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ON THE DISTRIBUTION OF THE SET OF POINTS (A.60)

By R. H. FowLez.

[Received and Read June 1ith, 1914.]

1. In a paper on “ Some Problems of Diophantine Approximation”,
recently published,* Messrs. G. H. Hardy and J. E. Littlewood have
investigated in detail the distribution of the set of points (A,0) [(A,0) de-
notes the fractional part of A, 8] in the particular case in which

A, =a”,

where @ is an integer greater than 1, and »n takes the values 1,2, ..., > ».
The authors point out that this is equivalent tu studying the distribution
of the digits in the expression of @ as a decimal in the scale of a, and it
is this view of the problem which is the more interesting in this particular
case, and on which they concentrate their attention. In the following
paper some of these results are extended, by means of an adaptation of
Messrs. Hardy and Littlewood’s arguments, to the set of points resulting
from any sequence A, which satisfies the inequalities

(1) Aot S BT (0 Sy,

where {is any number > 0, and 8> 1. It is easily verified that these
inequalities imply that

(2) A > exp(HnS) > ny),
where H is a constant. Of course the relation (2) does not imply the
relations (1) ; but, fo give some idea of the range of applicability of the

results that we shall obtain, we may say, speaking roughly, that owr
theorems apply to suffictently regular sequences which increase faster than

exp (nf)

Jor some positive value of §.
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In the particular case discussed by Messrs. Hardy and Littlewood,
there are, as we have mentioned, two ways of regarding the results
which are both of great interest. In the more general case, though the
discussion proceeds by the construction of a quasi-decimal expression for
0 and the determination of the distribution of the integers employed
(corresponding to the digits in a decimal), this aspect of the problem is
no longer fundamental, and the results must be exhibited from the other
point of view.

Messrs. Hardy and Littlewood prove the following theorems :—

TaroreM 1°48.*—1It is almost always true that, when a number & s
expressed in any scale of notation, the number of occurrences of any diget,
or any combination of digits, is asymptotically equal to the average num-
ber that might be expected.

Tarorem 1'481.%—1I¢ is almost always true that the deviation from
the average in the first n places of decimals, is not of order ecceeding

v/ log (n).

TrEOREM 1°482.*—1It is almost always true that the deviation, in both
directions, is sometimes of order exceeding a/n.

TraroreM 1'483.*—The number Ay, of the first n numbers (a0) which
fall inside an interval of length 8 included in the interval (0, 1) is almost
always asymptotically equal to on.

In these theorems, a statement is said to be almost always true when
it is true for all @'s between O and 1, with the excdeption of a set of
measure zero.

Theorem 1°483 is, of course, practically the same as Theorem 1'48,
regé,rded from the other point of view. Messrs. Hardy and Littlewood
suggest that it may be possible to give corresponding forms to Theorems
1-481, 1482. 1t is, however, very doubtiul if this can be done.

In the case of the more general sequences considered in this paper, I
shall prove theorems which are to a certain exfent analogous to
Theorem 1°481, and strictly analogous to Theorem 1°48. They differ
from strict analogues of Theorem 1°481 in that there seems to be no
way of proving—at any rate' by Messrs. Hardy and Littlewood’s methods—
that the error term is of an order so small as 4/zlog(®). I have not
succeeded in proving any analogue of Theorem 1'482 for these general
sequences.

* These theorems are s¢ numbered in the paper referred to, p. 190.
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2. We shall start by considering sequences for which
)\n/An—l > Bn (n > no),

where 3 is a constant > 1; we can then extend the theorems so obtained
to less restricted sequences by another argument. There will be no loss
of generality in supposing that n, = 2, and A, > 1.

Let G be any integer conveniently chosen. G will eventually be made
large, but for the present it is to be regarded as fixed. Let

n = n,+4,

and consider the sequence (A;0) which is formed by omitting the first n,
terms of the old sequence (A, 8). If n; be so chosen that

B> a,
i.e., if n, = log (M/log (B),
the new sequence will satisfy the inequalities
Aifhioy > G,
for all values of T3>

Let a be the greatest integer contained in 4/G. Then the A’s in our
new sequence (A;0) satisfy the inequalities

A AN <Ay < g ee. < A < AN < Nisr < e

By means of this increasing sequence of numbers, we can bnild up a
quasi-decimal expression for 8 which will enable us to make use of Messrs.
Hardy and Litflewood’'s arguments, and so to obtain the desired resulf.
The possibility of the required expansion is established by the Lemma of
the next section.

8. Let [#] denote the integer next less than z, so that when z is not
an integer, o> [z]> o1,

and when z is an integer,
[z] = z—1.
Let us also write
(8) [z] +1 = z+(@);

(x); will satisfy the inequalities

1 > (‘.E)f> 0.
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Let K denote the set of expressions of the form
- 1 7 ; )
4 — i X,
@ En ottt

where ¢; takes any one of the values 0, 1, 2, ..., [Aj/aX;_1],* x; any one
of the values 0, 1, 2, ..., a—1, and x; is that number satisfying

1>w7~>0,

i—1
whieh is such that A 2 X { bs+ % +.r, : ~+x;
c={ &

is an integer. Referring to the equation (8) we see that

, . i—1 1 ( L )
(5) s= (N 1 at X)),

For given values of ¢, ... ¢i_1, x1... Xi—1, the values of &, ...x; are
uniquely determined and can be calculated in order, beginning with z,,
by means of the equation (5). A change in the values of ¢; and x; will
therefore not affect the values of x,... x;, though, in general, the values
of riy1, £ive, ... will all be changed. It may be observed that x, = 0.

Any expression of the form (4), in which all the ¢’s and x’s affer a
certain stage are zero, will be spoken of as a terminating expression,
though, in general, of course, such an expression will contain the non-
terminating convergent series

It is easily seen that the series (4) will in all cases converge, and so will
always represent a definite positive number.

Let yz; be the value assumed by x; when all the ¢’s and all the x’s
have their greatest permissible values. Let A denote the sum of the
convergent series

- Gy & L (AN 4
6) SR WL W (axi-) STt

Then Al> 1.

We shall prove the following Lemma :—

Lemma I.—Every member of K 'represents a definite number between
0 and A inclusive.

Comnwersely every number between 0 and A wnclusive is represented by
at least one member of K.

* Ailar; .1, when ¢ =1, is always to be taken to represent A;.
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It is an obvious consequence of Lemma I that K is a set of
measure A.

We have already pointed out that any member of K denotes a definite
number €. Consider the change produced in any member % of K by
adding 1 to any ¢ or x which has not its maximum value, to x. for
example. We have

Lt xig s L0 X g

k<12] . ,¢L+a+w,,+;2§+l " (¢,,+a+1),

A N R : |
and k >i§1 A: (¢l +£’ + +f?+1?\ ‘¢'+a1’

where the ¢’s, x’s, and z’s are the same in both expressions. Therefore

E—k>1/ax,— 2 (/N9

i=841

But it is easily seen that

E (l/x) < (1/)\“_‘) 2 B—:(s+1) —_ I83+1/>\ {B‘Hl_l:"

i=s+1

Now BB+ 1—1; < B/{B—1],

and As1 > A/ G alg,

so that, provided G be greater than a certain constant depending only on 3,
E—k>0.

Therefore any member of K is increased by increasing any one of its con-
stituent integers. The first part of the Lemma is an immediate conse-
quence of this, for it follows that every member of K is less than the
number obtained by giving their maximum values to all the ¢'s and x’s,
and it is easily verified that the number so formed is A as defined by (6).

To prove the converse, suppose that 0 is any number << A. Since the
sum of the series (4) is increased by increasing any of its constituent
integers, and since the sum is A when all these integers have their maxi-
mum values, it must be possible to determine the first ¢ ¢’s and the first
g x's in such a way that

q 1 _( . -& ) @ .E_ " .—1— ( &
El A i¢’+a+w‘f+ 2 1 A <9<1‘§1 s (¢'+a+£ll
0 1 ‘

+i=2q:+1 N 1 “7\1 1 +1 +Lj )

The first ¢ terms on each side agree exactly, so that the first ¢+1 x’s
SER. 3. VOL. 14, w~o. 1233, o
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are the same on each side ; there is, however, no reason to suppose that
the later values of #; will be the same on both sides. This fact is indicated
by writing «; for z; in the later terms on the right. This choice of the
¢’s and x’s may be effected by giving to each ¢ and to each x in turn the
greatest possible value that leaves the expression

q »

Xi Li
i= 1 >\i (¢z+ +J'"-|—'%1+1->\_i
not greater than 6 at each stage of the process, which can be continued
indefinitely if no case of equality ever occurs. If a case of equality does
turn up, we have a terminating expression of the form (4) for 6. If no
such case turns up, we construct thus a definite convergent series which
is such that the difference between the sum of its first ¢ terms and 6
tends to 0 as ¢ > o. It therefore represents the number 6, and the
truth of the Lemma is established.

4. The set of terminating expressions included in K is enumerable,
and therefore is a set of measure zero. We shall in future consider only
the set K’ of non-terminating expressions included in K, which conse-
quently i8 a set of measure A. It should also perhaps be pointed out
that we have not proved that more than one member of the set K’ cannot
represent the same number 6. It can, in fact, be shown that more than
one member of K’ can represent the same 0 (at least for some values of 6)
except when all the members A;/aX;_, are integers. Consequently the
relation between the set K’ and the set of numbers 0 between 0 and A,
whiech cannot have a terminating expression, is & many-one, not a one-one
relation. This fact, however, need not concern us further, for the follow-
ing reason. For we proceed to prove theorems about almost all members
of K', and the fact that the relation may be many-one does not prevent
us from deducing the corresponding theorems about almost all the 8s.

5. All members of K’, whose first » ¢’s and first » x’s have assigned
values, can be enclosed in an interval whose length is certainly not greater
than I,, where o 1

L= 3 = [

i=v+1 A’I,

Jra- .

Q/AL 1

On using the equation (3), we find that

(M I, =
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Among the terminating expressions (in number ),

*w

2L it Xt 3o

i=p+1 A’i ’
in which the ¢’s are assigned and the x’s are not, there will be p(v, m) in

which y; takes the particular valne & for exactly m values of ¢, where

1

14

M § Y v—m %
y ie—1pm

® pl,m) = m! {v—m}!

All such members of K' can be enclosed in intervals of total length
< p@, m)I,. Consequently all members of K' whose first » x’s contain
exactly m b’s can be enclosed in intervals whose total length L, satisfies
the inequality

9 L, < ﬁ 114+Mfanioil} L pQv, m).
i=1
On using the equations (3) and (7), this becomes
a)\i_l hi ]]
[1]11 ( 1 + Ai ((])\,;_1)}' }
1 ¢

X[l—{—a s }\—-:t1+<—7""—) \:la”"p(v,m)

i=p41 a/>\v, v r)

Now we have assumed that
Ki/xg_1 > GBi;

and therefore

w

(10) L, < {1+2/3—v b /3-"<v+1>} I {148} a= p, m),
r=0 r=1

< Ma~*p(, m),
where M depends only on 3.

6. We can now treat the set K’ in exactly the same way as Messrs.
Hardy and Littlewood treat the set of irrational numbers expressed as
decimals in the scale of a. Wae shall need, however, to revise the Lemmas
on which the discussion is based, since it will be necessary to let ¢ — .

Let ny) = m—v/a,

80 that u () is the excess of the number of &’s above the average. We

* Loc. cit., 1-441,
o 2
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proceed to prove that—

Leyxua IL—If f() is any function of v that — o with v, and satisfies
the inequalities 1 <f6) <vja—1,
then, for all values of v,

a~" b pv, m); < My/{av) exp | —}al f0)P/v},

@) > f0)
where M is a constant independent of a, v, and f(v).*
Let us consider values of u(»), such that
w@) > f),
where f(v) is positive, so that
m S vja+f o).
Then p@, m+D/p, m) = {v—m}/{a—1; jm+1,
< tria—1}—af®)}/{a—1; {v+af 0}
< 1.
It follows that, for all values of u(») > f(v),
»w,m <ply, vat+fo))]
!
JaF O b la—Fol !

Now it follows from Stirling’s theorem that, if s> 1,

< { la—1}7—reto),
K exp {(s+3) log(s)—s} > s! > kexp {(s-+3) log(s)—s},
where K and % are independent of s. Provided, therefore, that
v>1, vat+f)>1, v—rvjla—f)>1,
we have a~"plv,m) < Mvtexp {F [v,«, f]},

where M is independent of v, «, and f(), and F [y, «, f()] 1s a function
which can easily be reduced to the form

Flv, a, f)] = —{v/a! {(1+al) log (1+al)
+(@a—1—af)log[1—afla—1)]}
—4log i(l/a+OA—1/a—0O},

* This Lemma is merely an adaptation of Lemma 1'444, loc. cit., p. 185.
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where = fv.
The coefticient of —»/a in this expression may be written in the form

4 =00+x)log1+2)+(@—1—21) log[l—2z/(a—1)],

[V

where £ = af.
On differentiating 4 twice with respect to «, we find that
d*Ajdr®* = al | (a—1—x)(1+x) |,

while 4 and d4/dx both vanish when z = 0. Therefore, provided

x <1,
i.e., provided fo v < 1/a,
we have BAlde* > 3,
and A = 3?3 [@A]dx* )0 (0 <O <),
so that 4 > 2a?l2

Henece it is easily deduced that
a~'p W, m) < M ajv}rexp{—%a [f)]*/v},

where M is a constant independent of @, v, and f(»), if the necessary pro-
visions are complied with. Similar arguments can be applied to the

- which ,

terms for whie wl) < —f0),
provided vS1, va—fe)S1, v—vfa+fe) > 1.
All these conditions are covered by the conditions of the Lemma. Since
the total number of terms < », the truth of the Lemma has been estab-
lished. ‘

7. Lemma II leads at once to the following theorem :*—

TaeoreM I.—Any member of the set K', which is such that

| w()| <€ {47vlog W/a}?,

for all values of v = n, where T is any number > 3, can be enclosed in a

#* Loc. cit., Theorem 1'45.
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set of intervals whose total length is less than
Matni-,
where M is a constant independent of a and n.

We omit the proof of this theorem, for it is a mere repetition of the
proof of the corresponding theorem in Messrs. Hardy and Littlewood’s
paper.

From this theorem, it follows at once that the numbers 6 between 0
and A, or between 0 and 1, which are such that their expressions in the
form (4) do not satisfy the inequality

te®) | < {47vlog /at?,
for all values of v > n, form a set of measure less than

Ma'nd~" (r> 3.

8. We have now to transform this result into a theorem about the
distribution of the points (A\;6) over the interval (0, 1).

— X s Lol Xig, )
We have (7\.,6) = @ +7\,, o Ai k¢z+ @ +JUL i
so that 0 <O —x./a <A <vyla,

where vy is a constant depending only on 3.

Now let ¢ be the length of any interval included -in the interval (0, 1),
and let «;, a;, be the numbers corresponding to its end-points. For any
given value of @, we can choose integers p;, ps, 41, ¢2 such that

nla > a, iqtyHe < ay,
{p2+y}/a<a2, %/“>a2s

where p;, ¢, are the least possible integers, and p, ¢, are the greatess
possible integers satisfying their respective inequalities. It follows that

a8 = py—py+0Q1) = ¢ga—q:+0Q).
Now, if P <X X P
the point (A\;6) must fall inside the interval ¢, while if it is not true that

< Xi <G
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the point (A;0) cannot lie in the interval . But if @ does not belong to
any one of a set of intervals whose total length is less than

M {qg—q,=—1} atnt—,

and if B, be the number of times than any integer b, (¢,>> b > q,), oceurs
among the first v x’s (v > n), then B, satisfies the relation

(1n B, = vjate{dmvlog®falt (Je| <D.

Let A, denote the number of the first v members (A;0) that fall inside
the interval 6. Then it follows from (11) that, if 8 does not belong to any
one of a set of intervals whose total length is less than

Matni=" (1> %),
then

(12) A, = [ad+0 M)} {v/a+e[4rv log /a]?! (je] < 1).

We have so far been considering the sequence obtained by omitting
n; terms from the original sequence, where

¢13) n, = O {log(a)}.

Taking these terms into account, we see that we have established the
truth of the following statement :—

If (.} be any sequence of positive numbers such that for all values
of n, MfAaa > B (B>1),

then, if 0 be any number between 0 and 1 which does not belong to @ set
of intervals whose total length is less than

o8
Mains—",

it follows that
(14) A, = 1a8+0Q1); {v/ja+e[dtviogw)/a]tl +O0:atlogla@)} (le|<< ),

Jor any value of v= n, and for any value of n> Hlog(a). M, H, and
the constants implied by the O's, depend solely uwpon B.

We must now choose the relative order of #» and @ in such a way that
the error term in the relation (14) is made as small as possible. The two
most important terms are of orders n/a and [an log (7))}, when v = n; to
make these of the same order (we shall thus achieve the best result), we

must take a =g {nflog)}},
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where ¢ is a constant. This being so, let. N be any large integer, and let
n=y=N,
@ =[{N/log (V) }*].

The necessary conditions will all be satisfied if N is greater than a certain
number 7, depending only on 8. Thus it appears that if 6 does not
belong to a set of intervals whose total length is less than

MN?ZT,
then

(15) Ay = N+e[rN {log)!¥] (e| <),

for all values of N > n,, where M, #, n, depend only upon 8.
We may now repeat the arguments used to establish Theorem I* and
deduce therefrom the following theorem :—

TaroreyM IL—The numbers 0 between O and 1 for which it is not true
that

(16) A, =dnterntllogm)]? (lel <),

Jor all values of n> N > n,, can be enclosed in a set of wntervals whose

total length is less than
MN3®" (r>8).

M, 3, and ny depend only upon 8.
Theorem. ILI, that follows, is an. obvious deduction from Theorem II.
TuroreM IIL—If {A.} is any sequence of positive numbers satisfying
AfApa >0 (B> 1),

for all values of n>> ng, if & is the length of any interval included in the
interval (0, 1), if 0 1is any number between O and 1, and if A, de-
notes the number of the first n numbers (A, 0) that fall inside the interval
d, then for almost all values of 8,

@amn Ap—én = O {n¥ [log m)]3}.

* Loc. cit., p. 186.
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9. We now proeeed to extend this result to less heavily restricted
sequences. Let !\, be any sequence of positive numbers satisfying

An/Ank] > B > 1,

for all values of n. [If necessary, a finite number of terms may be
omitted from the beginning.] We split this sequence up into an infinite
number of subsequences by placing in the first subsequence all terms
whose suffices can he expressed in the form

s (s+1) (s integral, and > 1);

in the second, all those whose suffices can be expressed in the form
14+3s(s4+1) (s integral, and > 1);

and in the »-th (» = 2), all those whose suffices ecan be expressed in the

form
r—143s4+r—2)(s+r—1) (s integral, and = 1).

Liet » be any integer, and N any integer satisfying
In(n+1) < N<$imr+1)n+2),

and let us consider the first N terms of the given sequence. Of these N
terms, 2 terms will be regarded as belonging to the first subsequence, and,
in general, n—»-1 terms to the »-th subsequence, while a certain number
will be left unattached. The system of division is perhaps made cleaver
by the following diagram showing the terms in the first few subsequences.

Number of Number of Suffix P
Subsequence. Terms taken. Formula. Suttices.
1 n 1s(s+1) 1, 3, 6, 10, ...
2 n—1 1+1s(s+1) 2, 4, 7, 11, ...
3 n-—~2 2+4(s+1)(s+2) 5, 8, 12, ...
4 n—3 3+1(s+2)(s+3) 9, 13, ...

Suppose we make use of all the subsequences which contain [a/7], or
more, terms in the above scheme.. The total number of such subsequences

will be n— (W],
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and the total number of terms accounted for by them will be
3 in+{valt in—{v/n]+11,
or n*40W).

There will therefore be at most O(n) terms left unattached among the
total namber N.
If {A,} denote any one of these subsequences, the terms of {\,} satisfy

As/xs—l > [83 (13 > 1);

for all values of s, the value of B being the same for all the subsequences.
It follows from this that, if #, and so N, be chosen sufficiently large (.e.,
if 7 = n,, where n, depends only upon 3), Theorem II can be applied to
each subsequence. The longest set of intervals of which exception must
be made is the set belonzing to the last subsequence, and its total length
is less than Mt 6=

the total number of such excepted sets is less than n. Consequently if 6
does not belong to any one of a set of intervals whose total length is less

than MntG-")

t.e., MNY6-7

="V n—[vn

(18) _‘\N::(?{ z ()L——)')}—{-O(n)-{r-e'r{ b ](n—r)ﬁ[log(n—'r)}*}

= r=0

(|€|< ”)’
= SN+Om+erniflogm)]t (Je] <m),

= SN+erNi[log(W) % (fel < n).

Without further comment, we may enunciate the folIowing extensions
of Theorems II and III:—

TaeoreM IV.—If (X, | is any sequence of positive numbers satisfying
AfAno1 = B> 1,
fdr all values of n = n,, then the numbers 8 for which it is not true that
A, = dn+ernilog (m)]* (e| <),

Jfor all values of n = N = ny, can be enclosed in a set of tntervals whose
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total length s less than MN:OD (> 9).

where M, n, and 1, depend only wpon f3.
TueoreM V.—If ‘N, } is any sequence of positive numbers satisfying
AH/AII—I > B > 1,

and the other conditions of Theorem [IT are unaltered, then for almost
all values of 6 between 0 and 1,

(19) Ap—6n = 0 {ni[log (n)]¥.

10. In the preceding section, a particular subdivision of the given
sequence has been worked out in detail in order to show how Theorems
II and III may be extended to the less restricted sequences contemplated
in Theorems IV and V. The use of a more powerful subdivision and
the application of identical argaments enables us to extend Theorems IV
and V (or Theorems II and III) to sequences which satisfy the inequalities

l1er

AfA—y = B NSny, (>0, B> 1).
Choose an integer £, so that
kB >1,
and let n, N be large integers such that

nn+1) ... n+E—1)
k!

<N< (n+1)(n+k2!) (-n-l-k)_

Then we divide up the original subsequence so that the first subsequence
contains terms whose suffices are of the form

s(s+1)... (s+Ek—=1)/kY (s integral, and > 1),

and take the tirst » terms of this subsequence, and s0 on as in the last
gection. The »-th subsequence will have suffices of the form

a+(s+B)6s+B41) ... s+B+k—1)/k!,

where «,, B, are integers depending on ». If we take all the subsequences
which have more than [4/n] terms, it may be proved that the number of
terms taken will be N+ON*-#,

where u is a positive number depending on k. If A, and A,., are eon-
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secutive terms of the »-th subsequence

AsfAs1 = 879,

6+B8) ... s+B,+k—2) A ]1_4
(k—1)! Gk FE+B) ... 6+ B+E—1)

where f(s) =

It may be verified that, whatever be the value of »,
Fl&) S s+ LD S 1,

provided that at most a finite number of terms be omitted from the sub-
sequence. We can therefore apply Theorems IV and V to each subse-
quence in turn, obtaining finally the following theorem :*—

TreoreM VI.—If (\,! be any sequence of positive numbers satisfying
M 877 (>0, 8> 1),

and the other conditions of Theorem III are wnaltered, then for almost
all values of 0 between 0 and 1,

A,—dn = Oint=*},
where u is some positive number depending on ¢.

11. We shall conclude the paper by considering the extension of the
foregoing results to the m-dimensional set of points whose m ecoordinates
are

Anbp), Anby), ...y (A, 60.).

The method * by which this extension is to be made will be sufliciently
explained by considering the extension of the foregoing theorems to the
2-dimensional set of points

M), N6y,

Let 8,, 6, be expressed in the forms (§ 3),

6=3 = ¢§"+ '+ .
Pl VIR
< 1 1 e

6,=3 < (¢f’+ C oL
i=1

* We could also have proved the same result by a continued application of the particular
subdivision k =%. This is clearly equivalent to confining ourselves to values of & = 2+
where « is an integer.

T This is the method used by Messrs. Hardy and Littlewood to establish Theorem 1:491,
of which the following theorem is the analogue.
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We suppose that Ahior S G (> 2),
and that a = [/G].

The point of coordinates (6, ;) will be any point in a square of side
A (> 1). We correlate this point (8, 6,) with the point

o= E e { P[RR ) et 2

=1 )\;’, a>\5_1 «

It is easily verified that v . may be any point along a line of length
A" (>1). Moreover, a set of intervals on the line of vV, ., of total
length L, may be shown to correspond to a set of areas in the (8,, 8y
plane of total area ML, where M is independent of the particular intervals
and areas concerned.

We now apply Theorem I to show that if BY? be the number of times
that the particular combination 6™ a+b5® oceurs in first v terms of the
expression for v 5, then

Bl? = yja*te {4mviog/a®lt (Je|] <),

for all (yr1,2)’s which do not belong to a set of intervals of total length
Mavi—r,

From this it follows at once that, if A? be the number of the first v
points whose coordinates are (\,6,), (A,,0,) that are included in any rect-
angle (included in the unit square) whose sides are of lengths &,, 8,, then

Apt={ad+ 0} 1ad+0) ] iv/a’te[drvlog 0} /a']}] (le| <),
unless |0, 0, belongs to a set of points of plane measure less than
Madyi—T,
From this point on, all the arguments can be repeated as before, and
the restriction

Aifhio1 > GBY

lightened in the manner of § 10. It is, moreover, clear that the arguments
can be extended equally well to the case of the m-dimensional set of points

* There is no need to insert the term z;, as we are not considering (A2y, »).
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16y, 0y, ..., 6.}, We may, therefore, without further preface, enunciate
our final theorem.

Taeorem VIL.—If {\,} be any sequence of positive numbers satisfying
A 3877 (>0, B> 1),
and if A, be the number of the first n points
M0, (WO, ..., (N6,

which lie inside an m-dimensional “ rectangle” of “ area’ &, then for
almost all the points {0y, 6,, ..., 0,,},

A,—dn = O {n'*},

where wu is some positive number depending on (.





