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1. In a recent paper I introduced the term " uniform divergence at a
point," and proved incidentally that various theorems involving uniformity
of approach of a function to its limit still held whether or no that limit
was a bounded function. In the paper in question I was concerned more
particularly with the distribution of particular points, and the behaviour
of the limiting function in the neighbourhood of those points. In a large
class of theorems we are concerned with the behaviour of the limiting
function throughout an interval, and the question naturally forces itself
on our notice how we are to characterise uniformity of approach through-
out an interval, when the sense of the words is the generalised one in
question. In the present note I give the formulation in the case in which
the generating functions are continuous (but not necessarily bounded).
As an illustration of the use of this formulation, I prove various theorems
leading up to the following generalisation of Weierstrass' theorem that
any continuous (bounded) function can be expressed as the sum of a
uniformly converging series of polynomials:—

THEOREM.—An unbounded continuous function is expressible as the
sum of a uniformly converging and diverging series of polynomials or
rational fractions according as in the extension of the definition of
continuity to unbounded functions, the two infinities + oo and — oo are
regarded as distinct or not.

The paper concludes with a formulation of the property of uniform
continuity throughout an interval in the case of unbounded continuous
functions.

Uniform Convergence and Divergence at a Point.

2. The definition of uniform divergence at a point given in my paper
on the subject published lately in the Proceedings of the London Mathe-
matical Society (p. 36) was as follows:—

The series of functions flt /2, ... is said to diverge uniformly at a point
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P where it has no finite limit, if, given any quantity A, an interval dp can
be described, having P as internal point, so that for all points x within
the interval dP, . . . ^ .

fn(x)> A,
for all values of n > mP, where mP is an integer, independent of x, which
can always be determined.

It is also said to diverge uniformly at P, if in this condition, we alter
the inequality to f . . . .

In this definition the values -h00 and —<x> are distinguished, in
accordance with the extended view of continuity adopted, where a function
which is not finite is stilL regarded as continuous, if it is infinite with
determinate sign at a point P, and is the only limit of values in the
neighbourhood.

It is to be remarked that, just as in extending the idea of continuity to
non-finite functions it is not necessary to distinguish the two infinities, so
it is not necessary to do so in defining uniform divergence. The first
point of view is equivalent to regarding the axis of y, where y is the
dependent variable, as a segment with two end-points, the points -H»
and — QO . The second point of view is that of regarding the axis of y as
a loop, without any end-point. The definition of uniform divergence
when the two infinities are identified will only differ from the above in the
two inequalities, which are replaced by the single inequality

\Mx)\>A.

In either case the limiting function will have a point of continuity at
such a point of uniform divergence, whether or no f l t / 2 , ... are con-
tinuous at the point. This indicates that the definition is open to
objection except when flt /2, ... are continuous functions. We shall,
however, confine our attention to this latter case, which is by far the
most important one in practice.

3. The definition so given, though analogous to the recognised defi-
nition of uniform convergence at a point, labours under the disadvantage
that the inequality employed is different in form according as there is
convergence, or divergence, at the point considered. Moreover, the
analogous definition of uniform convergence itself presents certain dis-
advantages, to obviate which it was shewn in the paper referred to that
it might be replaced by another in the case when the functions f v / 2 , ...
were continuous. This new definition had the advantage of being the

p 2
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same in form whether the series converged, or diverged, at the point
considered. It depended on the definition of the peak and chasm func-
tions, uniform convergence, or divergence, taking place at any point where
these are equal, and at such points only.

I propose, first of all, to transform the original definition of uniform
convergence and divergence at a point in such a way that, without using
the peak and chasm functions, its form is the same whether the series
converges, or diverges, at the point considered. The new definition is
as follows:—

Letfufz, ... be a series of continuous* functions which converges, or
diverges to a definite limit F(x) at every point of an interval. TJie
series is said to approach uniformly to its limit at a point P of this
interval if, corresponding to any segment on the y-axis containing the
point T7/_l.
* y = F{P)
as internal pointy we can find an interval dp containing the point P of
the x-axis, and determine an integer vip, such that the points

y = F(x) and y =fn{x)

He for all values of n ^ mP inside the given segment, provided x lies
inside the interval dp.

It is evident that if this is the case, there is uniform convergence, or
uniform divergence, at the point P, according as the point y = F(P) is,
or is not, at infinity. We have, in fact, in the former case, only to choose
the segment of length 2e with the point y = F(P) as middle point, and in
the latter case to choose as segment all the part of the ?/-axis beyond the
point y = A, on one side or the other, if the two infinities are dis-
tinguished, while, if the two infinities are identified, we have only to choose
as segment all the part of the y-axis at a distance greater than A from
the origin.

To shew conversely that when the series is uniformly convergent, or
divergent, at the point P, this property holds, we proceed as follows.
First, let P be such that the corresponding point of the ?/-axis,

P = F(P),

• In the generalised sense, +00 and —00 being distinguished, or identified.
t In the exceptional case when the point y = F(P) is an end-point of the range of y (whether

this range is finite, or infinite with a finite end-point, or the whole straight line with + 00 dis-
tinguished from — 00 ), y = F(P) is to be included as an " internal point" in any segment having
it as end-point. A similar remark applies to the range of x if this has one, or two, end-points.
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is not at infinity; Let the distance of p from the nearest end-point of the
given segment be 8e. Then, since the series is uniformly convergent at
P, we can find an interval dP containing P as internal point, and deter-
mine an integer rap, such that

| F(x)-fn(x) | < «,

provided only the point a; lies in the interval dP, and n > mP.

Also, since F is known: to be continuous at P, we can. so choose the

interval^, that \F(P)-F(x)\ < e.

From, these two inequalities it follows that

\F(P)-fn(x) ^2e,

or, in other words, the point y —fn{x)

lies in the same segment as the point p =^F(P).
Secondly, let the point p be at infinity, and suppose first that the two

infinities are identified. Then the point p is, as before, internal to the
given segment.

Let that one of the two end-points of the segment which is nearest to
the origin be denoted by .

Then, since there is uniform divergence at P, we can determine an interval
dp containing P as internal point, and an integer wip, such that

\fn(x)\> A,

provided the point x lies in the interval dp and n ̂  nip. Thus the point

y =fn(x)

lies in the segment containing the point p.

Further, since F is known to be continuous, we can secure that the
interval dj> is such that , _ . . , .

so that the point y —F(x)

also lies in the segment. We have therefore the same relation as when
the point p was not at infinity.

The argument when the two infinities are distinguished is precisely
analogous. For definiteness take

P = + <*>.
Tljen the given segment consists of all the points
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including the point p, which, though an end-point, is now to be regarded
as tantamount to an internal point.

Then, since there is uniform divergence at P, we can determine an
interval dP, containing P as internal point, and an integer mP, such that

fn(x) > A,

provided the point x lies in the interval dP and n ^ mP. Thus the point

V =/n(«)
lies in the given segment.

Further, since F is continuous, we can secure that this interval dp is
such that F{x) > Ai

so that the point y = F(x)

also lies in the given segment.

4. If a series of functions converges, or diverges, uniformly at every
point of an interval, or of a set of points, it is said to converge uniformly
throughout the interval, or set.

It now follows that the necessary and. sufficient condition that a
series of functions fi(x), f2(x), ... should approach uniformly to a limit-
ing function throughout a closed interval, or set, is that however we
divide up the range of the dependent variable y = F (x) into a finite
nuviber of segments, we can find a corresponding division of the range of
the independent variable x into a finite number of intervals, and a fixed
integer m, such that, if the points x and x' belong to the same interval,
n being any integer ^ m, the points

y = F(x), y' =fn(x')

lie in the same segment of the y-axis, or in the same two adjacent seg-
ments.

First this condition is necessary. For, taking any particular division
of the jy-axis, each point P of the range on the axis of x determines a
segment on the axis of y, viz., that part, or that pair of adjacent parts, in-
side which the corresponding point y = F(P) = p lies. This segment,
provided the given series is uniformly convergent or divergent at P, deter-
mines, as explained in the preceding section, an interval dp containing the
point P, and an integer mP. By the Heine-Borel theorem a finite number of
these intervals suffice to cover every point of the range of x, provided that
range is a closed interval or set. Let m be the greatest of the corresponding
integers mP, and let the intervals be d'i,d"2, ..., d'i. Then, provided n ^. m,
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and that the points x and x' both belong to one of these intervals, say d'r,
the points „ . x , s , n

F y — F(x), y'=Mx')t

both lie in the same segment, or the same pair of adjacent segments,
determined by the interval d'r. These intervals d[, d'z,... however, overlap;
if we now replace d'2 by the part of it not internal to d'\, and each
succeeding interval in turn by the part of it not internal to the preceding
intervals, we get a finite number of non-overlapping intervals dv d2, ..., dn

each of which determines a segment, or a pair of adjacent segments, on
the ?/-axis, inside which the points

y = F{x), y' =/•(*')

both lie, whenever x and x' both lie in the corresponding interval dy and
n ^ ra. Thus the given condition is necessary.

It is, moreover, sufficient, for, supposing it true, however we divide the
y-axis. then given any point P of the aj-axis, this determines a point

p = F(P)
of the ?/-axis. Taking any segment containing p, let us make any
convenient division of the y-axis in which that part which contains p, as
well as the adjacent part, or parts, lie inside that segment. By hypothesis
this division determines a finite number of non-overlapping intervals con-
taining all the points x, and determines also an integer m. If P belongs
to only one interval d, then, corresponding to the chosen segment of the
?/-axis, we have found a d and an m, such that, if x is any point belonging
to d, and n ^ m, the points

y = F(x), y=fn(x),

lie in the same part, or pair of parts, as jp and y = /,t(P), so that they lie
inside the chosen segment of the y-axis. If P belongs to two adjacent
intervals, then, taking together these two intervals, we get a d and, as
before, an m. Thus in either case the criterion for uniform convergence
at P, given in § 3, is satisfied. Thus every point P is a point of uniform
convergence, so that the condition is not only necessary but sufficient.

5. THEOREM.—Letfiti,fii2, ...,fi,n, ••• be a series of continuous func-
tions which approaches uniformly throughout an interval S to a limiting
function f, for each integral value of i. AIso, let fi,fit ...,f\, ... approach
to a limiting function F. Then we can find a series of the continuous
functions fit n which approach throughout the interval S to the limiting
function F.

Let Bx, J?2, ... be a countable set of points dense everywhere on the
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?/-axis e.g.t the rational points. The first i points Blt B2, ..., Bi, deter-
mine uniquely a division of the ?/-axis into a finite number of segments i
or i-\-l, in number according as we identify or distinguish -}-a> and —<x>.
The characteristic, of the i-th division, performed in this way, is that if
Bj and Bk are the end-points of the same segment, there is no point Bn

inside that segment, whose index n ^ i, a fortiori, whose index, n < j or
< A:. At the n-th and at all subsequent divisions such a point Bn will be
itseli the end-point of two adjacent segments, whose other end-points may
at first be Bj and Bk, but will, if not from the first;, certainly from and
after some subsequent stage, always lie inside the segments (Bj, Bn) and
(Bn, Bk) respectively.

Hence it follows that if a series of segments, one from each successive
division, is given, say (Blf B[), (B2, B'?), ..., in such a way that points
Pi, P2, ..., one from each segment, have only one limiting point P, then
the same will be true of Blf B2, ... and of B'i, B'%, ... ; and therefore of
any other set of points Qv Q2, ... lying in the same segments, or, indeed,
by similar reasoning, in either of th& adjacent segments at each stage.

This being premised, let us determine, corresponding to the i-th
division, the integer wj, such thatr whatever x may be, the points

y —fi(x), y—fi,M,

always lie in the same segment, or in adjacent segments, provided n ^ m^
This we can do, since the functions fit n converge, or diverge, uniformly
throughout the interval S. Then, since, by hypothesis, the points

Pi=y=fdx),

for fixed x, have the single limiting point

P=F(x),

it follows, from what has been pointed out, that the points

Qi=fi,mi(x)

have the same single limiting point. Thus the series of continuous func-
tions , , ,

J \ , TO]> J 2 , 7»2> / 3 , OT3> • • •

has at each point x the limit F(x), which proves the theorem.

COR.—If we know further that the series f\, /2, ... approaches uni-
formly at the point P to its limit F(P), then the series

J\, m\i J2, mj> • • •

approaches uniformly at P to the same limit.
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We shall suppose, for convenience of wording, that P is not one of the
points Bl3 B2r.... The argument is, however, the same when this is not
the case, only that the point p, or y = F{P), determines then two
adjacent segments, instead of a single segment.

Take any segment d containing the point p of the ?/-axis. Then we
can determine the integer i so that that segment in which, p lies at the
i-th. division by means of the points B1} B2, ..., Bit together with the
adjacent segment or segments, all lie inside the given segment d. Now,
since the series / i , / 2 , ... converges, or diverges, uniformly at P, we can,
by § 8, find an interval dp containing the point P of the x-axis, and
determine an integer mp greater than, i, so that, if x is any point of dP

and k any integer ^ mP, the points

ij~F{x) and ij =fk(x)

lie in that segment of the *-th division in which the point p lies. Now
the points . , > , . . .

t/=fk(x) and y=fkimk(x)
lie in the same segment at the k-th division, and therefore, since k > i,
in the same segment at the *-th division. Thus the points

y = F(x) and y = fk, mjc (x),

both lie in the given segment d; for the former lies in the same seg-
ment as p at the *-th division, and the latter in the same, or, it y = ft {x)
is an end-point of this segment, in one of the adjacent segments, which,
by our choice of i, all lie in the given segment d.

Thus the criterion for uniform convergence, or divergence, at P, as
given in § 3, is satisfied, which provesr the theorem.

6. We now proceed to the extension of Weierstrasa:' theorem.

LEMMA.—If F(x) is a continuous function which is always positive (or
always negative) but not necessarily finite, then F is the limit of a series
of bounded positive continuous functions approaching its limit uniformly
throughout the interval considered.

For, if n be any positive integer, the points x at which

F{x) < n,

form a closed set, including no infinity of Fix). Thus the infinities (F
being positive) are internal to the black intervals of this set, and, since
the infinities form a closed set, to a finite number of those black in-
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tervals. In each of the intervals so determined put

fn (x) = n,

and at the remaining points fn (x) =F(x).

Then* since at the end-points of each of the intervals in question

F(x) —n,

and F(x) is finite and continuous outside the intervals, fn(x) is a finite
and continuous function.

Now, if m < n, the closed set

F(x)<n,

contains the closed set F(x) < m;

and therefore the black, intervals of the former set lie inside those of the
latter set. Thus, throughout the intervals in which, by definition,

fm{x) = m,

we have for all values of n> m,

and, throughout the intervals complementary to the intervals just men
tioned, we have ^ = / ^ }

This shews that at every infinity of F{x), the series fi(x), /2(x), ...
diverges uniformly to F(x), while at every other point it converges uni-
formly to F(x), which proves the theorem.

THEOEBM.—Any function which, without being always finite, is con-
tinuous when -\-oo is distinguished from —<x>, is expressible as the limit
of a series of polynomials, which approaches its limit uniformly for every
value of x for which the function is defined.

Let F(x) be the function, and A any positive finite number. Then we
define two new functions U(x) and V(x), as follows:—

Jj(x) = F{x)-\-A, wherever F{x) is positive, and elsewhere U(x) = A.

V{x) = F(x)—A, wherever F(x) is negative, and elsewhere V(x) = — A.

Then, at every point F{x) = U(x) + V (a?).

But, by the preceding Lemma, U (x) is the limit of a series of bounded
continuous functions ux(x), u^ix), ... approaching its limit uniformly.

By the known theorem of Weierstrass, w* (x) is the limit of a uniformly
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convergent series of polynomials. Since this is true for each value of i,
we can apply the corollary to the theorem of § 5, and state that U(x) itself
is the limit of a suitably chosen series of the polynomials, say

approaching its limit uniformly.

Similarly V(x) is the limit of a series of polynomials

vx{x), v2(x), ...,

approaching its limit uniformly.
Since U(x) and V(x) have no common infinities, their sum F(x) is the

limit of the sum of corresponding polynomials, say

fi(x) = ut(z)+Vi(x),

and the series fx (x),f%(x), ... approaches uniformly to its limit F(x), which

proves the theorem.

7. Be-fore proceeding to the second case we shall prove the following
theorem :—

THEOREM.—If fx, f<& ••• is a series of functions of x which approaches
uniformly a limiting function F(x), each function being continuous (but
not necessarily finite) at any point P, and g (x) any other function con-
tinuous also at P, then the series g\J\{x)\ g{J^ix)'\, ... approaches uni-
formly g [F (x)~\ as limit at the point P.

For, taking three axes corresponding to variables x, y, and z, and taking
the point P of the #-axis, let us choose any segment on the 2-axis con-
taining the point z _ , v

where p = F(P),

we can, since g is continuous, find a segment dp of the y-axis, containing
the point „, , . .

y=p = F(P),
such that, whatever point y be taken in this interval dv, the corresponding
point , x

z = g(y)
of the 2-axis lies inside the chosen segment.

But, since the series of continuous functions fx, /2, ... approaches uni-
formly F(x) as limit, we can, corresponding to the segment dp of the y-axis,
find an interval dP of the x-axis, containing the point P, and determine
an integer m,p, such that, for all points x inside the interval dp, and for



220 DB. W. H. YOUNG [Feb. 13,

all values of n ^ mPi the points

y —fn (x)

lie in. the interval dp of the y-axis, and therefore the points

lie inside the chosen. interval* But this is the condition: for uniform con-
vergence, or divergence, of the series g Q/i(aj)], g[/i(x)~\, ... at the point P
of the a;-axis to the limit, g [_F{x)\

One of the most important applicationszof ther preceding: theorem, con-
sists in the process of inverting a given series- In othei words, if the
series

fi(x),J2(x), ...
converges, or diverges, uniformly at a point P, so does the series

1 1
M*)' Mx)' ""

This process was not allowable in dealing with, uniformly convergent, but
not divergent series, a point where the series had the limit zero leading to
a point of divergence of the inverted series.

Moreover, it is only allowable if we adopt the definition of continuity
and divergence which, depends on the two infinities being identified.

8. Weierstrass' theorem, requires modification in the case when the
two infinities are identified. We have, in fact, the following theorem:—

THEOREM.—A function which is continuous if, and only if, the two
infinities are identified, cannot* be expressed as the limit of a series of
bounded continuous functions, which converges, or diverges, uniformly,
and this, whether or no the two infinities are identified in defining uni-
form divergence*

For, if P be a point of uniform, divergence, we can assign an interval
dp and an. integer mp, such that, for all values of n ^ mp, and all points x
of the interval ^ , \fn(x)\>A;

thus fn (x) never vanishes in the interval dp, and therefore, being a con-
tinuous bounded function is throughout the interval dP of one sign. Thus
there is either one series of continually increasing integers n suchthat/m(a;)

* Except in the trivial case when it is always infinite and indeterminate as to sign, e.g.,
/„ (a;) = (-)» n cosec x.
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is always positive in the interval dp, and another series always negative, or
else any such series of integers always determine the same sign. In
the latter case the infinity at P will have the same sign, and will be a
point of continuity without identifying the two infinities. In the former
case, however, at each point x of the interval dp the one series of func-
tions fn (x) will give rise to a limit which is positive, and the other to a
limit which is negative. These two limits must, however, coincide, and
are therefore both infinite at every point of the interval dP. In this
trivial case the limiting function is indeterminately infinite at every point
of a closed interval, since, by the above, the end-points of an interval
throughout which the function was indeterminately infinite could not be
points of uniform divergence without the function being indeterminately
infinite at these points also. Apart from this trivial case, the theorem
is therefore true.

9. On the other hand, a function which is continuous if, and only if,
the two infinities are identified, may be expressed as the limit of a uni-
formly converging, and diverging, series of rational functions.

To prove this we remark first, as in proving the Lemma, that the
infinities of the function F lie in a finite number of the black intervals
of the closed set of points at which

Let these be (Bv Cj), (B2, C2), (B3, C3), ..., (Bn, Cn), and let the whole
interval considered be (B, G). Then in each of these partial intervals

FJ=0,

at each of their end-points F =• A or —A,

while in the remaining partial intervals F is finite and continuous.
We now define n functions fx(x),/a(x), ...,fn(x), as follows:—

ft(x) = F(x) in the interval (Bit d)

= F(Bt) in the interval (B, Bd

= F(Gi) in the interval (d, C).

Then each of these functions fiix) {i = 1, 2, ..., n), is continuous and
numerically never less than A ; their reciprocals are therefore Unite and
continuous, so that, by Weierstrass' theorem, we may express each of
these reciprocals as the limit of a polynomial,

_ L = Lt Pi>r(x),
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which converges uniformly throughout the interval (B, G) to its limit.
Therefore (the two infinities being now identified)

1 1

r=oo ' '

the convergence,, or divergence, of the rational function to its limit being
uniform (§ 7).

Now, by their definition, no two of the functions fdx) have an infinity-
at the same point; therefore their sum is, like each of them, continuous
throughout the whole interval (B, G); in each of the intervals (Bi, d) it
differs from F(x) only by a constant, say Kit and in each of the re-
maining, intervals it is constant, the value in the interval (C*_i, JB»)
being, since the function is continuous,

F(Bi)-\-Ki = F(d-\)-{-Ki-\, or say K\.

Thus, if we define another function /,l+i (x) in the following, manner :—

fn+i(z) =• F{x)—K{ in the first interval (B, Bx)

= — Kx in the second interval (Bv Gx)

= F{x)—K2 in the third interval {Gx, B2)

= — K2 in the next interval (B2, C2),

and so on, this function will be continuous throughout the whole interval
(B, G), and will be finite, since F{x) is finite and continuous in each of
the intervals in which fn+\(x) is not constant. Hence, by Weierstrass'
theorem, we may write

the convergence of the polynomial to its limit being uniform.
The sum of fn+i{x) to the, sum of the n functions f {x), will then be

F (x) at every point, thus

F(x)= Lt — 1 — + Lt _-!_- + . . . + Lt - 1 — - f Lt P»+i.r(a0.

Since, in this sum of limits, no two of the limits are infinite at the same
point, the sum of the limits is the limit of the sum. Also, since each
rational function converges, or diverges, uniformly throughout the whole
interval {B, C), the same is true of the sum. Thus, finally,

the convergence, or divergence, being uniform, which proves the theorem.
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10. We conclude by pointing out that the formulation of uniform
approach to a limit throughout an interval given in § 4, givee us a
corresponding formulation of the property of uniform continuity applic-
able to any continuous non-finite function. For continuity at a point P
is neither more nor less than uniform convergence, or divergence, of
f{x-\-h) to f{x) at the point P. The continuous variable h which
approaches in any manner the limit 0, takes the place now of the dis-
continuous variable n approaching its limit + <x>.

Thus, if fix) is continuous at every point x of a finite closed interval,
we can, corresponding to any given division of the y-axis into a finite
number of segments, find a value of h, for which and all smaller values,
the points . , , •

y=f(x) and y=fix+h),
lie in the same segment, or in the same pair of adjacent segments of the
y-axis, this segment, or pair of segments, being determined only by the
'particular point x chosen.

We can, if we please, further modify the wording so as to permit of
the point x = oo entering as an internal or end-point into the closed
interval of the a;-axis in which the function is continuous.


