combination.

If you have multiple data, first combine them for the same RGS & order

using this program with option 1, then rerun with option 2.

Enter your option (1/2): 2

You should provide an ascii file containing the following info:

First line: number of spectra that must be combined

Next lines: for each observation, a line with the following info:

RGS nr (1/2), spectral order (1/2), exposure time (s) and file name

(output of SAS task RGSFLUXER)

This MUST have format (I1,1X,I1,1X,F9.2,1X,A) (xxxxxx.xx aaaaaaa....)

It is REQUIRED that you have run RGSFLUXER with 3400 bins from 5-38 Ang

This also holds for second order spectra!

Now give filename: com.txt

You can enter a minimum exposure fraction. If you put

this to 1, you will have full exposure but may miss important lines.

If you put this to 0, you have the maximum number of lines but

you may have poor statistics

Now give mininum exposure (0-1): 0

Enter file name combined fluxed spectrum: mrk359_rgs.fits

We now have the combined spectrum which includes the RGS data of 2 observations, the 2 RGS instru-
ments and both orders. We need to create an appropriate response matrix and convert the mrk359

−
rgs.fits

file into a .spo file that SPEX can read in.

3.2.4 Creating the response matrix

To create the response matrix and convert the combined RGS spectrum into SPEX readable format, we
run the rgsfmat program:

3.3 References 19

Enter file name fluxed spectrum: mrk359_rgs.fits

Enter file name output spectrum (with .spo): mrk359_rgs.spo

Enter file name output response (with .res): mrk359_rgs.res

Final number of response elements: 1008432

We have now the necessary files to analyze the combined spectrum in SPEX. For a description of the
different models, please see the other chapters in this cookbook.

3.3 References

Kaastra, J. S., de Vries, C. P., Steenbrugge, K. C. et al., 2011b, A&A, 534, 37

20 Combining RGS spectra using rgsfluxcombine and rgsfmat

Chapter 4

Modeling absorption spectra

Author: C. Pinto (c.pinto@sron.nl)
Keywords: Absorption spectra – Point-like sources – RGS spectroscopy

4.1 Goal

The light coming from astronomical sources suffers from several absorption mechanisms before arriving
to the Earth and being measured. The absorption could occur in regions near the source, for example, the
emission of the central engine inside the active galactic nuclei is partially obscured by gas and dust found
around the accretion disk of the AGN, just as the light emitted by the central regions of a supernova can
be absorbed by the matter found in the expanding shell. However, the most common origin of absorption
in the spectra of the astronomical sources is the interstellar medium of our Galaxy (ISM). The ISM is
a mixture of multi-phase gas, molecules and dust, it is highly inhomogeneous and has to be carefully
analyzed. In this chapter, we show a general method to carefully model absorption due to the ISM using
the SPEX package.

4.2 SPEX solution

A typical difficulty in the analysis of the X-ray spectra is to distinguish among the several environments
which act as absorber: the Galactic gas has usually low velocity dispersion and zero-shift lines, while
expanding shells give rise to broad blue-shifted lines. Of course, the things can be much more complicated.
The absorption components in SPEX provide a solution to most of the problems in this field.

4.2.1 Running trafo

We start from two first order RGS spectra (RGS1 and RGS2) of the low-mass X-ray binary (LMXB)
GS 1826-24 extracted according the standard procedure of the XMM-Newton SAS Guide. We separately
convert the spectra in the SPEX 2.0 format through trafo. Here we show the trafo run for the first
order of RGS1. The run for the first order of RGS2 is performed in the same way.

Program trafo: transform data to SPEX 2.0 format

This is version 1.02 of trafo

22 Modeling absorption spectra

Are your data in OGIP format : type=1

Old (Version 1.10 and below) SPEX format: type=2

Enter the type: 1

Enter the number of spectra you want to transform: 1

Enter the maximum number of response groups per energy per spectrum: 10000

How should the matrix be partioned?

Option 1: keep as provided (1 component, no re-arrangements)

Option 2: rearrange into contiguous groups

Option 3: split into N roughly equal-sized components

Enter your preferred option (1,2,3): 3

Enter number of components N (preferably a power of 2, between 8 and 32): 16

Enter filename spectrum to be read: P0150390301R1S004SRSPEC1001.FIT

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: P0150390301R1S004BGSPEC1001.FIT

Shall we ignore bad channels? (y/n) [no]: n

Enter filename response matrix to be read: P0150390301R1S004RSPMAT1001.FIT

Read nevertheless an effective area file? (y/n) [no]: n

Enter any shift in bins (0 recommended): 0

Save the spectrum by providing convenient names for the res and spo les.

Enter filename spectrum to be saved: rgs1_order1.spo

Enter filename response to be saved: rgs1_order1.res

4.2.2 Running SPEX

Once we have converted the spectra and created .res and .spo files, we can load both spectra and response
matrices in SPEX and plot the data in Ångstrom units. We skip the plotting commands and refer to
Chapter 1 for the SPEX overview.

SPEX> data rgs1_order1 rgs1_order1

SPEX> data rgs2_order1 rgs2_order1

We restrict the spectral fit to the region where the effective area is large and the source is brighter
than the background, which in our case is between 7-31 Å. We also rebin the data by a factor of 2, i.e.
about 1/3 of the FWHM, because this is the suitable binning factor for most detectors. We also remove
the regions where the detector chips are out of order:

SPEX> ign inst 1:2 0:7 u a

SPEX> ign inst 1:2 31:40 u a

SPEX> ign inst 1 10.5:14 unit an

SPEX> ign inst 2 19.95:24.05 unit an

SPEX> bin inst 1:2 7:31 2 u an

4.2.3 The cold gas

First of all, we model the ISM with simple neutral gas. For this purpose, we use the hot component
in SPEX, which describes the transmission through a layer of a collisionally ionized plasma. At low
temperature this model mimics very well the neutral gas of the ISM. The continuum emission of the X-
ray binary is usually fitted by a combination of a black body (bb model in SPEX) plus a comptonization
component (comt model). The former comes from the LMXB accretion disk and the latter represents
the emission of the accretion disk corona. At the end we relate both the emission components to the
absorber:

SPEX> com hot

SPEX> com bb

SPEX> com comt

SPEX> com rel 2:3 1

4.2 SPEX solution 23

We temporarily remove two small regions near the Fe L-edge and O K-edge: 17.2-17.7 Å and 22.5-
23.2 Å, respectively. Indeed, these regions are affected by fine structure features due to dust grains and
molecules, therefore they can not be fitted with a pure-gas model. For further analysis see §4.2.5.

SPEX> ign inst 1:2 22.5:23.2 u a

SPEX> ign inst 1:2 17.2:17.7 u a

From the literature we know that the hydrogen column density of the source is within 2−5×1025 m−2,
thus for the hot component we choose the following starting values: NH = 4 × 1025 m−2 and t =
5 × 10−4 keV, which is the minimum temperature in SPEX. The velocity dispersion is frozen to 1 km
s−1, which is typical of the cold gas in the ISM. We also choose as reference the abundances suggested by
Lodders (2003), which are suitable for the ISM. The temperature of both the bb and comt components
(seed photon temperature for the latter) are put to 0.1 keV. The electron temperature of the comt model
is set to 20 keV and its optical depth to 1, because these are standard values for the LMXB.

SPEX> par 1 1 nh v 4e-3

SPEX> par 1 1 t v 5e-4

SPEX> par 1 1 v v 1

SPEX> abun lodd

SPEX> par 1 2 n v 1

SPEX> par 1 2 t v 0.1

SPEX> par 1 3 n v 4000

SPEX> par 1 3 t0 v 0.1

SPEX> par 1 3 t1 v 20

SPEX> par 1 3 tau v 1

We fit the spectra with the suggested values for the parameters and obtain a reasonable fit with
χ2 ∼ 1.6. The high resolution of the spectra enables us to fit the elemental abundances, thus we leave
the abundances of O, Ne, Mg and Fe in the hot component free, because their absorption edges fall inside
the RGS energy band. The spectral fits are plotted in Figure 4.1. We also display the ignored regions
for clarity purposes.

SPEX> par 1 1 08 s t

SPEX> par 1 1 10 s t

SPEX> par 1 1 12 s t

SPEX> par 1 1 26 s t

There are large residuals near the regions where we expect dust effects, as well as near 23.35 Å and
21.6 Å. Here we could expect the O II and O VII absorption lines due to the warm and hot ionized gas.
These two plasmas represent the partially and fully ionized phases of the gas in the ISM and should be
analyzed separately.

4.2.4 The warm-hot gas

To search for warm gas, we make a fit to the spectra adding columns of O II and Ne II into our model
through a slab component. The slab model calculates the transmission of a layer of plasma with arbitrary
composition. Free parameters are the intrinsic velocity dispersion and the column densities of the indi-
vidual ions. Both O II and Ne II are first set to 1× 1020 m−2, because the ionized gas usually contributes
to 1-10% of the total column density. The velocity dispersion of the slab component is set to a nominal
value of 50 km s−1 and should be a free parameter in the fit, but this is not necessary being the ISM
lines unresolved. Each time an emission or absorption component is introduced, every component has to
be related to the other once again.

24 Modeling absorption spectra

Figure 4.1: RGS spectral fit for the LMXB. The model used is the simple one: hot * (bb + comt). The ISM is
approximated by neutral gas.

SPEX> com slab

SPEX> com rel 2:3 1,4

SPEX> par 1 4 v v 50

SPEX> par 1 4 o2 v 20

SPEX> par 1 4 ne02 v 20

The fit will confirm the presence of the warm gas providing interesting values for the O II and Ne
II column densities. Then we can test the presence of hot ionized gas by fitting the O VII and Ne
IX absorption lines. Thus we add an additional slab component with a higher velocity dispersion, for
example 150 km s−1. We leave as free parameters the column densities of O VII and Ne IX and choose a
starting value of 1× 1020 m−2 for both them.

SPEX> com slab

SPEX> com rel 2:3 1,4,5

SPEX> par 1 5 v v 150

SPEX> par 1 5 o7 v 20

SPEX> par 1 5 ne09 v 20

If we would deal with more physical models and obtain more information about the warm and hot
phases of the gas, we can substitute the two slab components with two respective hot components. The
hot components concerning the warm and hot gas should have column densities of about 1 and 2 orders
of magnitude lower than the cold gas, respectively. The temperatures of the warm and hot gas should be
around 1 and 2 orders of magnitude higher than the temperature of the cold gas. The 3-hot model gives
results equivalent to the previously used 1-hot + 2-slab model.

4.2.5 Dust and Molecules

In §4.2.3 we have temporarily ignored the spectral regions between 22.5-23.2 Å and 17.2-17.7 Å, because
they suffer from dust and molecular effects. Indeed, Figure 4.1 shows that the pure-gas model can not
reproduce the features seen in these regions. Now, to solve the problem, we introduce two additional
components in SPEX: dabs and amol. The dabs model accounts for the shielding of X-ray photons by

4.2 SPEX solution 25

Figure 4.2: Best fit model to our absorption spectrum. We focus on the spectral region spreading between the Fe
L-edge and the O K-edge. The model used is the complete (3-hot + dabs + amol)*(bb + comt) model, that takes
into account absorption from both gas, dust and molecules.

dust grains, but uses the edge structure for the atomic gas. The amol model takes into account the
modified edge structure around the O K-edge using measured cross sections of various compounds. We
use the amol model to accounts for the oxygen solid phase, because in that case the shielding effect is
weaker than the fine structure effects. Then we remove any contribution to the oxygen column from the
dabs model by setting its respective abundance (i.e. depletion factor) equal to zero. The other parameters
in the dabs model, such as the Fe and Mg abundances, are left as default. We also choose, as starting
values, column densities of 7 × 1025 m−2 for the dabs component and 7 × 1021 m−2 for the amol. As
oxygen compound we test the amorphous water ice, which refers to molecular index number 7 in the
amol model:

SPEX> com dabs

SPEX> com amol

SPEX> com rel 2:3 1,4,5,6,7

SPEX> par 1 6 nh v 7e-3

SPEX> par 1 6 08 v 0

SPEX> par 1 7 no v 7e-7

SPEX> par 1 7 imol v 7

In Figure 4.2 we show the final result of the complete model in the spectral region that spread between
the iron and oxygen edges. The complete model we have finally built takes into account all the main
phases in the ISM that contribute to the absorption in the X-ray energy band. The cold gas gives the
strongest contribution to the absorption and it is easy to be analyzed, while the warm and hot phases are
not constrained at all. Dust and molecular features are more difficult to reproduce, especially because
at the moment there are not complete models to account for all kinds of effects. Dabs model takes care
only of the shielding effect by dust grains and works well with Fe edge. Amol model is currently good to
fit the molecular effects inside the oxygen edge. Therefore both models are to be used carefully.

26 Modeling absorption spectra

Chapter 5

Fitting RGS spectra of a group of
galaxies

Author: Y. Grange (y.g.grange@sron.nl)
Keywords: Extended sources – RGS spectroscopy

5.1 Goal

XMM-Newton RGS spectra of extended sources usually show lines that have been broadened due to the
design of this grating instrument. In this example, we show how SPEX can account for this effect using
spectra from a group of galaxies. RGS operates without a slit. This means that all photons from within
the field of view end up in the final spectrum, but not necessarily at the right wavelength. Only photons
which are emitted in the centre of the group end up at the dispersion coordinate which corresponds to the
correct wavelength. If the photon originates from the outskirts at an angle θ (projected on the dispersion
axis) from the cluster centre, then the instrument will register it at a different dispersion coordinate and
assign a wavelength to it which is shifted with respect to the true wavelength. Because of this effect, the
line-emission appears to be broadened depending on the spatial extent of the source along the dispersion
direction. This effect is illustrated in Figure 5.1.

To fit the spectra of these objects, this broadening needs to be taken care of by the fitted model.
Since the broadening depends on the structure of the source emission, observations of the same source
taken under different pointing angles (or: roll angles) do yield different broadening of the spectral lines.
The XMM-Newton Users Handbook gives the equation for the broadening of a line in wavelength due to
the spatial extent of the source. The equation is

∆λ = 0.138∆θ/m. (5.1)

Here, ∆θ is the angular distance in arc minutes and m is the order of the spectrum. The wavelength
shift, ∆λ, is in Ångstrom.

In this example, we show how to model this broadening and how to simultaneously fit multiple
observations with multiple position angles of the telescope. For this example, we will read in three
different observations of the same source, of which two have the same roll angle and the third one having
a different one. The goal of this example is to show a general method to deal with these kind of problems

28 Fitting RGS spectra of a group of galaxies

Figure 5.1: EPIC image of NGC 5813 along the RGS extraction region. The plot shows the intensity versus
detector coordinates. The bottom X-axis shows this coordinate converted to wavelength broadening. The diamond
shape indicates the position at which the zero point of the RGS wavelength scale is taken.

in SPEX. There may be better methods available for your specific case. Also the choice of models may
need to be different in other cases.

5.2 SPEX solution

We actually have to solve two problems here. The first one is to model the line broadening of an extended
source. The second problem to solve is that we want to simultanously fit two observations for which the
line broadening differs. The first problem can be solved by using a model for the line broadening. In
SPEX, this is taken care of by using the lpro model.

The input of the lpro model is an ascii file with the cumulative intensity profile of the source over the
RGS band. For this we make an image of the MOS1 detector in the region |DETX − SRCX| < 600.
Here DETX is the X detector coordinate and SRCX is the X detector coordinate of the source. From
this we make a histogram (i.e. an intensity profile along the DETY coordinate). This histogram should
then be centered around the peak value and converted to wavelength broadening, using Eq. 5.1. From
this data, we make a normalised cumulative profile (see fig. 5.2) and save it in an ascii file. We will later
refer to this as the vprof-file.

To fit the data, we need to make a cumulative profile for each different roll angle whenever the source
is not perfectly rotationally symmetric. In the case of clusters and groups of galaxies, such a symmetry
is mostly not present. To simultanously fit the data obtained under diffferent roll angles, we use sectors
in SPEX. Sectors are essentially model groups representing different areas or different components on
the sky. In this case, we will create two sectors: one for each roll angle. The physical model will be
simultanously fitted to the data sets, using a different vprof-file for each.

5.2 SPEX solution 29

Figure 5.2: Plot of the normalised cumulative profile of the example observation.

5.2.1 Running trafo

In this trafo run, we will distribute the three spectra over the two sectors. Here we use the RGS, using
95% of the pulse height and excluding 95% in the background region. The background used for the fits
is the RGS model background as produced by the standard RGS pipeline. After starting trafo we have
to tell it that we want to transform three spectra in two sectors:

Program trafo: transform data to SPEX 2.0 format

This is version 1.01 of trafo

Are your data in OGIP format : type=1

Old (Version 1.10 and below) SPEX format: type=2

Enter the type: 1

Enter the number of spectra you want to transform: 3

Enter the maximum number of response groups per energy per spectrum: 1000000

Enter the number of sectors you want to create: 2

The region number respresents the spectral data that we will fit. Because we have three different data
sets, we will have to point each data set to a different region.

First, we enter the spectra for the first sector. We only show the most relevant input/output lines
here.

Enter the sector and region number: 1 1

How should the matrix be partioned?

30 Fitting RGS spectra of a group of galaxies

Option 1: keep as provided (1 component, no re-arrangements)

Option 2: rearrange into contiguous groups

Option 3: split into N roughly equal-sized components

Enter your preferred option (1,2,3): 3

Enter number of components N (preferably a power of 2, between 8 and 32): 16

Enter filename spectrum to be read: P0554680301R1S004SRSPEC1003.FIT

Read nevertheless a background file? (y/n) [no]: yes

Enter filename background spectrum to be read: P0554680301R1S004MBSPEC1000.FIT

Enter filename response matrix to be read: P0554680301R1S004RSPMAT1003.FIT

Read nevertheless an effective area file? (y/n) [no]: no

The first spectrum is now read in. We will now read in another spectrum, which is from data taken
under the same roll angle. This data should therefore reside in the same sector, but in a different region.

Enter the sector and region number: 1 2

Enter filename spectrum to be read: P0554680201R1S004SRSPEC1003.FIT

Read nevertheless a background file? (y/n) [no]: yes

Enter filename background spectrum to be read: P0554680201R1S004MBSPEC1000.FIT

Enter filename response matrix to be read: P0554680201R1S004RSPMAT1003.FIT

Read nevertheless an effective area file? (y/n) [no]: no

Now we will add the observation that was taken using a different roll angle. The data of this observation
should be put into a new region. Like for the other data sets, this data set will also be placed in a region
of its own.

Enter the sector and region number: 2 3

Enter filename spectrum to be read: P0302460101R1S004SRSPEC1003.FIT

Read nevertheless a background file? (y/n) [no]: yes

Enter filename background spectrum to be read: P0302460101R1S004MBSPEC1000.FIT

Enter filename response matrix to be read: P0302460101R1S004RSPMAT1003.FIT

Read nevertheless an effective area file? (y/n) [no]: no

Save the spectrum by providing convenient names for the res and spo files.

Enter filename spectrum to be saved (without .spo): all_R1

Enter filename response to be saved (without .res): all_R1

5.2.2 Running SPEX

If the res and spo files are created, we are ready to run spex. In this description, we skip some very basic
commands about, for example, plotting. See Chapter 1 for an overview of a basic SPEX session. First,
we load the spectrum and plot it:

Welcome user to SPEX version 2.02.01

SPEX> data all_R1 all_R1

...

SPEX> plot

Figure 5.3 shows a plot of the spectrum. For presentation purposes we rebin the spectrum here with
a factor of 8 with the bin command. If C-statistics are used, binning is not strictly necessary. We will
ignore some data at the low and high ends of the wavelength space. The spectrum, as presented by SPEX
is shown in Figure 5.3.

Now we will set the model for both sectors. First we create a new sector, then we put in the model
components.

5.2 SPEX solution 31

Figure 5.3: The three RGS spectra without any fit. The crosses represent the data points, the histogram represents
the model backgrounds.

SPEX> sector new

There are 2 sectors

SPEX> com reds

SPEX> com hot

SPEX> com cie

SPEX> com lpro

Note that for each component, SPEX will tell you twice that you created this component (you created
it for two sectors). In this model, we use a cosmological redshift, interstellar absorption, and a single-
temperature model to describe the group emission. We plug in and fix the group redshift and hydrogen
column density. We put the temperature of the hot model to its minimum (fixed). We also put in the re-
lation between the different components in the same order as they affect the measured data. Furthermore
we couple all parameters of all physical models, which we assume to be the same.

SPEX> distance 0.0064 z

SPEX> par 1 1 z v 0.0064

SPEX> par 1 2 n v 4.37e-4

SPEX> par 1 2 t v 5e-4

SPEX> par 1 2 n:t status f

SPEX> comp relation 3 1,2,4

SPEX> par 2 1 z:fl couple 1 1 z:fl

SPEX> par 2 2:3 n:file couple 1 2:3 n:file

Finally, we need to link the lpro models to the two vprof-files. This is done using

SPEX> par 1 4 file av 301.vprof.dat

SPEX> par 2 4 file av 101.vprof.dat

We use the same vprof-files for both observation under the same roll angle. The lpro model also contains
two parameters which account for the fact that the emission peak used for the line bradening might be

32 Fitting RGS spectra of a group of galaxies

slightly off. These parameters can also be let free to fit. Parameter s represents a scale factor for the
width of the line broadening and dlam represents a shift in wavelength space.

SPEX> par 1:2 4 s status t

SPEX> par 1:2 4 dlam status t

Because we are fitting different RGS observations in different epochs, we should also leave the instrument
normalisations (except for 1) thawn for the final fit.

SPEX> par -2:-1 1:3 n status t

SPEX> par -1 1 n status f

In Figure 5.4, the best fit using this method is compared to the same model without the line broadening
model.

Figure 5.4: Fit to the example data without (left) and with (right) the use of a line broadening model. The fits
are shown around the O VIII Lyα line at 18.98 Å.

Chapter 6

Sectors in AGN spectroscopy

Author: J. Ebrero (j.ebrero.carrero@sron.nl)
Keywords: Sectors – Active Galactic Nuclei – High-resolution spectroscopy

6.1 Goal

It is common to find in spectroscopy of active galactic nuclei (AGN, hereafter) several observations of
the same source, or even different observations of different sources for which the observer would like
to simultaneously fit to the same model (or different models) or couple certain parameters between
observations. In this chapter we show how to create different sectors in SPEX and how to define and
manipulate parameters in the particular case of an AGN. As in the majority of cases in this cookbook,
this one is intended to be a general example on how to work with sectors in the context of SPEX. Note
that, in general, the models used in other cases will be different from the ones used in this example.

6.2 Creating sectors

6.2.1 Introduction

In this example we will see how to analyze simultaneously three XMM-Newton RGS observations of an
AGN using SPEX. The advantage of the following procedure is that the same physical model can be
applied to all of the observations of the source, although they can be generally different, and that we
could manipulate common parameters simultaneously and even couple them during an spectral fit. This
can be easily done by using sectors, which represent different areas or components on the sky. Sectors
must not be mistaken with detector regions that do not necessarily coincide with the sectors.

In the context of this particular example we will create 3 sectors (one for each observation of the
AGN) and 6 regions (RGS1 and RGS2 for each observation). This is firstly done by running trafo.

6.2.2 Running trafo

In this trafo run we will actually create two single spectrum and response files that will be loaded by
SPEX afterwards. The spectrum (and the response) file will contain the information of the different
sectors and regions.

34 Sectors in AGN spectroscopy

After starting trafo we tell the program that we want to transform six spectra in three sectors (that
is, we will create a sector for each observation and the RGS1 and RGS2 spectrum of each of them will
be stored together in the same sector):

Program trafo: transform data to SPEX 2.0 format

This is version 1.01 of trafo

Are your data in OGIP format : type=1

Old (Version 1.10 and below) SPEX format: type=2

Enter the type: 1

Enter the number of spectra you want to transform: 6

Enter the maximum number of response groups per energy per spectrum: 1000000

Enter the number of sectors you want to create: 3

Note that it could be perfectly possible to create a single sector for each RGS spectrum but we decided
to place both RGS spectra in their respective observation sector to increase the signal-to-noise ratio while
fitting. Any other combination of spectra and sectors are also possible depending on the scientific interests
of the user.

Now the program will ask for the sector and region number that will be assigned to the first spectrum.
We will have to provide the spectrum file name as well as the background and the response matrix files:

Enter the sector and region number: 1 1

Enter filename spectrum to be read: obs1_R1_spec.FIT

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: obs1_R1_bkg.FIT

Enter filename response matrix to be read: obs1_R1_rsp.FIT

Read nevertheless an effective area file? (y/n) [no]: n

The first spectrum is read in and now we proceed to the second one, which will be the RGS2 spectrum
of the first observation. Therefore, we will assign the first sector and the second region (as it is a different
detector region) to this spectrum:

Enter the sector and region number: 1 2

Enter filename spectrum to be read: obs1_R2_spec.FIT

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: obs1_R2_bkg.FIT

Enter filename response matrix to be read: obs1_R2_rsp.FIT

Read nevertheless an effective area file? (y/n) [no]: n

We now proceed to read in the spectra of the second observation in the second sector:

Enter the sector and region number: 2 3

Enter filename spectrum to be read: obs2_R1_spec.FIT

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: obs2_R1_bkg.FIT

Enter filename response matrix to be read: obs2_R1_rsp.FIT

Read nevertheless an effective area file? (y/n) [no]: n

Enter the sector and region number: 2 4

Enter filename spectrum to be read: obs2_R2_spec.FIT

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: obs2_R2_bkg.FIT

Enter filename response matrix to be read: obs2_R2_rsp.FIT

Read nevertheless an effective area file? (y/n) [no]: n

And we finish with the spectra of the third observation:

6.2 Creating sectors 35

Figure 6.1: Best fit to a single power law.

Enter the sector and region number: 3 5

Enter filename spectrum to be read: obs3_R1_spec.FIT

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: obs3_R1_bkg.FIT

Enter filename response matrix to be read: obs3_R1_rsp.FIT

Read nevertheless an effective area file? (y/n) [no]: n

Enter the sector and region number: 3 6

Enter filename spectrum to be read: obs3_R2_spec.FIT

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: obs3_R2_bkg.FIT

Enter filename response matrix to be read: obs3_R2_rsp.FIT

Read nevertheless an effective area file? (y/n) [no]: n

After all of the spectra have been read in, we now save the spectrum by providing convenient names
for the res and spo files that will be provided to SPEX:

Enter filename spectrum to be saved: AGN.spo

Enter filename response to be saved: AGN.res

36 Sectors in AGN spectroscopy

6.3 Running SPEX

Once the res and spo files have been created we will proceed to run spex. As in the rest of this cookbook
we will skip some basic commands, such as plotting commands, that might be found either in Chapter 1
or in the SPEX manual.

First of all we launch SPEX and load the spectrum. Since we have created 3 different sectors in the
previous trafo run we must tell SPEX to do the same. Loading the spectrum creates one sector by
default so we have to create two more:

Welcome user to SPEX version 2.01.05

SPEX> data AGN AGN

SPEX> sector new

There are 2 sectors

SPEX> sector new

There are 3 sectors

We now rebin the spectrum for presentation purposes. Note that if C-statistics are used no binning is
strictly necessary. However, it is customary to rebin by a factor of at least 3 in order to avoid oversampling
of the spectrum. Furthermore, we will ignore those parts of the spectrum below 7 Å and above 36 Å,
where the signal-to-noise ratio is too low. In general the user may need to re-define the good part of the
spectrum depending on the quality of the data and the specific purposes of the observation.

SPEX> ig 1.e-4:7 u a

SPEX> ig 36:1.e4 u a

SPEX> bin 7:36 3 u a

Now, we set up the distance the source is at, and the basic shape of the continuum which is a redshifted
power-law. We can just load the components but note that we must explicitly say that we want them
to be loaded in all three sectors; otherwise, the components would be loaded only in sector 1. We also
specify an initial guess for the normalization and slope of the power-law:

SPEX> dist 0.0305 z

SPEX> com red

SPEX> par 1:3 1 z v 0.0305

SPEX> com po

SPEX> com rel 2 1

SPEX> par 1:3 2 n v 2.e8

SPEX> par 1:3 2 ga v 2.

We may want to see what happens if we fit the spectrum now. To do that we set C-statistics and the
verbosity of the fit:

SPEX> fit method cstat

SPEX> fit print 1

SPEX> cal

SPEX> fit

After the last command the redshifted power-law is fitted simultaneously in all three sectors and the
results for each observation will be displayed on the screen. In Figure 6.1 we also see that the spectrum
is not correctly fitting several absorption features. In the particular case of this source, we know from
the literature that some of the absorption lines are caused locally in our own Galaxy and can be modeled
by two hot components:

SPEX> com hot

SPEX> com rel 2 1,3

6.3 Running SPEX 37

Figure 6.2: Best fit to a single power law plus two hot and one xabs components.

SPEX> par 1:3 3 t v 5.e-4

SPEX> par 1:3 3 nh v 1.41e-4

SPEX> par 1:3 3 t s f

SPEX> par 1:3 3 nh s f

SPEX> com hot

SPEX> com rel 2 1,3,4

SPEX> par 1:3 4 t v 7.e-3

SPEX> par 1:3 4 nh v 1.92e-5

SPEX> par 1:3 4 t s f

SPEX> par 1:3 4 nh s f

SPEX> cal

SPEX> fit

After the last sequence of commands we have added two hot components. Since the values for the
temperature and the column density are known from the literature we have frozen these parameters so
that we do not have unnecessary free parameters.

We will fit the rest of absorption features using the photoionised absorption model xabs. This com-
ponent requires an ascii-file as input with pre-calculated ionic column densities versus the ionisation
parameter. If not provided, xabs will use a default list but be aware that in this case the model could
fail to provide an acceptable fit (see SPEX manual). In this example we have used an ascii-file obtained
after a Cloudy run with the spectral energy distribution of Mrk 279:

38 Sectors in AGN spectroscopy

Figure 6.3: Best fit to a single power law plus two hot and two xabs components.

SPEX> com xabs

SPEX> com rel 2 5,1,3,4

SPEX> par 1 5 xi v 0.5

SPEX> par 1 5 nh 7.e-5

SPEX> par 1 5 zv v -50.

SPEX> par 1 5 zv s t

SPEX> par 1 5 v v 50.

SPEX> par 5 col avalue crespex_mrk279.dat

We may choose to fit the model in each observation (sector) independently. However, in this particular
case we will couple the parameters of the xabs model of the sectors 2 and 3 to those of sector 1 that we
have defined in the sequence of commands shown above. We have assigned initial values to the ionisation
parameter xi, the column density nh, and the outflow velocity zv. The latter is frozen by default but we
have decided to thawn it. The root mean square velocity of the lines v is also frozen and taken from the
literature. Coupling parameters between sectors is easy:

SPEX> par 2:3 5 v v 50.

SPEX> par 2:3 5 zv s t

SPEX> par 2:3 5 nh couple 1 5 nh

SPEX> par 2:3 5 xi couple 1 5 xi

SPEX> par 2:3 5 zv couple 1 5 zv

6.3 Running SPEX 39

Figure 6.4: Detail of the spectrum in the Oviii area. The dashed line is the best fit model using only xabs

component, while the solid line corresponds to the fit with two xabs components.

SPEX> cal

SPEX> fit

The fit has improved but it is not good yet (see Figure 6.2). Some of the lines are not well fitted,
which might be a hint that perhaps and additional high-ionisation component is needed. Therefore, we
add an extra xabs model:

SPEX> com xabs

SPEX> com rel 2 6,5,1,3,4

SPEX> par 1 6 xi v 2.5

SPEX> par 1 6 nh 4.e-4

SPEX> par 1 6 zv v -350.

SPEX> par 1:3 6 zv s t

SPEX> par 1:3 6 v v 50.

SPEX> par 6 col avalue crespex_mrk279.dat

SPEX> par 2:3 6 xi couple 1 6 xi

SPEX> par 2:3 6 nh couple 1 6 nh

SPEX> par 2:3 6 zv couple 1 6 zv

SPEX> cal

SPEX> fit

After adding the second xabs component the fit has greatly improved (see Figure 6.3); the most
relevant absorption features are now correctly fitted (see Figure 6.4). However, it is still obvious that

40 Sectors in AGN spectroscopy

Figure 6.5: Best fit to a single power law with a modified black body plus two hot and two xabs components.

we are missing an excess at softer X-rays, frequently found in AGN spectra, that is usually modeled as
a black body. Here we will use a black body spectrum modified by coherent Compton scattering (mbb
model):

SPEX> com mbb

SPEX> com rel 7 6,5,1,3,4

SPEX> par 1:3 7 n v 7.e6

SPEX> par 1:3 7 t v 0.14

SPEX> cal

SPEX> fit

The last sequence of commands add the mbb component to all three components with the same initial
guess for the normalization and temperature of the black body.

Chapter 7

High-energy exponential cut-off
power-law in SPEX

Author: M. Mehdipour (M.Mehdipour@sron.nl)
Keywords: Active Galactic Nuclei – High-resolution spectroscopy

The etau model in SPEX calculates the simple transmission T (E) = e−τ(E), where the optical depth
τ(E) = τ0E

a. Note that τ0 is the optical depth at E = 1 keV and is represented by the tau0 parameter in
the model. In SPEX by multiplying the etaumodel by a simple power-law (pow), a high-energy exponential
cut-off power-law (like the cutoffpl model in XSPEC) can be produced. In order to do this, the value of
the τ0 parameter needs to be specified while a = 1. In this case, for an e-folding energy of exponential
roll-off (β) in keV, τ0 = 1/β. So for example, to obtain a power-law with an exponential roll-off at 100
keV, just set τ0 to 0.01 and a to 1. Figure 7.1 shows such a power-law produced in SPEX with photon
index Γ = 2 and β = 100 keV.

42 High-energy exponential cut-off power-law in SPEX

Figure 7.1: A power-law with Γ = 2 and an exponential roll-off at 100 keV, produced by multiplying the pow and
etau models in SPEX.

Chapter 8

Modeling particle background

Author: J. de Plaa (j.de.plaa@sron.nl)
Keywords: Background analysis – Extended sources – CCD spectroscopy

8.1 Goal

Time dependent particle backgrounds in X-ray spectra are very difficult to correctly subtract, especially
for extended sources. Many times, a quiescent particle background remains present in the spectrum
after flare filtering. In this example, we show how to model the quiescent soft-proton contribution in a
spectrum extracted from an annulus around the core of a cluster of galaxies. The difficulty here is that
the effective area for soft protons is very different from the effective area for X-rays. Please note that the
example provided is not necessarily scientifically correct. The goal of this example is to show a general
method to deal with these kind of problems in SPEX. The choice of models probably needs to be different
in other cases.

8.2 SPEX solution

The basic problem we have to solve here, is that we need a number of model components that are folded
through the ARF (the cosmic X-rays) and a few components describing the particle background, which
are not folded through the ARF. In SPEX, this can be solved using sectors. Sectors are essentially model
groups representing different areas or different components on the sky. In this case, we will create two
sectors: one for the cosmic X-rays and one for the particle background. The second sector should not be
folded through the ARF. To archieve this, we have to create a special spectrum and response file with
trafo in which we define the sectors.

8.2.1 Running trafo

In this trafo run, we will actually load the same spectrum twice. One for every sector. Here we use a
MOS1 spectrum extracted from an annulus between 6 and 9 arcmin from the cluster core. The background
spectrum was extracted using the XMM Extended Source Analysis Software by Snowden & Kuntz. After
starting trafo we have to tell it that we want to transform two spectra in two sectors:

44 Modeling particle background

Cosmic X−rays
com reds

com abs

com cie

com cie

com po

Particle Background

com delt

com delt

com po

Sector 1

Sector 2 Region 2

Region 1rmf/arf

rmf

Spectral data

M1_annulus.pi

Spectral data

M1_annulus.pi

Fold model with response

Fold model with response

Figure 8.1: Schematic representation of the sectors and regions in this example. We load two spectra with trafo
and we define two sectors (left). The exact model components are later defined in SPEX. The models for sectors
1 and 2 are folded through the response matrix separately. The result of the folding is added and applied to the
first spectrum (region 1 on the right) only.

Program trafo: transform data to SPEX 2.0 format

This is version 1.02, of trafo

Are your data in OGIP format : type=1

Old (Version 1.10 and below) SPEX format: type=2

Enter the type: 1

Enter the number of spectra you want to transform: 2

Enter the maximum number of response groups per energy per spectrum: 1000000

Enter the number of sectors you want to create: 2

The region number respresents the spectral data that we will fit. Because we want to add the cosmic
X-ray spectrum and the particle background spectrum, we want both sectors to point to region 1. First,
we enter the spectra for the first sector. We only show the most relevant input/output lines here.

Enter the sector and region number: 1 1

How should the matrix be partioned?

Option 1: keep as provided (1 component, no re-arrangements)

Option 2: rearrange into contiguous groups

Option 3: split into N roughly equal-sized components

Enter your preferred option (1,2,3): 1

Enter filename spectrum to be read: M1_annulus.pi

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: M1_annulus_bkg.pi

Shall we ignore bad channels? (y/n) [no]:y

Enter filename response matrix to be read: M1_annulus.rmf

Enter new bin boundary values manually: 3.E-5 5.E-3

Enter shift to response array (1 recommended, but some cases may be 0):1

Read nevertheless an effective area file? (y/n) [no]: y

Enter filename arf-file to be read: M1_annulus.arf

The first spectrum is now read in, including an ARF file. Now we enter the same spectrum again, but
now without ARF. The region number here is 1, because we want the models in this sector to be added

8.2 SPEX solution 45

Figure 8.2: XMM-Newton MOS1 spectrum extracted from a 6–9 arcmin annulus around a cluster of galaxies.

to the models of sector 1.

Enter the sector and region number: 2 1

Enter your preferred option (1,2,3): 1

Enter filename spectrum to be read: M1_annulus.pi

Read nevertheless a background file? (y/n) [no]: y

Enter filename background spectrum to be read: M1_annulus_bkg.pi

Enter filename response matrix to be read: M1_annulus.rmf

Read nevertheless an effective area file? (y/n) [no]: n

Save the spectrum by providing convenient names for the res and spo files.

Enter filename spectrum to be saved (without .spo): M1_annulus

Enter filename response to be saved (without .res): M1_annulus

8.2.2 Running SPEX

If the res and spo files are created, we are ready to run spex. In this description, we skip some very basic
commands about, for example, plotting. See Chapter 1 for an overview of a basic SPEX session. Note
that the procedure for SPEX version 2.02 is exactly the same as for SPEX version 2.01, which is shown
here. First, we load the spectrum and plot it:

46 Modeling particle background

Figure 8.3: A fit without modeling the particle background is not successful. Especially, the high-energy region
in the spectrum is not fitted well due to soft protons.

Welcome user to SPEX version 2.01.05

SPEX> data M1_annulus M1_annulus

...

SPEX> plot

Figure 8.2 shows a plot of the spectrum. For presentation purposes we rebin the spectrum here with
the obin command. If C-statistics are used, binning is not strictly necessary. An important thing to
remember at this point is to ignore the spectrum in region number 2:

SPEX> ign reg 2 1:1000000

We ignore region 2 from channel 1 to 1000000, which should be more then enough to make sure no data
is left in the region. Of course, some data at very low and high energies also need to be ignored in region
1.

Now, we set up the cosmic X-ray model for sector 1. We can just load the components normally,
because they are automatically added to the first sector:

SPEX> com reds

SPEX> com abs

SPEX> com cie

8.2 SPEX solution 47

Figure 8.4: Here, we plot the particle background model. We ignore the cluster model components for now. It is
clear to see that the power law is not folded through the arf.

SPEX> com cie

SPEX> com po

SPEX> com rel 3 1,2

SPEX> com rel 5 1,2

In this model, we put a cosmological redshift, interstellar absorption, and a single-temperature model to
describe the cluster emission. In addition, we put a single-temperature model with a fixed temperature
of 0.2 keV to model the emission from the local hot bubble, and a power law with a gamma value of 1.41
to account for the Cosmic X-ray Backgound (CXB) due to unresolved point sources.

SPEX> par 1 4 t v 0.2

SPEX> par 1 4 t s f

SPEX> par 1 5 gamm v 1.41

SPEX> par 1 5 gamm s f

Just to show what happens if we fit the data now, we plot the result in Figure 8.3. It is clear that
the spectrum is not well fitted at low and high energies. A contribution of soft protons is visible at the
high-energy end of the spectrum. In addition, we see that the instrumental fluoresence lines of Al and Si
at ∼1.49 and ∼1.75 keV are not fitted. To model these features, we need to use the second sector and
define an additional model there.

48 Modeling particle background

Figure 8.5: Best fit model to our example spectrum. The particle background model has been able to fit the
discrepancies at high energies.

SPEX> sector new

SPEX> com 2 po

SPEX> com 2 delt

SPEX> com 2 delt

SPEX> par 2 1 gamm v 0.2

SPEX> par 2 2 e v 1.49

SPEX> par 2 2 e s f

SPEX> par 2 3 e v 1.75

SPEX> par 2 3 e s f

In this sequence of commands, we define a new sector (number 2) and add a power-law and two delta-line
components to it. The slope of the gamma-parameter is initially set to ∼0.2. In Figure 8.4, we put the
components in sector 1 to zero to show the particle background model that we have just defined. The
flat shape of the power-law model confirms that these components are not folded through the arf.

When we reset the components in sector 1 to their initial values we can start fitting. In Figure 8.5,
we show the best fit using this model. The contribution of soft-protons at high energies is now being
accounted for by the power law.

WARNING! The example above uses a simplified model of the X-ray background. Background

subtraction for extended sources is complicated and subject of continuous research. Please be very careful

in selecting model components and deciding which parameters can be left free.

Chapter 9

User model

Authors: J. de Plaa & Liyi Gu
keywords: User models – Xspec integration

9.1 Goal

Some users would like to add their own models to the SPEX program, similar to the local model option
in Xspec. Since the developers of SPEX do not have the man power to implement all possible models
out there in a SPEX variety, we have devised a quick way of running external models in SPEX.

9.2 SPEX solution

SPEX contains two user models ’user’ and ’musr’ for additive and multiplicative models respectively.
These model components communicate with the external model through an input and output file con-
taining the model parameters, the energy grid and the calculated spectrum. By creating a program that
reads in the input parameters and energy grid, calculates the spectrum, and writes the result to an output
file in the right format, users have a very flexible way of using any model in SPEX.

Since this setup offers many possibilities, we can only show a few examples of how these user model
components can be used. We can think of the following options, but there are more:

• Write a small wrapper to plug-in an Xspec local model into SPEX (see example).

• Create an interface between the SPEX user model and Xspec through pyXspec or TCL (see exam-
ple).

• Write a small program to interpolate a (given) table model.

• Write a custom model yourself.

All options require a basic level of programming, but usually nothing too fancy. In principle, the user
model can run any executable that can read and write ASCII files and accepts command line arguments.
This allows for great flexibility in the choice of programming language.

The amount of programming can be reduced when you use the example programs that we provide on
the SPEX web site. In this cookbook we provide a few examples.

50 User model

9.2.1 Importing an Xspec local model written in Fortran (ismabs)

In this example, we include the Xspec local model called ismabs (Gatuzz et al., 2014) into a SPEX user
model executable. The local model consists of a FITS file with atomic data, a ismabs.f90 Fortran file,
and a parameter definition file called lmodel_ismabs.dat where the parameters of the model are defined.
Since the local model is written in Fortran 90, the easiest way to use it in a SPEX user model is to write
a Fortran 90 program that will be the interface between SPEX and the model.

In this case, we need the following files and libraries:

• The cfitsio library should be installed on the system.

• Module moduser.f90 as provided on the SPEX web site.

• Example program loc-xspec.f90 as provided on the SPEX web site.

• Ismabs local model files as provided on the XSPEC web site.

Write a small user program

The moduser.f90 file is a library with user callable functions to make it easy to write a user model. This
file does not need any editing. The user should only edit the example program loc-xspec.f90 and some-
times also the local XSPEC model, which will be explained later. The example program loc-xspec.f90

looks like this:

program locxspec

use moduser

implicit none

integer :: i

! Get input and output filenames

call getfilenames(fin,fout,ier)

! Read input file

call readprm(trim(fin))

! Allocate output arrays

call allopar()

! Call local XSPEC model

call ismabs(ipar%eg,ipar%neg,ipar%par,1,opar%sener)

! Do not use wener values for now

do i=1,opar%neg

opar%wener(i)=0.0

enddo

! Write result to output file

call writespc(fout)

! Clean up memory

call deallpar()

end program

Explanation of the called routines:

9.2 SPEX solution 51

• getfilenames(fin,fout,ier) is a routine to read the file names from the command line. The format
of the files and the order on the command line is defined by the user model in SPEX. This routine
returns the file names the program needs to read the input parameters and write the result.

• readprm(trim(fin)) is the routine that reads the input parameters and the input energy grid. It
allocates and fills the structure ipar with the needed numbers.

• allopar() allocates the memory for the output arrays based on the input file.

• ismabs(ipar%eg,ipar%neg,ipar%par,1,opar%sener) is the actual call of the XSPEC local
model. The parameters from the ipar structure contain the input parameters and the opar struc-
ture contains the output spectrum. For other local models than ismabs, simply change the name
of the routine on this line.

• writespc(fout) writes the resulting spectrum to the output file

• deallpar() deallocates all the allocated variables from the moduser module.

Compile the executable

In principle, the source files can now be compiled into an executable that the SPEX user model can
use. Make sure you have all the necessary files in one directory (see above) and execute the following
commands in a terminal:

linux:~/lmodel> gfortran -g -c -o moduser.o moduser.f90

linux:~/lmodel> gfortran -g -c -o ismabs.o ismabs.f90

linux:~/lmodel> gfortran -g -c -o loc-xspec.o loc-xspec.f90

linux:~/lmodel> gfortran -g -o loc-xspec loc-xspec.o ismabs.o moduser.o

In the last step, it will be clear whether the executable has access to all the necessary functions. In
this case, the ismabs model needs cfitsio to read the fits file with atomic data. It also needs a few XSPEC
internal functions to read the path for the FITS file. The cfitsio library can be easily linked by adding
-lcfitsio to the last command in the sequence above. For the internal Xspec calls, we need to adapt
ismabs.f90 slightly. The few calls to the XSPEC routines can be removed and with a slight modification
we can also make sure it finds the fits file. This step needs a little programming experience to do it right.
Always keep a backup of the original routine.

When you are done, repeat the following commands to create the executable:

linux:~/lmodel> gfortran -g -c -o ismabs.o ismabs.f90

linux:~/lmodel> gfortran -g -o loc-xspec loc-xspec.o ismabs.o

moduser.o -L/path/to/cfitsio -lcfitsio

The ’-L/path/to/cfitsio’ is optional. You may need to adapt it in case the compiler cannot find
libcfitsio.so in the library path. In this flag, you can specify the correct path to libcfitsio.so.

Use the Xspec local model in SPEX

Start SPEX in a directory where the loc-xspec executable that we just made is located. Since the
ismabs model is a multiplicative model, we need to load the musr component. In the example below, we
show how a power-law model is absorbed by ismabs in SPEX:

SPEX> com po

SPEX> com musr

SPEX> com rel 1 2

Link the new loc-xspec executable to the musr component

SPEX> par 1 2 exec av ./loc-xspec

The number of parameters is found in ’local_ismabs.dat’, supplied by the Xspec model

SPEX> par 1 2 npar v 31

52 User model

The file local_ismabs.dat also describes the parameters and their limits in order. It is advisable to
write a SPEX command file to set the parameters and their ranges to their default values. The order
of the parameters should be the same in the musr model and in the local_ismabs.dat file. If the
bookkeeping is right, you should be able to issue a calculate command in SPEX and show the absorbed
power law in a plot.

9.2.2 Connecting the SPEX user model to Xspec

The most general way to incorporate Xspec models in SPEX is to call Xspec itself directly by a SPEX
user model executable. Here we provide a fortran+tcl example to use an Xspec built-in comptt model.
It is also possible to incorporate Xspec local models, e.g., ismabs as described in §9.2.1, by this method,
while it would be slightly less efficient than the procedure in §9.2.1, since this one need to access the data
files of local model via Xspec.

It requires the following files:

• Xspec software as provided in HEASARC web site.

• Module moduser.f90 as provided on the SPEX web site.

• Example program comptt-xspec.f90 as provided on the SPEX web site.

Write a program to call Xspec

The example program comptt-xspec.f90 creates a tcl script and runs it in Xspec.

program compttxspec

use moduser

implicit none

integer :: i

! Get input and output filenames

call getfilenames(fin,fout,ier)

! Read input file

call readprm(trim(fin))

! Allocate output arrays

call allopar()

! Create Xspec tcl

open(1,file="comptt.tcl",status="unknown")

write(1,*) "model comptt & ", ipar%par(1), " & ", &

ipar%par(2), " & ", ipar%par(3), " & ", &

ipar%par(4), " & ", ipar%par(5), " & ", &

ipar%par(6)

write(1,*) "dummyrsp", ipar%egb(1)-ipar%deg(1), &

ipar%egb(ipar%neg), ipar%neg

write(1,*) "set ff [open user.dat a]"

write(1,*) "tclout plot model x"

write(1,*) "puts $ff $xspec_tclout"

write(1,*) "tclout plot model y"

write(1,*) "puts $ff $xspec_tclout"

write(1,*) "quit"

close(1)

9.2 SPEX solution 53

! Run Xspec tcl

call system("rm -rf user.dat")

call system("xspec comptt.tcl >> /dev/null")

! Read Xspec output

open(1,file="user.dat",status="old")

read(1,*)

read(1,*) opar%sener

close(1)

! Do not use wener values for now

do i=1,opar%neg

opar%wener(i)=0.0

enddo

! Write result to output file

call writespc(fout)

! Clean up memory and temporary files

call deallpar()

call system("rm -rf user.dat")

call system("rm -rf comptt.tcl")

end program compttxspec

Compile the executable

The program will be compiled in a similar way as the one described in 9.2.1.

linux:~/lmodel> gfortran -g -c -o moduser.o moduser.f90

linux:~/lmodel> gfortran -g -c -o comptt-xspec.o comptt-xspec.f90

linux:~/lmodel> gfortran -g -o comptt-xspec comptt-xspec.o moduser.o

Use the Xspec model in SPEX

Here are the SPEX commands to calculate the Xspec-version comptt model.

SPEX> com user

SPEX> par 1 exec av ./comptt-xspec

SPEX> par 1 npar v 6

The number of parameter needed by the Xspec model

SPEX> par 1 p01 v 0

...

SPEX> calc

9.2.3 Interpolate an APEC-like table model

Several atomic codes, such as APEC and MEKAL, are provided as pre-calculated tables usually in FITS
format. These tables often contain a series of grids representing a main physical parameter, e.g., electron
temperature, and give the spectral properties (e.g., line emissivity, continuum level) for each grid. Here
we describe a two-step approach to utilize directly an APEC table by SPEX user model. Indeed the

54 User model

method in §9.2.2 would provide the same result, the only difference is that this one can run without
Xspec.

It requires the following files:

• APEC files (apec_v3.0.2_coco.fits and apec_v3.0.2_line.fits) provided on the ATOMDB
web site.

• Module moduser.f90 as provided on the SPEX web site.

• Example script apec-dump.sh as provided on the SPEX web site.

• Example program apec-int.f90 as provided on the SPEX web site.

• FTOOLS as provided on the HEASARC web site.

Two-step program to run APEC

Here the example is divided into two steps: dumping APEC files into ASCII tables, and interpolating
the related grids to get spectrum. The first step is achieved by using FTOOLS and the second one is
by a fortran program. For advanced users, the two steps can be easily merged into one by incorporating
fitsio library in fortran. For simplicity, redshift is fixed to 0 in this exercise. The current model has three
parameters, P01, P02, and P03 are temperature, average abundance, and normalization.

• apec-dump.sh: convert the APEC files into ASCII tables in a local directory apec_files.

Initialize files

rm -rf apec.info

rm -rf apec_files

mkdir apec_files

mkdir apec_files/line

mkdir apec_files/coco

export linefile=apec_v3.0.2_line.fits

export cocofile=apec_v3.0.2_coco.fits

Get grid information

fdump ${linefile}[1] columns=kT rows=- outfile=apec.tmp prhead=no clobber=yes

for loop in ‘seq 2 1 52‘

do

Get lines

export ktloop=‘tail -n +5 apec.tmp | head -$((loop-1)) | tail -1 | awk ’{print $2}’‘

fdump ${linefile}[${loop}] columns="Lambda, Epsilon" rows=- outfile=linesave.tmp prhead=yes showrow=no

export hdl=‘sed -n ’/A photons cm^3 s^-1/=’ linesave.tmp‘

tail -n +$((hdl+1)) linesave.tmp > apec_files/line/${loop}.dat

export linenum=‘wc apec_files/line/${loop}.dat | awk ’{print $1}’‘

Get continuum

export savename=cocosave.tmp

fdump ${cocofile}[${loop}] columns="E_Cont, Continuum" rows=- outfile=cocosave.tmp prhead=yes showrow=no

export hdc=‘sed -n ’/keV photons cm^3 s^-1 keV^-1/=’ cocosave.tmp‘

tail -n +$((hdc+1)) cocosave.tmp > apec_files/coco/${loop}.dat

export coconum=‘wc apec_files/coco/${loop}.dat | awk ’{print $1}’‘

Write informations

echo ${ktloop} \"apec_files/coco/${loop}.dat\" ${coconum} \"apec_files/line/${loop}.dat\" ${linenum}

echo ${ktloop} \"apec_files/coco/${loop}.dat\" ${coconum} \"apec_files/line/${loop}.dat\" ${linenum}

9.2 SPEX solution 55

Clear up

rm -rf linesave.tmp

rm -rf cocosave.tmp

done

rm -rf apec.tmp

• apec-int.f90: read the ASCII files and interpolate based on input values.

program apec-int

use moduser

implicit none

integer :: i,j,k

integer :: ngrid,codim1,codim2,lidim1,lidim2

character*100,allocatable :: cocofile(:),linefile(:)

integer,allocatable :: ncoco(:),nline(:)

integer,parameter :: nele = 30

real*8,allocatable :: kt(:)

real*8,allocatable :: liwav1(:),liwav2(:)

real*8,allocatable :: liem1(:),liem2(:)

real*8,allocatable :: cokev1(:,:),cokev2(:,:)

real*8,allocatable :: coem1(:,:),coem2(:,:)

real*8 :: co_eg

real*8,allocatable :: emi1(:), emi2(:)

ngrid = 0

! Get ascii file info

open(1,file="apec.info",status="old")

do

read(1,*,end=2)

ngrid = ngrid + 1

end do

2 close(1)

allocate(cocofile(ngrid))

allocate(linefile(ngrid))

allocate(kt(ngrid))

allocate(ncoco(ngrid))

allocate(nline(ngrid))

open(1,file="apec.info",status="old")

do i=1,ngrid

read(1,*) kt(i), cocofile(i), ncoco(i), linefile(i), nline(i)

end do

close(1)

! Get input and output filenames

call getfilenames(fin,fout,ier)

! Read input file

call readprm(trim(fin))

! Allocate output arrays

call allopar()

56 User model

! Read related ascii files: low-kt case

if (ipar%par(1) .lt. kt(1)) then

allocate(cokev1(ncoco(1)/nele,nele))

allocate(cokev2(ncoco(1)/nele,nele))

allocate(coem1(ncoco(1)/nele,nele))

allocate(coem2(ncoco(1)/nele,nele))

allocate(liwav1(nline(1)))

allocate(liwav2(nline(1)))

allocate(liem1(nline(1)))

allocate(liem2(nline(1)))

codim1 = ncoco(1)/nele

codim2 = ncoco(1)/nele

lidim1 = nline(1)

lidim2 = nline(1)

open(1,file=trim(cocofile(1)),status="old")

do j=1,nele

do i=1,codim1

read(1,*) cokev1(i,j), coem1(i,j)

end do

end do

close(1)

cokev2 = cokev1

coem2 = coem1

open(1,file=trim(linefile(1)),status="old")

do i=1,lidim1

read(1,*) liwav1(i), liem1(i)

end do

close(1)

liwav2 = liwav1

liem2 = liem1

! Read related ascii files: high-kt case

else if (ipar%par(1) .ge. kt(ngrid)) then

allocate(cokev1(ncoco(ngrid)/nele,nele))

allocate(cokev2(ncoco(ngrid)/nele,nele))

allocate(coem1(ncoco(ngrid)/nele,nele))

allocate(coem2(ncoco(ngrid)/nele,nele))

allocate(liwav1(nline(ngrid)))

allocate(liwav2(nline(ngrid)))

allocate(liem1(nline(ngrid)))

allocate(liem2(nline(ngrid)))

codim1 = ncoco(ngrid)/nele

codim2 = ncoco(ngrid)/nele

lidim1 = nline(ngrid)

lidim2 = nline(ngrid)

open(1,file=trim(cocofile(ngrid)),status="old")

do j=1,nele

do i=1,codim1

read(1,*) cokev1(i,j), coem1(i,j)

end do

end do

close(1)

cokev2 = cokev1

9.2 SPEX solution 57

coem2 = coem1

open(1,file=trim(linefile(ngrid)),status="old")

do i=1,lidim1

read(1,*) liwav1(i), liem1(i)

end do

close(1)

liwav2 = liwav1

liem2 = liem1

end if

! Read related ascii files: normal-kt case

do i=1,ngrid-1

if (ipar%par(1) .lt. kt(i+1) .and. ipar%par(1) .ge. kt(i)) then

allocate(cokev1(ncoco(i)/nele,nele))

allocate(cokev2(ncoco(i+1)/nele,nele))

allocate(coem1(ncoco(i)/nele,nele))

allocate(coem2(ncoco(i+1)/nele,nele))

allocate(liwav1(nline(i)))

allocate(liwav2(nline(i+1)))

allocate(liem1(nline(i)))

allocate(liem2(nline(i+1)))

codim1 = ncoco(i)/nele

codim2 = ncoco(i+1)/nele

lidim1 = nline(i)

lidim2 = nline(i+1)

open(1,file=trim(cocofile(i)),status="old")

do j=1,nele

do k=1,codim1

read(1,*) cokev1(k,j), coem1(k,j)

end do

end do

close(1)

open(1,file=trim(cocofile(i+1)),status="old")

do j=1,nele

do k=1,codim2

read(1,*) cokev2(k,j), coem2(k,j)

end do

end do

close(1)

open(1,file=trim(linefile(i)),status="old")

do k=1,lidim1

read(1,*) liwav1(k), liem1(k)

end do

close(1)

open(1,file=trim(linefile(i+1)),status="old")

do k=1,lidim2

read(1,*) liwav2(k), liem2(k)

end do

close(1)

end if

end do

! Add continuum and line components

allocate(emi1(ipar%neg))

58 User model

allocate(emi2(ipar%neg))

emi1 = 0

emi2 = 0

do i=1,ipar%neg

do j=1,nele

do k=1,codim1-1

if (ipar%eg(i) .lt. cokev1(k+1,j) .and. ipar%eg(i) .ge. cokev1(k,j)) then

co_eg = coem1(k,j) + (coem1(k+1,j) - coem1(k,j)) &

* (ipar%eg(i) - cokev1(k,j)) / (cokev1(k+1,j) - cokev1(k,j))

emi1(i) = emi1(i) + co_eg * ipar%par(2) * ipar%deg(i) * ipar%par(3)

end if

end do

end do

do j=1,lidim1

if (12.4/liwav1(j) .lt. ipar%eg(i) + ipar%deg(i)/2. &

.and. 12.4/liwav1(j) .ge. ipar%eg(i) - ipar%deg(i)/2.) then

emi1(i) = emi1(i) + liem1(j) * ipar%par(2) * ipar%par(3)

end if

end do

end do

do i=1,ipar%neg

do j=1,nele

do k=1,codim2-1

if (ipar%eg(i) .lt. cokev2(k+1,j) .and. ipar%eg(i) .ge. cokev2(k,j)) then

co_eg = coem2(k,j) + (coem2(k+1,j) - coem2(k,j)) &

* (ipar%eg(i) - cokev2(k,j)) / (cokev2(k+1,j) - cokev2(k,j))

emi2(i) = emi2(i) + co_eg * ipar%par(2) * ipar%deg(i) * ipar%par(3)

end if

end do

end do

do j=1,lidim2

if (12.4/liwav2(j) .lt. ipar%eg(i) + ipar%deg(i)/2. &

.and. 12.4/liwav2(j) .ge. ipar%eg(i) - ipar%deg(i)/2.) then

emi2(i) = emi2(i) + liem2(j) * ipar%par(2) * ipar%par(3)

end if

end do

end do

! Intepolate the two neighbor grids

if (ipar%par(1) .lt. kt(1)) then

opar%sener = emi1

else if (ipar%par(1) .ge. kt(ngrid)) then

opar%sener = emi1

end if

do i=1,ngrid-1

if (ipar%par(1) .lt. kt(i+1) .and. ipar%par(1) .ge. kt(i)) then

opar%sener = emi1 + (emi2 - emi1) * (ipar%par(1) - kt(i))/ &

(kt(i+1) - kt(i))

end if

end do

! Do not use wener values for now

do i=1,opar%neg

9.2 SPEX solution 59

opar%wener(i)=0.0

enddo

! Write result to output file

call writespc(fout)

! Clean up memory

call deallpar()

deallocate(cokev1)

deallocate(cokev2)

deallocate(coem1)

deallocate(coem2)

deallocate(liwav1)

deallocate(liwav2)

deallocate(liem1)

deallocate(liem2)

deallocate(emi1)

deallocate(emi2)

end program apec-int

Prepare the ASCII files and executable

All related files, including apec-dump.sh, apec-int.f90, moduser.f90, and APEC files (apec_v3.0.2_coco.fits
and apec_v3.0.2_line.fits) should be placed in the same directory,

linux:~/lmodel> source apec-dump.sh

It would create a sub-directory called apec_files.
Then, the fortran program is compiled by including moduser.f90.

linux:~/lmodel> gfortran -g -c -o moduser.o moduser.f90

linux:~/lmodel> gfortran -g -c -o apec-int apec-int.f90

linux:~/lmodel> gfortran -g -o apec-int apec-int.o moduser.o

Use the APEC model in SPEX

Below we incorporate the APEC model with the SPEX user function.

SPEX> com user

SPEX> par 1 exec av ./apec-int

SPEX> par 1 npar v 3

Three parameters are kT, abund, and norm

SPEX> par 1 p01 v 1

...

SPEX> calc

9.2.4 Troubleshooting

My XSPEC local model has more parameters then the SPEX user model allows

By default, the user and musr components allow about 40 free parameters. This value can be changed
without compiling SPEX. The model parameters are defined in an ASCII file called in_par.dat and is
located in the SPEX data directory.

60 User model

Warning! Make a backup copy of in par.dat before you proceed! An erroneously for-
matted file can render SPEX unusable!

The in_par.dat file contains the definitions of all the SPEX models. Find the musr model in the file.
It should look like this:

"musr" T F F 42

"exec" "User executable " 4 0 0 0 0

"npar" "Number of parameters" 3 0 1 1 40

"p01 " "Parameter 01 " 0 1 1 0 1E20

"p02 " "Parameter 02 " 0 0 1 0 1E20

...

The first line contains the name of the model, some basic properties, and the number of lines that
should be read. If you want to add, for example, 10 lines, increase the number 42 to 52 and add 10 lines
starting with "p41 " "Parameter 41 " at the end of the sequence. Make sure that every line
contains a unique parameter name for this model, so ”p41 ” to ”p50 ” should be fine. In principle, it is
also possible to rename the parameters for convenience, but then the names will hold for every musr or
user model that are opened!

In case SPEX gives errors when using the new in_par.dat, just copy the backup version back into
the data directory.

Chapter 10

Calling SPEX from Fortran

Author: Jelle Kaastra (J.S.Kaastra@sron.nl)
Keywords: SPEX general – Programming

10.1 Goal

Sometimes you may want to combine SPEX with some of your own code. For instance, you may have a
hydrodynamical code calculating the evolution of a cluster of galaxies or a supernova remnant, and you
want SPEX to calculate the corresponding spectrum. Or you need to make realistic simulations for a
large sample of sources or a broad range of parameters. In that case it can be useful to call SPEX from
a fortran program.

10.2 Solution

The basic flow of the solution is as follows:

• Start your fortran program and calculate whatever is needed

• create a command file for SPEX

• call SPEX through a system call

• read the output of SPEX

• continue with your program

To explain how you can do this, we give below a sample Fortran 90 program. The program first
creates a command file called spex.com that contains the input for the run with SPEX. In your case,
you can replace the ”/usr/local/bin/spex” to whatever path is appropriate for you to call SPEX. The
”<<STOP” is essential for linux to tell when the input stream is finished.

In the command file, it tells how to read the pn spectrum of a cluster of galaxies with roughly
metallicity 0.3, temperature 2 keV, redshift 0.01 and Galactic foreground absorption of 1024 m−2. It
ignores data at the lowest and highest energies, sets the initial model and parameters for SPEX. It will

62 Calling SPEX from Fortran

then perform a fit with SPEX. Next we tell SPEX to open an output file named ”spex.out”, that will
contain the results of the next part of the SPEX run, an error search on the temperature. Note also
that we have set-up the plotting device to ”null”, to speed up the calculation (but implying that you do
not get to see the fit itself, so use with care). After the error run, we stop SPEX, first by writing the
”quit” command for SPEX and then the end of input signal ”STOP” for linux. Next we simply close the
command file spex.com.

The fortran program then continues by making spex.com executable, and then by executing that file,
thereby doing the run with SPEX. When SPEX is finished, fortran takes over control again and reads
the spex.out file created by SPEX. The program grabs any info it needs from that file (here the errors
on the temperature) and then closes the file.

As a last step, the intermediate outputfile ”spex.out” is deleted, as we do not need it longer.

real nh,z,t

character*128 s

z = 0.01 !redshift 0.01

nh = 1e-4 !1E20 cm**-2 absorption column density (SPEX uses units of 1E28 m**-2)

t = 2 !temperature 2 keV

open(unit=12,file=’spex.com’,status=’replace’) !open a spex command file called spex.com

write (12,’("/usr/local/bin/spex <<STOP")’) !call spex

write (12,’("abu lodders")’) !set abunances to Lodders scale

write (s,’("dis ",f6.4," z")’) z

write (12,’(a)’) trim(s) !write the distance

write (12,’("data pn pn)’) !read some spex data set: pn.res & pn.spo

write (12,’("ign in 1 r 1 1:60")’) !ignore first 60 channels

write (12,’("ign in 1 12:10000 u kev")’) !ignore E>12 keV region

write (12,’("com cie")’) !define a CIE component

write (12,’("com reds")’) !define a redshift component

write (12,’("com abs")’) !define galactic absorption

write (12,’("com rel 1 2,3")’) !couple the components

write (s,’("par 1 2 z v ",f6.4)’) z

write (12,’(a)’) trim(s) !set the redshift

write (s,’("par 1 3 nh v ",1pe12.3)’) nh

write (12,’(a)’) trim(s) !set the galactic absorption

write (12,’("par 1 3 nh s f")’) !freeze NH

write (12,’("par 1 1 06:28 v 0.3")’) !set abundances of C to Ni to 0.3 time solar

write (s,’("par 1 1 t v ",f5.2)’) t

write (12,’(a)’) trim(s) !set the temperature

write (12,’("fit meth cstat")’) !use C-statistics for fitting

write (12,’("plot dev null")’) !no visible plots

write (12,’("plot type data")’) !plot type data

write (12,’("fit prin 1")’) !show each fitting step

write (12,’("fit")’) !do a fit

write (12,’("err dchi 1.")’) !for error search, do Delta chi**2 = 1

write (12,’("log out spex o")’) !open a file for the SPEX output

!file will be called "spex.out"

!the option "o" means overwrite

write (12,’("err 1 1 t")’) !do an error search on T

write (12,’("quit")’) !done with the spex run, so quit

write (12,’("STOP")’) !last command needed to close the command file

close (12) !close the file spex.com and save

call system("chmod +x spex.com") !make file spex.com executable

call system("spex.com") !execute the file spex.com

open (unit=12,file=’spex.out’,status=’old’) !open the outputfile spex.out

do k = 1,100000 !loop over all the lines in this file

10.2 Solution 63

read (12,’(a)’,end=20) s !read the text of the line; put it in string s

if (s(2:11).eq."Parameter:") then !search for the line with text Parameter:

read (s(34:),*) e1,e2 !read from this line the errors on T

err = 0.5 * (-e1 + e2) !calculate average pos and neg error

!..... do further all you wish

endif

enddo !close loop over lines file spex.out

20 close(12) !close spex.out

call system("rm spex.out") !remove the file spex.out

end

64 Calling SPEX from Fortran

