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In This Thesis:

The transit method is the most successful tool for exoplanet discovery to date. With
more than half of all known exoplanets discovered by Kepler using this method, the
mission also revealed a number of objects with dimming events that defy the common
explanations, the most prominent being KIC 8462852 aka “Tabby’s star”. I embarked
on a search for objects with such irregular transit signatures in the data of K2, the
two-wheeled successor mission of Kepler.

My method is a combination of automated pre-selection of targets showing downward
flux excursions and visual light curve inspection of the selected subset comprising about
1.5% of the initial sample. In addition, I developed a tool to constrain the effective
temperature of a planet-hosting star from photometry alone. This software finds broad
application in any science case where a photometric spectral type estimate is necessary.

I used existing transit models and Bayesian inference to perform a Markov Chain Monte
Carlo (MCMC) analysis of a planetary candidate I discovered. This putative gas giant is
in a 1.32 d circular orbit with an exceptionally tight orbital radius of a ≈ 0.012 AU. My
analysis revealed a scaled planetary radius of Rp/R? = 0.0927 ± 0.0026 and an edge-on
orientation with an inclination i = 89.8+3.0

−3.4. EPIC 217393088.01 is one of the closest-
orbiting exoplanets ever detected and the first giant planet with such a small orbital
radius.

An additional major finding of my search is EPIC 220262993, which exhibits aperiodic,
asymmetric dips in flux with rapid dimming rates and up to ∼ 25% depth, lasting for 2 d
to 4 d. In previous works based on optical and mid-infrared photometry, this object was
inconsistently classified as a possible quasar or a white dwarf. We conducted follow-up
observations both photometrically with GROND on the MPI/ESO 2.2m telescope in La
Silla (Chile) and spectroscopically with FIRE on the Magellan/Baade 6.5m telescope.
With additional spectroscopy using ESI on the Keck II 10m telescope we were able to
distinguish between these cases: EPIC 220262993 is a quasar with redshift z = 1.42.
This is the only known exemplar showing deep dips in flux on such a short time scale.
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1. Introduction

Venus transiting the Sun on June
5, 2012 as observed by Hinode’s So-
lar Optical Telescope. On the up-
per left, a faint arc from refraction in
Venus’ atmosphere is visible. Credit:
JAXA/NASA

Are we alone in the universe? This question is
as old as mankind. Already our distant ancestors
noticed a number of objects in the sky that be-
have differently than the rest. What drew their
attention was the curious, irregular movement of
these asteres planetai1 across the canvas of fixed
stars. For the Babylonians, they had to be gods.
But soon the idea arose that the curious wanderers
might be other worlds, similar to our own. Once
we had the tools, we set out to study them and
gradually assembled a picture of what lies beyond
Mother Earth’s surface. With the discovery of
Pluto (Slipher 1930), then still considered a planet,
the census of Solar System members was complete2.
Today, we have established a clear distinction be-
tween distant stars and the nearby worlds that in-
habit our home system.

However, as early as in the 16th century, Giordano Bruno formulated the idea that the
fixed stars are similar to the Sun and likewise accompanied by planets (Bruno 1584). This
possibility was passed on for centuries (e.g. Newton 1687), without a chance to obtain
empirical evidence. It was clear that the detection of these worlds could not be achieved
by conventional astronomical methods used for finding Solar System bodies, which were
identified by detecting the sunlight reflected from their surfaces (Struve 1952). In today’s
exoplanetary science, we call this technique direct imaging.

The question of extrasolar systems remained, but it was not until 1995 that Bruno’s
suggestion became reality when Mayor & Queloz reported the discovery of 51 Pegasi
b, the first known planet outside our home system orbiting a Sun-like star. It was
found via the Radial Velocity (RV) method, where one measures the Doppler shift from
small velocity changes of the host star that are caused by the gravitational pull of an
orbiting secondary body. This discovery ignited one of the most substantial developments
in astronomy in the last decades leading to the emergence of the fast-moving field of
exoplanetary science. By the same technique, we learned only recently that the closest

1Greek: “wandering stars”
2However, see Batygin & Brown (2016) for evidence of the contrary
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1. Introduction

star to the Sun, Proxima Centauri, is orbited by a terrestrial planet (Anglada-Escudé
et al. 2016).

While in the beginning RV was the predominant tool for finding new planets, it was soon
joined by the transit method, which relies on precise measurements of the amount of light
emitted by a star, and thus became only viable with a new generation of instruments with
unprecedented precision (Sackett 1999). During a transit, a celestial body blocks part
of the light emitted from a star when it passes in front of it. If such dips in brightness
occur periodically, one can infer the presence of an opaque body orbiting this star. As
the name suggests, an RV measurement only takes into account the radial component of
the Doppler signal, i.e. an observer detects only the movement of the star along the line
of sight (Struve 1952). Since there is no information about the relative inclination i of
an unresolved system, such a measurement can only put an upper limit Mp sin i on the
planetary mass Mp. The only other knowledge about an RV planet are its orbital period
P , its eccentricity e, and the argument of periastron ω (Kipping 2011).

In contrast, from transit photometry alone one can infer a number of additional proper-
ties. The shape of the transit signature contains information about the orbital period,
radius, and inclination, the (scaled) planetary radius, and even about the brightness
profile of the parent star due to stellar limb darkening (Sackett 1999, see Section 4.3.4).
Transit light curve models can be used to characterize both a planet and its host star
(Hubbard et al. 2001) and consequently yield constraints on planet formation (Cody &
Sasselov 2002). If observed in more than one wavelength band, transit light curves can
even reveal temperature profiles and atmospheric composition of planets (e.g. Seager &
Sasselov 2000; Sing et al. 2011). With the harvest of thousands of new planets through
the Kepler mission and its successor K2, the transit method has become the most suc-
cessful tool planet hunters have at hand. For the first time, exoplanet scientists have
a tool capable of detecting and characterizing Earth-sized planets around Sun-like stars
(Koch et al. 2010). Designed specifically for this goal, the Kepler pipeline searches for
transit signatures of planetary origin (Jenkins et al. 2010).

In addition to these “canonical” signatures, there have been discoveries of aperiodic dips in
flux. A distinct class of objects with such features called “dippers” has been identified as
being young low-mass stars with protoplanetary disks (e.g. Herbst & Shevchenko 1999).
A similar behavior has recently been reported for the white dwarf WD 1145 + 017, which
exhibits short, asymmetric dips of up to 40% of the total flux that have been interpreted
as transits of disintegrating planetesimals (Vanderburg et al. 2015a; Xu et al. 2016). One
of the most confounding discoveries of Kepler is KIC 8462852, also known as Tabby’s star,
an apparently typical F3V star (Lisse et al. 2015) that shows completely unpredictable
dimming events with a depth ranging from . 1% to more than 20% (Boyajian et al.
2016). While dippers appear to be common (Ansdell et al. 2016), WD 1145 + 017 is the
only observed object of its kind, and there is no analog for the anomalous dips of KIC
8462852 to date. The discovery of similar events would thus be a significant addition
to the available sample. For this reason, I carried out a search for deep and aperiodic
dimming events in the K2 long cadence database.

2



In this thesis, I report two discoveries and the methodology of their finding: First, a
previously unknown short-period exoplanet candidate in the hot Jupiter regime. Second,
a potentially extragalactic object that shows irregular dips in flux of up to ∼ 25% on
timescales of a few days. I give a brief overview with relevant background on transit
photometry, the Kepler and K2 missions, and analysis techniques in Chapter 2. Chapter 3
deals with the software I developed for this project. Next, I describe the detection and
investigation of the discovered transit events in Chapter 4. In Chapter 5, I discuss the
implications of my findings and provide an outlook for possible follow-up actions.
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2. Transit Photometry

Although extrasolar transits have only been detectable for a few decades, they already
served as a tool in a variety of astrophysical subfields, ranging from exoplanet detection
(e.g. Charbonneau et al. 2000) to stellar activity (e.g. Basri et al. 2011) to the search
for time variations of the gravitational constant (Masuda & Suto 2016). This chapter
is intended to provide background information to the main topic of my thesis project,
which is the detection of transit events observed with the Kepler space telescope and
their subsequent interpretation.

2.1. Transiting Exoplanets

Throughout this thesis, I make the reasonable assumption that the distance to an extra-
solar system is much larger than the orbital radius of any bodies orbiting in this system.
This entails an important implication: The light from a host star travels on parallel
paths to us, and thus the missing flux δ due to the transit becomes independent of the
orbital radius. Following Mandel & Agol (2002), I model transits of an opaque and dark
sphere (“planet”) that eclipses a spherical star. I will further assume a small planet-to-
star ratio, Rp/R? < 1/2, so that there is a finite time interval during which the planet’s
disk lies entirely inside the stellar disk if the transit impact parameter b < 1/2R?. Here,
Rp and R? are the planet and star radius, respectively. The overall shape of a transit
event is then determined by four contact points, at which there is a discontinuity in the
time derivative of the light curve (Kipping 2011, compare Figure 2.1). Points I and IV
correspond to the times when the sky-projected distance d between host star and planet
equals the sum of their radii, d = R? + Rp. At the “inner” contact points II and III, we
obtain d = R? −Rp.

2.1.1. Observables and Science

If we are fortunate enough to observe the transit of an exoplanet, we obtain access to a
wealth of information about the planet, its orbit around the host star, and the star itself.
Transit photometry is also a very productive method to discover new planets (Winn
2010).

5



2. Transit Photometry

Figure 2.1.: Simplified transit geometry and light curve features. The schematic diagram
illustrates the observation of a transit at the contact times tI to tIV. The transit duration T
and the ingress and egress time τ of the corresponding light curve are largely determined by
the impact parameter b. Credit: Winn (2010)

Orbit Orientation

The very fact that we observe a transit tells us that we look at the system nearly edge-on:
Its inclination i must satisfy

r cos i < R? +Rp, (2.1)

with the orbital radius r at the time of transit (adapted from Sackett 1999). With
photometry sufficiently resolved in time and flux, we can infer additional information from
the shape of the brightness dip; e.g. the shape of the ingress and egress phases further
constrain i. For a planet with RV data, a measured inclination puts constraints on the
planetary mass Mp, for which we get only a lower limit Mp sin i from RV measurements
alone (Boffin 2012).

Transit Depth

The incident flux F0 from an isotropic, spherical radiation source is proportional to its
projected circular area, F0 ∼ R2

?π. Similarly, for a planet crossing the center of a stellar
disk (b = 0) of uniform brightness, the missing flux during mid-transit obeys δ ∼ R2

pπ.
For a Sun–Earth analog transit this amounts to 84 parts per million (ppm) (Koch et al.
2010). Hence, the transit depth is given by

δ = 84 ppm

(
Rp

R⊕

)2( R?
R�

)−2

, (2.2)
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2.1. Transiting Exoplanets

when expressed in terms of Earth radii R⊕ and Sun radii R�, respectively. An absolute
value for Rp can only be obtained if R? is known, e.g. from stellar spectral typing or
interferometric observations.

Transit Duration

The durations of planetary transits are usually of the order of a few hours, and they
are separated by intervals lasting days to years. If the orbital period P of the planet is
known, e.g. from observing multiple eclipses, the transit duration T can be calculated
from the fraction of the orbital path for which the planet appears in front of the disk of
its host star, which is the arc γI,II between contact points tI and tIV. From geometric
considerations (Sackett 1999), the transit duration for a circular orbit is

T =
PγI,II
2πa

=
P

π
sin−1

(√
(R? +Rp)2 − a2 cos2 i

a

)
. (2.3)

If the semi-major axis a is much larger than the stellar radius R?, γI,II can be approxi-
mated by a straight line of length 2R? (Haswell 2010). In this case, the transit duration
approaches

T
a�R?≈ P

π

√(
R?
a

)2

− cos2 i ≤ PR?
πa

. (2.4)

We can immediately see that the longest duration is reached at b = a cos i = 0, i.e. with
a perfect edge-on orientation of i = 90◦. T also places a lower limit on the orbital period.
From Kepler’s third law,

P =
√

4π2a3/GM?, (2.5)

with the gravitational constant G and the stellar mass M?. This implies a lower limit on
a as well.

Multiple Transits

If we observe more than one transit, we can directly infer the orbital period and use
Equation 2.3 to determine i from the observed transit duration. Under the assumption
that the geometry of the involved bodies and their orbits has not changed between two
observations, we can improve the significance of the detection by folding the light curve
about the period (compare Figure 4.3).

Wavelength-Dependent Signals

When observed in different wavelength bands, a transit signal can even reveal infor-
mation about the temperature profile and atmospheric composition of a planet (Winn
2010). Researchers have just begun employing Transmission Spectroscopy, a technique
that takes advantage of the wavelength-dependence of features in extrasolar atmospheres.
The typical approach is to create wavelength-dependent light curves by using different
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2. Transit Photometry

filters or a spectrograph, fit transit models to each of the light curves, and use the ob-
tained wavelength-dependent transit depth δ(λ) to build a transmission spectrum (Winn
2010).

Using this young technique, researchers have been able to report temperature profiles (e.g.
Sedaghati et al. 2016), to test the existence (e.g. Sing et al. 2011) or absence (e.g. Fischer
et al. 2016) of atmospheric clouds and hazes, and to probe the chemical composition of
exoplanet atmospheres (e.g. Evans et al. 2016). With the James Webb Space Telescope
(JWST) operational within this decade, we can expect the detection of a large number
of new molecular species and possibly even biosignatures (Seager et al. 2005).

Transit Timing and Duration

Another observable becomes available if more than two transit events can be detected. A
variation of the times when the transits occur indicate gravitational perturbations from
additional bodies in the system. These transit timing variations (TTVs) are generally
of the order of a few seconds (Haswell 2010) and thus hard to detect. However, for
planets in a mean motion resonance they can amount to several minutes. A number of
planets have been found using this technique (e.g. Schmitt et al. 2014). TTVs, as well as
variations of the transit duration (TDVs), are also discussed as a possible tool to detect
extrasolar moons through their gravitational pull on the planet (Kipping 2011).

2.1.2. Characteristics of Host Stars

The information one yields from transit photometry in a single frequency band alone is
limited. Absolute values for planetary parameters, and a complex understanding of an
extrasolar system as a whole, can only be obtained with knowledge about the star within
this system. Stellar properties depend mainly on the effective temperature Teff and the
surface gravity log g, which enable us to estimate the stellar radius R? and hence the
size of an opaque transiting body. For the majority of K2’s targets, and largely due
to their faint apparent brightnesses, there are no spectra available that would enable a
precise measurement of Teff . In Section 3.2, I introduce a tool that solves for the effective
temperature using only photometric data in multiple bands, which are much easier to
obtain than spectra. The program TeffFit fits photometry to template stars with known
color-temperature relations.

2.1.3. Detectability of Transits

To evaluate the limits of photometric transit detection, we consider the case of a transiting
exoplanet, which can be treated as the occultation of a circular disk by another much
smaller one. The possibility of detecting an observed planetary transit depends on the
photometric sensitivity of the instrument, on the properties of the transit event itself, and
on the intrinsic stability of the host star. An instrument’s sensitivity is largely limited by

8



2.2. Analysis of Transit Events in a Bayesian Framework

the minimum difference in relative flux ∆Frel that can be resolved. The most significant
physical attributes of the transit are the apparent magnitudem and radius R? of the host
star, the radius of the planet Rp, the impact parameter b, and the transit duration T . I
will ignore the third constraint for now; for the difficulties of detecting planets around
active stars see Alonso et al. (2008).

Assuming that the cadence is high enough to detect even transits of short duration, i.e.
the transit always consists of more than one data point, one can determine a lower detec-
tion limit for the planet-to-star ratio Rp/R?. That means if we know the radius of a given
host star, we can estimate how small a planet may be while still being detectable with
K2 photometry. Comparing the right hand side of Equation 2.2 with the instrument’s
photometric sensitivity S, we find that the condition for detection is

S
!
≤ δ =

R2
p

R2
?

. (2.6)

2.2. Analysis of Transit Events in a Bayesian Framework

In transit photometry, our data consists of a time series ~y = (y1, . . . , yn) with measure-
ments yi at time ti. We denote the predictions of a model by ~f = (f1, . . . , fn), where
fi = f(ti, θ) is the model function with a set of parameters θ. In practice, we have a fixed
observed data vector ~y but unknown or insufficiently constrained model parameters θ.
The probability density function (PDF) in this situation is called the likelihood function
L(θ) (Cubillos et al. 2016). This distribution function contains all of the evidence in a
sample relevant to model parameters (G. A. Barnard 1962). In order to infer the best-fit
parameters, we need to find the θ that maximizes the likelihood, i.e. θ̂ = max

θ
L(θ). For

the case of a Gaussian process with uncorrelated (“white”) noise, the likelihood function
becomes

L =
n∏
i=1

1√
2πσ2

exp

(
−(yi − fi)2

2σ2

)
, (2.7)

where the noise parameter σ specifies the width of the distribution. Maximizing this
likelihood is equivalent to minimizing the chi-squared statistic

χ2 =

n∑
i=1

(
yi − fi
σ

)2

. (2.8)

In transit photometry, σ is often estimated by measuring the standard deviation of the
time series obtained when the transit not occurs. This approach describes the uncertain-
ties of the data sufficiently only when the underlying noise process is Gaussian, stationary,
and uncorrelated (Carter & Winn 2009).

9



2. Transit Photometry

2.2.1. Bayesian Inference

With the approach of Bayesian inference, new information updates the probability for a
hypothesis. A prior distribution incorporates previous knowledge about the parameters
of interest. We are interested in the posterior distribution, which is the conditional prob-
ability distribution on the parameter space given the observed data (Kipping & Sandford
2016). We obtain it by applying Bayes’ theorem, where the posterior distribution is given
by

P (θ|~y) =
P (~y|θ)P (θ)

P (~y)
. (2.9)

Here, P (~y|θ) corresponds to the likelihood function L(θ), and P (θ) is the prior probability
distribution (hereinafter referred to as “prior”). The marginal likelihood or evidence
P (~y) is often a complex integral. It is independent on θ and hence it is usually ignored
for the task of parameter estimation. As a consequence, the posterior distribution is
proportional to the product of likelihood and prior. The latter encodes the existing
knowledge we have before the new data ~y is observed. By this dependence, Bayesian
inference embodies Occam’s razor by demanding extraordinary empirical evidence for
extraordinary hypotheses (A. F. M. Smith 1980).

2.2.2. Prior Distributions

One can distinguish between informative and uninformative prior distributions. If the
likelihood function is weakly informative compared to the prior, the posterior will have
a high dependence on the prior. Such a likelihood is the case when considering low
signal-to-noise ratio (SNR) data and motivates a careful choice of an informative prior.
The contained prior knowledge can arise either from earlier studies or from theoretical
predictions of observables (Feigelson & Babu 2012). If, on the other hand, the data has
high SNR, it is justified to spend little effort on defining the prior and choose an un-
informative distribution (Kipping & Sandford 2016). Uninformative priors assign equal
probability to all possibilities, i.e. P (θi) = (b−a)−1 for a lower bound a and upper bound
b of a single parameter θi. Often, a “flat” prior that assumes a = −∞ and/or b = +∞
is being used. This is technically an improper prior since P (θi), being a (normalized)
probability distribution, equals to zero everywhere. However, when the posterior is ob-
tained by a Monte Carlo sampling procedure, the acceptance probability is insensitive to
a or b (compare Section 2.2.3). Thus, an improper prior can be a valid choice as long as
the posterior remains proper (Kass & Wasserman 1996). Sometimes it is appropriate to
deploy physical bounds for a and b, e.g. 0 < e < 1 for the eccentricity of a closed orbit.

2.2.3. Monte Carlo Sampling

In a Bayesian framework, one can use repeated random sampling (referred to as Monte
Carlo methods) to obtain credible regions for the parameters of a model. The goal
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2.2. Analysis of Transit Events in a Bayesian Framework

is typically to approximate the posterior distribution P (θ|~y) of a set of parameters θ
(compare Equation 2.9). Various strategies have been used to obtain a sample whose
distribution is representative of this target distribution. A common approach is to sample
from a proposal density Q(θ) that is similar to P (θ|~y). This becomes difficult in cases
where the shape of the posterior is complex or unknown. In this regard Markov chains,
which represent a random walk with each state in {θ(j) | j ∈ 1, 2, ..., N} only dependent
on the previous step θ(j−1) (Kroese 2011), have proved useful. A Markov chain is the
core element of a Markov Chain Monte Carlo (MCMC) sampler, which generates a large
number of random samples from the parameter space spanned by θ with a probability
density that is proportional to the posterior (Cubillos et al. 2016). Thus, a histogram
of the samples in the Markov chain approximates the posterior. In the limit N →
∞, this histogram equals the target distribution (Kroese 2011). From Bayes’ Theorem
(Equation 2.9), we know that the evidence P (~y) is independent of the model parameters
θ. Hence, there is no need to compute P (~y) unless one aims to compare the validity of
different models (Kipping & Sandford 2016).

One of the most widespread MCMC techniques is the Metropolis-Hastings algorithm
(Metropolis & Ulam 1949; Metropolis et al. 1953). In brief, it does the following:

1. Start at a position θ(j) in parameter space where the posterior probability P (θ(j)|~y)
can be computed

2. Draw a tentative next state θ(j+1) from a proposal density Q(θ(j)) and compute
P (θ(j+1)|~y)

3. Compute the acceptance ratio α = P (θ(j+1)|~y)

P (θ(j)|~y)
.

• If α > 1, accept the new state and add the parameters θ(j+1) to the Markov
chain

• If α < 1, accept the new state with probability α

4. Repeat steps 2 to 4, until j = N

Note that Q(θ(j)) depends only on the current state. It can be any fixed probability
density, it is not necessary that it is similar to the target density (MacKay 2005). The
technique implies that successive samples are not independent from each other. To obtain
a list of effectively independent samples from P (θ|~y), the algorithm has to run for a large
number of iterations. The convergence time especially suffers from parameters that are
highly correlated among each other, which can lead to biased results (Maceachern &
Berliner 1994). The autocorrelation of samples can be mitigated by thinning the Markov
chain, i.e. keeping only every nth sample of the chain. We can measure the convergence
of an algorithm, and thus estimate the required number of iterations, by determining the
autocorrelation time (Foreman-Mackey et al. 2013).

Since a realistic MCMC procedure has a finite number of iterations, there is also a
dependence of the approximated distribution on the starting point in parameter space.
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To minimize the effect of initial parameters that were chosen far from the equilibrium
distribution, one can discard an initial portion of the chain, the burn-in phase.

2.3. The Kepler Mission

The Kepler spacecraft was launched on March 6th, 2009 with the primary objective
to search for Earth-like planets in the habitable zone of their host star by detecting
transit signatures with high-precision time-series photometry (Borucki et al. 2005). This
goal can be achieved by a parts-per-million photometric precision and a near-continuous
cadence of ∼ 30min (Koch et al. 2010). During its operational lifetime, Kepler observed
a single 116 square degree field of view (FOV), which contains 223,000 stars with visual
magnitudes mv < 14 of all spectral types and luminosity classes. About 136,000 of them
are estimated to be main-sequence stars (Monet 1996).

The Kepler mission yielded 4747 planetary candidates, of which 2331 have been confirmed
as planets. 297 candidates and confirmed planets are in the habitable zone of their host
star1. This makes Kepler the most successful planet finder mission to date.

In addition to exoplanet science, the data collected by Kepler bear scientific potential
in other astrophysical fields such as asteroseismology (Bedding et al. 2011), stellar activ-
ity (Basri et al. 2011), binary stars (Thompson et al. 2012), and active galactic nuclei
(Mushotzky et al. 2011).

2.3.1. Mission Architecture

Kepler’s telescope has a 0.95m aperture and a 1.4m primary mirror. Its photometer
consists of 21 modules, each with two 2200×1024 pixel CCD sensors with a full width at
half maximum (FWHM) bandpass of 435 nm to 845 nm. The accessible dynamic range
for the adopted integration time spans 9th to 16th magnitude stars. To reduce data
traffic, exposures are combined into 29.424min bins (long cadence) or 58.89 s bins (short
cadence), and only “post stamp” images around objects on a predefined target list are
downlinked. Their size and shape is chosen to maximize the SNR on typical exoplanet
transit timescales of 3h to 12 h (Thompson 2016, compare Figure B.2).

Kepler is in an Earth-trailing heliocentric orbit with a ∼ 372.5 d period. The observed
star field is located near the galactic plane in the Cygnus region at RA= 19h 22m 40s,
Dec= +44◦ 30′ 00′′ (see Figure 2.2). This pointing is 55◦ off the ecliptic plane, thus
preventing the Sun from shining into the telescope at any time. In addition, the chosen
target field inhibits occultations by Kuiper-belt objects and asteroids, which usually orbit
in the ecliptic plane.

1as of November 17, 2016 (NASA Exoplanet Archive (Akeson et al. 2013), http://exoplanetarchive.
ipac.caltech.edu/)
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2.3. The Kepler Mission

Figure 2.2.: Kepler field projected on the sky. The squares show the 21 detector modules, each
consisting of two 2200 × 1024 pixel charge-coupled devices (CCD). The 106 square degree
FOV contains 223,000 stars with mv < 14 (Monet 1996). Image taken from ASAS survey,
Pigulski et al. (2009).
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2.4. Kepler ’s Second Light: K2

A set of reaction wheels stabilized the accurate pointing of Kepler that was necessary to
ensure its high photometric precision. The loss of a second reaction wheel in May 2013
lead to an early end of the original mission. Following this failure, a new operational
concept was developed to enable the continuation of scientific observation. During the K2
mission, Kepler ’s telescope observes sequential Campaigns of fields in the ecliptic plane
(see Figure 2.3). With this pointing, the minimum allowed Sun angle limits the duration
of each Campaign to approximately 80 d. Operating in the ecliptic plane minimizes
the torque from solar wind pressure on the spacecraft. As a result, the pointing drift
becomes small enough to be controlled by using the remaining two reaction wheels and
performing regular thruster burns. For each Campaign, K2 targets are proposed by the
scientific community in the Guest Observer program, in which questions from any area
of astrophysics or planetary sciences can be addressed (Howell et al. 2014). All targets
are listed in the Ecliptic Plane Input Catalog (EPIC, Huber et al. 2016). K2 is fully
operational since June 2014.

Figure 2.3.: Footprints of K2 Campaigns. The location and orientation of all conducted and
planned Campaigns relative to the ecliptic (narrow line) are shown together with the Galactic
plane (gray band). Credit: NASA Kepler & K2 Science Center

2.4.1. Photometric Performance

The precision of K2’s photometry is not only restricted by the jitter of the spacecraft’s
boresight on timescales smaller than an exposure, but also by solar-induced motion and
subsequent thruster firings on timescales longer than an exposure. These low-frequency
disturbances cause targets to drift across detector pixels, resulting in a photometric pre-
cision of only 80 ppm for a 12th magnitude star on 6 h timescales (Howell et al. 2014, note
that a smaller ppm value corresponds to higher precision). This means the performance
for quiet G dwarfs is roughly a factor of four worse compared to the original Kepler
mission. In order to mitigate these precision deficits, Vanderburg & Johnson (2014)
make use of the predictability of the low-frequency pointing jitter and are able to correct
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these systematics by applying a “Self-Flat-Fielding” (K2SFF) method. Subsequently, the
photometric precision is improved by factors of two to five compared to raw K2 data
(see Figure 2.4). Beginning with Campaign 3, an increase in pointing control bandwidth
further improved precision to within a factor of two of Kepler ’s.

path of the spacecraft’s pointing jitter cannot be approximated
as one-dimensional.

Figure 5 shows the result of the SFF correction and data
exclusion on the K2 photometry. For the target star EPIC
60021426, the SFF correction decreases the scatter measured
on 6-hr timescales by a factor of 5.

3. RESULTS

3.1. Photometric Precision

We applied our SFF reduction technique to all targets ob-
served during the K2 Two-Wheel Concept Engineering Test
to assess its performance. The total runtime was about 5 hr
on a laptop computer. We find that for almost all targets, our
reduction improves the photometric precision over raw aperture
photometry. Exceptions to this rule include stars with rapid as-
trophysical variation such as Cepheid variable stars, contact bi-
naries, and giant stars with large-amplitude oscillation modes.

We assess the quality of our K2 light curves by estimating
their photometric precision over a 6-hr window, a metric similar
to the Combined Differential Photometric Precision (CDPP)
metric used by the Kepler pipeline. We perform this measure-
ment using a method inspired by the Kepler Guest Observer
tools routine kepstddev3. For each target, we calculate the
standard deviation within a running bin of 13 long-cadence

measurements in length, divide by
ffiffiffiffiffi
13

p
, and report the median

value of the running standard deviation as the target’s photo-
metric precision. For each star, we calculate the photometric
precision of the light curves produced from both the large cir-
cular apertures and the small PRF-defined apertures, as de-
scribed in § 2.1, and retain the smaller of the two estimates.

We find that photometric precision of the K2 sample com-
pares favorably to the photometric precision of the Kepler mis-
sion. To ensure a differential comparison, we downloaded light
curves for all Kepler targets observed in Quarter 10 from the
MAST and estimate photometric precision of the PDCSAP_
FLUX light curve using the same procedure as we used for
the K2 engineering data. Figure 6 shows the measured photo-
metric precision for dwarf stars observed by K2 and Kepler as a
function of Keplermagnitude. We select the dwarfs observed by
Kepler by taking all stars with log g ≥ 4 according to the Kepler
Input Catalog (KIC; Brown et al. 2011), and we selected dwarfs
observed by K2 as those stars whose target list was designated
as cool_star or GKM_dwarf according to the K2 engineer-
ing test target list4. We find that in the best cases, the photomet-
ric precision of K2 approaches that of Kepler, but the typical
precision of a K2 target is consistently worse by roughly a factor
of 1.3–2. We also note that there is more scatter in the photo-
metric precision of K2 targets than in Kepler targets, and inves-
tigate this further in § 3.2.

EPIC 60021426, Kp=10.3
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FIG. 5.—Comparison between raw K2 photometry and SFF corrected pho-
tometry. Blue points are the raw K2 light curve, which is vertically offset for
clarity. Red points mark raw data taken during thruster fires and are excluded
from the corrected light curve. Orange points are the SFF corrected light curve,
which shows a substantial improvement in photometric precision. The black line
underneath the raw data is the SFF model. The photometric precision of this star
is slightly worse than the median precision we achieve for 10th magnitude stars.
The SFF technique preserves astrophysical signals like transits (see § 3.4) and
starspot modulation, which is evident in this light curve. This bodes well for the
prospects of detecting stellar rotation periods with K2. See the electronic edition
of the PASP for a color version of this figure.
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FIG. 6.—Photometric precision of K2 versus that of Kepler.Orange points are
stars observed by K2 during the Two-Wheel Concept Engineering Test, and blue
indicates a density of stars observed by Kepler during Quarter 10 of its opera-
tion. K2 photometry is consistently less precise than Kepler’s, but for some stars
approaches its precision. The gap betweenKp ¼ 13 andKp ¼ 14 is due to mag-
nitude cuts in the selection of dwarf star targets for the Engineering Test. See the
electronic edition of the PASP for a color version of this figure.

3 Please see http://keplerscience.arc.nasa.gov/ContributedSoftwareKepstddev
.shtml. 4 Please see http://archive.stsci.edu/missions/k2/tpf_eng/K2_E2_targets_lc.csv.
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All use subject to JSTOR Terms and Conditions

Figure 2.4.: Comparison between a raw K2 light curve and the corrected K2SFF photometry.
Blue points indicate the light curve as obtained from the standard K2 pipeline. The black
line underneath is the SFF model. Depicted in orange are the K2SFF corrected data re-
sulting from the technique described in Vanderburg & Johnson (2014), vertically offset for
clarity. Red points, which mark data taken during thruster firings, are excluded from the
corrected light curve. The K2SFF corrected photometry shows substantial decrease in scat-
ter compared to the raw data. Astrophysical features such as transits or starspot variations
are preserved. Taken from Vanderburg & Johnson (2014).

Figure 2.5 provides a comparison between the computed photometric precision of K2
Campaign 3 (orange) and of Kepler quarter 10 (blue) with giant stars removed from the
plot. It can be seen that K2’s performance is generally lower than Kepler ’s, but for stars
of higher magnitude it approaches its precision.

2.4.2. Data Products

All K2 science data products in this overview can be accessed at the MAST2. Detailed
information about the features of the K2 pipeline can be found in the Kepler Archive
Manual (Thompson 2016). We can distinguish between pixel-level data, such as the

2Mikulski Archive for Space Telescopes, https://archive.stsci.edu
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2. Transit Photometry

Figure 2.5.: Combined differential photometric precision of K2 and Kepler. Blue are stars
observed during quarter 10 of the original Kepler mission. The fine-point precision from
Campaign 3 is plotted in orange. Giant stars are excluded from the plot. For targets with
Kp . 13, K2’s precision approaches that of Kepler. Taken from Vanderburg et al. (2015b).

“raw” per-pixel time series, and High Level Science Products (HLSPs), e.g. processed
light curves. As in the original Kepler mission, the majority of targets are observed in
long cadence mode.

Target Pixel Files

Target pixel files contain time series of images, where each image is a single cadence.
Hence, they provide individual photometric information for each pixel, which can be
used to understand the results of the Kepler pipeline or to create custom light curves
from the raw or calibrated data. The pipeline uses these data to create the HLSPs3.
Target pixel files are available for short cadence and long cadence data.

PDC Time Series

Besides the inevitable statistical uncertainties, i.e. uncorrelated “white” noise, Kepler ’s
photometry is subject to systematic errors from the telescope and spacecraft, such as

3MAST Frequently Asked Questions, https://archive.stsci.edu/mast_faq.php?mission=K2, ac-
cessed 2016-10-23
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2.5. Irregular Transits in K2 Photometry

thermal gradients or pointing drifts (Thompson 2016). The Kepler pipeline provides a
HLSP with “detrended” photometry corrected for these trends. These Pre-Search Data
Conditioning (PDC) light curves represent the flux contained in the optimal aperture
given in electrons per second, after the pipeline applied its cotrending algorithm to cor-
rect for systematic spacecraft-related errors (Quintana et al. 2010). The time values
correspond to the mid-point of a cadence in Kepler Barycentric Julian Day (BKJD, see
Thompson 2016). Besides the flux time series, this product provides additional informa-
tion about the target, the used CCD, and quality information for every data point.

K2SFF light curves

The user-provided K2SFF photometry is the result of a detrending approach described
in Vanderburg & Johnson (2014). Light curves were extracted using a variety of photo-
metric apertures, including a “best” aperture that results in the lowest root mean square
(RMS). Usually, the photometry shows less systematics than PDC time series and it
has substantially higher precision than the raw data (compare Figure 2.4). The K2SFF
product does not contain uncertainty information and is released later than the pipeline
products for a given Campaign.

EVEREST

EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST) is
a user-contributed pipeline that uses pixel level decorrelation and a Gaussian process to
remove spacecraft-induced systematics. It provides detrended light curves and additional
photometric diagnostics (Luger et al. 2016).

Other Data Products

The MAST hosts additional science products such as full frame images, background pixel
files, cotrending basis vectors, and collateral files for long and short cadence photometry.
Software tools for data reduction and analysis, including my dip detection package lcps
(see Section 3.1), can be obtained from the Kepler & K2 science center4.

2.5. Irregular Transits in K2 Photometry

Transiting planets are usually found by planet-search algorithms tailored to search for
characteristic signatures in a set of light curves. Several search methods have been suc-
cessfully applied, most of them involve a search in the frequency domain (e.g. Fourier or
Wavelet transforms, Hartman & Bakos 2016; Lomb-Scargle periodograms, Lomb 1976),
often combined with fitting simplified (Box-Least-Squares, Kovács et al. (2002)) or re-
alistic (Mandel & Agol 2002) transit models to the photometry. These algorithms are
specifically tuned to find the periodic features of planetary transits. They are often not

4https://keplerscience.arc.nasa.gov/software.html
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sensitive to asymmetric, distorted, or non-periodic dips. Such signals, however, have
been found in Kepler and K2 data. Ansdell et al. (2016) report aperiodic dimming of
young stellar objects (YSOs) observed in K2 Campaign 2 and relate it to the presence of
protoplanetary disks. Another exotic example is the white dwarf WD1145+017, which is
being transited by one or several disintegrating planetesimals (Vanderburg et al. 2015a).
More recently, there have been discoveries of deep dips in light curves of YSOs and young
main-sequence stars that were explained by occultations from a circumstellar disk (e.g.
McGinnis et al. 2015; Scaringi et al. 2016), transiting clumps of circumstellar material
(Ansdell et al. 2016), or the transit of a large comet family (Bodman & Quillen 2016).
The latter is also one of many discussed explanations for a most confounding Kepler
discovery: the unaccountable flux variabilities of KIC 8462852 (Boyajian et al. 2016).
While this object appears to be a common F3V star (Lisse et al. 2015), its light curve
shows a number of significant dips. These dips occur in several periods of the four-year
Kepler mission and are aperiodic, irregular in shape, and their depth varies from frac-
tions of a percent up to ∼ 20%. Boyajian et al. present different models to explain the
data, the most preferred being a transiting family of comets or planetesimal fragments.
This explanation of KIC 8462852’s light curve is challenged after Schaefer (2016) recently
found a long-term dimming of 0.341%yr−1. The trend was confirmed for the duration
of the Kepler mission by Montet & Simon (2016) and is followed by a rapid decline in
flux of > 2% within 200 days.

2.5.1. Detection of Aperiodic Dimming Events

Such irregular dimming events are not readily found by planet-search algorithms. A
different approach is to visually inspect light curves and spot suspicious dips after per-
forming only minor corrections to the raw photometry. This technique takes advantage
of the exceptional pattern-recognition ability of the human brain. Its value was for ex-
ample proven in the citizen science project “Planet Hunters”, which engages the public
in a search for exoplanets in Kepler and K2 data. This project has been successful in
finding planets (Fischer et al. 2012; Lintott et al. 2013; Schmitt et al. 2014), eclipsing
binaries (EBs) (LaCourse et al. 2015), and as of yet unclassified signatures such as KIC
8462852 (Boyajian et al. 2016).

Because of the large number of long cadence targets observed during a K2 Campaign,
I decided to follow a two-stage approach: First, I designed an algorithm which scanned
through the complete sample of a Campaign and flagged prolonged downward excursions
in the light curves (see Section 3.1). In a second step, I visually inspected the light curves
that include detected dimming events and decided if they are candidates for further
investigation (see Section 4.2).
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I developed my own software for the data analysis tasks related with the goal of my
project. This chapter describes lcps, a package to search for transit-like features in light
curves (Section 3.1) and the TeffFit tool, a Monte Carlo algorithm to fit photometry
to template stars (Section 3.2). Both pieces of software are written in Python and follow
an open source model. While TeffFit is work in progress and may be tested on request,
lcps is already publicly available on the Python Package Index (PyPI) and at the Kepler
& K2 Science Center1.

3.1. Light Curve Pre-Selection

In the search for irregular transit signals, I wanted to reduce the target list to a number
that makes visual investigation realistic. The idea was to sort out light curves that do not
show any potentially interesting features. I created a Python-based tool lcps for this light
curve pre-selection. The publicly available package searches for transit-like signatures
(i.e. dips) in photometric time series. It uses the Sliding Window technique described
below to compare a section of a light curve with its surroundings. A dip is detected if
fluxes within this window are lower than a threshold fraction of the surrounding fluxes.
Pre-selection algorithms like lcps will become increasingly important, given the data
volumes expected from future exoplanet surveys such as TESS (Ricker et al. 2014) or
PLATO (Rauer et al. 2016).

3.1.1. Extraction of Light Curves

Flux time series are either extracted from the PDC data product or from K2SFF files
(compare section 2.4.2). From the FITS2 files of PDC photometry, I extract the EPIC
ID, the time data in BKJD, the PDC fluxes, and the flux uncertainties.

When working with the K2SFF product, I download the “best aperture” photometry of
complete Campaigns in ASCII3 format. From these files, lcps extracts the EPIC ID, the

1https://keplerscience.arc.nasa.gov/software.html
2Flexible Image Transport System
3American Standard Code for Information Interchange
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time data in BJD4−2454833, and the relative flux. There is no uncertainty information
in the K2SFF product.

3.1.2. Sliding Window Technique

lcps searches for dips of unknown depth and length. In order to detect as many ambigu-
ous events as possible, I demand only few requirements on their shape. A dip event

• is a downward excursion from the surrounding fluxes.

• exceeds a defined amplitude.

• has a specified duration.

Within the flux time series I define a window that starts with the first data point and
has a length of dwin points, where dwin must lie between the expected maximum number
of points during a dip dmax and the length of the whole data set. This window will
gradually slide through the data with an increment of nstep data points per step (compare
Figure 3.1).

I want to compare the fluxes in the window with the median fluxes of its neighborhood.
The neighborhood consists of the two surrounding sections, each of size dwin. If the
current window happens to be near the boundaries of the time series, i.e. there is not
enough room for a neighbor on one side of the window, I extend the neighborhood towards
the center by doubling the size of the other neighbor. Alongside the median flux of the
neighborhood m, I also compute its Median Absolute Deviation (MAD, Gauss 1816) to
get an estimate of the data’s dispersion. The MAD is more robust against outliers than
the standard deviation and is defined as

MAD = median
(∣∣F ineighb −median(Fneighb)

∣∣) , (3.1)

with Fneighb the flux data of the neighborhood. I define the flux threshold for a dip
detection as Fthresh = fthresh ×m with the unit-less parameter fthresh. However, if this
value lies within m±MAD, I define the detection threshold as Fthresh = m−MAD to
make sure it lies in the detectable regime.

Next, I count the number of consecutive flux measurements in the window that fall short
of Fthresh. To account for single upward outliers, a value above Fthresh is regarded as the
end of the dip only if it is followed by a second datum of higher flux. If the duration of
the low-flux event lies between the expected minimum and maximum dip durations dmin

and dmax, the event is considered a dip detection.

After the window slid nstep data points further, the above steps are repeated until the
end of the data set is reached. Figure 3.1 illustrates the principle of this technique on the
example light curve of EPIC 220262993, the variable quasar discussed in Section 4.4.

4Barycentric Julian Day
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Figure 3.1.: Schematics of the Sliding Window technique. A section of the K2SFF photometry
of EPIC 220262993 (blue circles) is scanned by the sliding window (orange rectangle) and its
neighboring windows (gray rectangles) of size dwin = 200 points, respectively. The detected
dip (green circles) starts when the flux falls below a detection threshold, and ends with
the first of two consecutive fluxes above the threshold. Top: The detection threshold is
defined by Fthresh, the value of which is a fraction of the local median of the neighborhood
m. Bottom: If, however, Fthresh lies within m±MAD (green band), I use m−MAD as the
detection threshold to account for regimes of high dispersion.

3.1.3. Installation of lcps

lcps is made publicly available. It is listed on PyPI, its current version 0.4.dev is tested
on Python 2.7. The easiest way to install lcps is via pip5. The command

$ pip install lcps

in the terminal of a UNIX-based system will install lcps in the local Python path.

If the most current development version is preferred, it can be downloaded from https:
//github.com/matiscke/lcps. After unpacking the package, it is being installed by
running the setup script

$ sudo python setup.py install

5http://pypi.python.org/pypi/pip
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from the root directory of lcps. A full documentation of the package is available at
http://lcps.readthedocs.org.

3.2. Determination of Effective Temperature

I developed an algorithm TeffFit, which fits observed multi-band photometry to tem-
plate stars to obtain the effective temperature Teff of an object. The interpolation be-
tween the templates is based on minimizing a chi-square statistic with a random walk
Monte Carlo method.

3.2.1. Template Stars

Covey et al. (2007) assembled a matched stellar catalog from a high-quality subsample of
311652 point sources. The catalog is based on u, g, r, i, z magnitudes from the Sloan
Digital Sky Survey (SDSS, Doi et al. 2010) and J,H,Ks magnitudes from the Two
Micron All Sky Survey (2MASS, Skrutskie et al. 2006), where SDSS uses an AB-based
photometric system and 2MASS uses a Vega-based system. Covey et al. estimated colors
as a function of Morgan-Keenan (MK) spectral type by calculating synthetic colors (u−g,
g−r, r−i, i−z, z−J , J−H, H−Ks) from flux-calibrated spectral standards assembled
by Pickles (1998). These relations serve as my stellar model, with the spectral type
converted to Teff as follows: For dwarf stars (luminosity class V) from O9 to M6, I relate
Teff to a spectral type following Pecaut & Mamajek (2013, Table 5). For O5 dwarfs, I
reduce the value in Vacca et al. (1996) by 1870K, which is the average difference between
the temperatures of Pecaut & Mamajek and Vacca et al. for O9 and B0 dwarfs. For
red supergiants (luminosity class I) from K2 to M2, I use the relations in Levesque et al.
(2005, Table 5). For red giants (luminosity class III) from F0 to K5, I take the values of
Alonso et al. (1999). Later giants from M0 to M8 were taken from Perrin et al. (1998).
From this, I obtain three separate color-temperature grids ci,model(Teff) for the luminosity
classes I, III and V.

3.2.2. Temperature Sensitivity

A given color ci has varying sensitivity on effective temperature depending on the tem-
perature range. “Flat” colors that are not sensitive to Teff in their respective range, i.e.
∂ci/∂Teff ≈ 0, would add noise to the result without improving the fit. I obtain a rating
of the sensitivity of a specific color by approximating the derivative D(ci) ≡ ∂ci/∂Teff
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with finite differences

D1(ci) ≈
ci(T2)− ci(T1)

T2 − T1
, (3.2)

DN (ci) ≈
ci(TN )− ci(TN−1)

TN − TN−1
, (3.3)

Dn(ci) ≈
ci(Tn+1)− ci(Tn−1)

Tn+1 − Tn−1
, n ∈ {2, ..., N − 1}, (3.4)

where the Tn correspond to the discrete temperatures of the N model stars. While for
the first and last model (Equation 3.2 and Equation 3.3) in the temperature range of each
color ci first-order approximations are used, we can perform a more accurate second-order
approximation of central differences (Equation 3.4) for all models not at the boundary
of the range. Figure 3.2 shows in its upper panel the temperature dependence ci(Teff) of
luminosity class V models for all colors. All colors tend to become less sensitive to Teff

with increasing temperature, which is consistent with a simple black body model that
describes a main-sequence star to first order. This trend is even more evident in the
lower panel, where I show approximated derivatives ∂ci/∂Teff that correspond to these
colors. For stars cooler than ∼A0V these derivatives show high fluctuation between
different colors, while for earlier stars all colors become flatter than 1× 10−4 magK−1.
The temperature sensitivity is thus largely reduced in this spectral type range, increasing
the uncertainty of the temperature fit. I addressed this problem by imposing a lower
limit of ∂ci/∂Teff , which is a compromise between improving the precision in the cold
regime and avoiding an increase of ambiguity for hot objects. I found a value that serves
both requirements and exclude a color ci from further analysis if D(ci) falls short of
D(ci)min = 5× 10−6 magK−1.

3.2.3. Goodness of Fit

I determine the effective temperature of an object by comparing its measured colors
to the ones of each template star of a specific luminosity class. Treating the input
color uncertainties as uncorrelated Gaussian noise, I measure the goodness of fit via
a chi-squared approach. From the weighted sum of squared errors for n observables,
Equation 2.8, I build the reduced chi-squared statistic dividing the sum by the number
of degrees of freedom ν and obtain

χ2 =
1

ν

n∑
i=1

(ci − ci,model)
2

σ2
ci

(3.5)

with ci the observed colors, ci,model the model colors, and σci the statistical error of the
latter. In the case of a single fitted parameter (Teff), we have ν = n − 1. The sum in
Equation 3.5 is computed for every set of colors in the template table. Centered on the
set with the smallest χ2, I interpolate between the grid points, taking into account only
the next two neighboring points, and obtain the cubic spline χ2

interp(Teff). The effective
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Figure 3.2.: Temperature sensitivity of the colors of luminosity class V model stars. Top:
Temperature dependency of SDSS/2MASS colors. Bottom: Approximated derivative in
temperature of the same colors.

temperature Tmin at its minimum, χ2
min, is kept as a result and stored together with this

minimum.

3.2.4. Monte Carlo Sampling

I repeatedly generate noisy realizations of the data by sampling each color from a normal
distribution centered on the actual measurement. The standard deviation of the Gaussian
equals the error σci in this quantity. For each of these noisy versions of the measurement,
I determine χ2 and minimize it as described in Section 3.2.3. At first, a number of 30 such
realizations are used to get a rough estimate of Teff . With this estimate, the temperature
sensitivity D(ci(Teff)) is computed and “flat” colors are excluded from further analysis
(see Section 3.2.2).

After this selection, the actual Monte Carlo run begins: I choose the number of iterations
Nstat high enough to account for statistical deviations. Validation tests of the TeffFit
algorithm revealed that increasing Nstat to more than 100 entails a relative accuracy
improvement of less than 0.01 while the computation time increases linearly with Nstat.
I search a compromise of accuracy and computational cost and choose Nstat = 200 fits.
To improve the quality of the fit, I limit the minimum chi-squared sum χ2

min to lie within
a range of 0 to 10. The Monte Carlo loop stops after Nstat minima conform to this rule
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3.2. Determination of Effective Temperature

or when the number of iterations exceeds 10Nstat. If the number of results Nmin = Nstat,
I assign the fit a Quality Flag Q = AA. If 1/3Nstat ≤ Nmin < Nstat, the fit is flagged
with Q = A.

In the case of an even smaller number of results I employ a fallback level with less
restrictive χ2

min limits of −100 to 5000. A χ2 sum of less than zero seems nonsensical
when looking at its definition (Equation 3.5), but such a value can result from the spline
interpolation of χ2. Again I check for the number of successful fits and assign the fit
a quality flag Q = B if Nmin = Nstat, and Q = C otherwise. If instead no results at
all were obtained, I drop all limits on valid χ2

min values and assign any found minima a
quality flag Q = D. In all cases I obtain a set of chi-squared minima and its associated
temperatures.

In test runs of the algorithm, I often encountered spurious groups of minima at tem-
peratures far off the main group of solutions. Since they compromise the accuracy and
result only from oscillations in the interpolation step, I remove outliers that are farther
away than two standard deviations from the mean temperature. Finally, I use SciPy’s6

stats.norm.fit routine to fit a normalized Gaussian PDF

P =
1√

2πσ2
exp

(
−(Tmin − Teff)2

2σ2

)
(3.6)

to the histogram of the remaining data. This yields the determined effective temperature
Teff and its associated error σ.

Figure 3.3 shows a test run of TeffFit. I fed it with synthetic photometry corresponding
to a star of luminosity class V with Teff = 2951K. A consistent solution of 2930K is
recovered with a standard deviation of σ = 80K.

3.2.5. Tests of the TeffFit Algorithm

Accuracy

To test the accuracy of the temperature fit, I aimed to compare its results with a set of
reference objects. I used the same database of template stars that serve as the model grid
for this. This would also reveal numerical issues near the grid points, e.g. oscillations
in the interpolated chi-squared statistic. I employed an artificial error of σc = 0.1 for
each color. Figure 3.4 shows the relative temperature deviation as a function of effective
temperature for dwarfs. Only the template for an F0V star can not be recovered (crossed
point). This is probably due to its flat r − i color, which compromises the generation of
synthetic errors for the fit. It can be seen that all other temperatures agree within 5%
for stars cooler than 8913K and within 20% for hotter stars.

6Scientific Computing Tools for Python (Jones et al. 2001–)
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Figure 3.3.: TeffFit test run with 200 Monte Carlo iterations for luminosity class V. The
algorithm was fed with synthetic colors from the model table that correspond to a M5V
star with a temperature of 2951K. Top: Goodness of fit results for several model entries
(gray crosses) and interpolated χ2 (gray lines). Blue diamonds indicate the minima of the
interpolations. Bottom: Histogram of χ2 minima. A Gaussian PDF (Red dashed line) is
fit to the histogram to obtain the mean Teff and standard deviation σ of the determined
effective temperature.
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Figure 3.4.: Relative temperature deviation for luminosity class V. The plot shows the recovery
of effective temperatures when TeffFit fits colors from its own template database. Temper-
atures are recovered within 20% for all templates except for the F0V template, whose flat
r − i color compromises the error treatment.

26



3.2. Determination of Effective Temperature

SED Consistency Check

For a sample of objects, I compare their measured fluxes to a black body spectrum.
Figure 3.5 shows grizJHK fluxes and corresponding black body spectral energy dis-
tribution (SED) for a star of luminosity class I, III, and V, respectively. Blue points
are fluxes simultaneously measured with the Gamma-Ray Burst Optical/Near-Infrared
Detector (GROND, Greiner et al. 2008), given in the AB system with their photometric
uncertainties. The green curve in each plot is a synthetic spectrum of a black body with
a temperature Teff that resulted from the temperature fit of the observed object. The
giant and supergiant examples show significant red excess, possibly related to the CO
molecular band that resides at 2.29 µm in the Ks band (Ivanov et al. 2004). Nevertheless,
the positions of peak wavelengths in the black body and measured spectra agree well,
certifying TeffFit a good recovery of a star’s Wien temperature (Wien 1896).
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Figure 3.5.: Flux-calibrated photometry compared to black body SEDs. Dashed lines with
error bars are observed grizJHK fluxes in the AB photometric system. For each of these
measurements I determine the effective temperature with TeffFit and plot a generic black
body spectrum of the corresponding temperature (solid line of same color). The three ar-
bitrarily picked targets were classified as follows: blue: luminosity class I, Teff = 3760K.
Green: luminosity class III, Teff = 4161K. Orange: luminosity class V, Teff = 4693K.

Comparison with Theoretical Models

I compared the results of TeffFit to temperatures derived from theoretical models
and/or spectral analysis for a small number of arbitrarily chosen objects (see Table 3.1).
For each of these objects, I listed Teff from the EPIC stellar classification catalog and
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used the VOSA7 tool to fit an ATLAS9 model atmosphere (Castelli & Kurucz 2004) to
the photometry listed on ExoFOP8. From the same photometry, TeffFit yielded the
temperatures listed in the last column for main-sequence stars. The values in the “Spec-
Match” column are the result of a spectral analysis with a stellar parameter extraction
technique by Petigura (2015) and were posted to ExoFOP by Ian Crossfield. The table
also lists data for my planetary candidate, EPIC 217393088. For this target, TeffFit
agrees well with the result from the ATLAS9 SED fit. The temperature listed in the EPIC
is about 500K higher. For a possible explanation of this discrepancy, see Section 4.3.5.
Unfortunately, there are no spectra available for this object.

Target Effective Temperature [K]

EPIC ID ATLAS9 EPIC a SpecMatchb TeffFit c

201384232 4750± 125† 5370± 255 5767± 58 5745± 210
201403446 6250± 125 6409± 104 6256± 37 6159± 514
201295312 7750± 125† 5535± 133 5912± 51 5590± 170
217393088 5500± 150 5981± 176 – 5449± 42

a Stellar classification of the EPIC catalog (Huber et al. 2016)
b As listed on ExoFOP by Ian Crossfield on 2016-06-28
c Assuming luminosity class V
† Bad fit (χ2 > 102)

Table 3.1.: Comparison of temperature fits from different sources for several EPIC targets. The
results from theoretical model fits (ATLAS9, Castelli & Kurucz 2004) are compared with
Teff from the EPIC, from a spectral analysis using SpecMatch, and TeffFit temperatures.
I also list the results for my planetary candidate, EPIC 217393088.

3.3. Distance and Extinction Estimate

It extended TeffFit to constrain the distance to stars and the extinction along the line of
sight by fitting simultaneously for these parameters and the stellar effective temperature.
For a given object, I query the IRSA DUST9 service for galactic dust reddening in the line
of sight to obtain the color excess EB−V , which is related to the observed and intrinsic
B − V color by

EB−V = (B − V )observed − (B − V )intrinsic. (3.7)

Following Schlafly & Finkbeiner (2011), the maximum of the visual extinction AV is given
by Amax

V = 3.08×EB−V . This value represents the full reddening within the Milky Way
along the line of sight. I impose 7 fractions of AV ∈ {0, . . . , Amax

V } to account for different
amounts of Galactic extinction. A finer grid would only be reasonable for photometry
of very high precision. Next, I convert AV to the extinction in SDSS/2MASS bands

7VO SED Analyzer, http://svo2.cab.inta-csic.es/theory/vosa/
8Exoplanet Follow-up Observing Program, https://exofop.ipac.caltech.edu
9Galactic Dust Reddening and Extinction, http://irsa.ipac.caltech.edu/applications/DUST/
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3.3. Distance and Extinction Estimate

Ax and subtract these values from the measured magnitudes mx to de-redden an object.
TeffFit is then run for all luminosity classes, which makes for 7×3 = 21 combinations of
extinction and luminosity class. For each of these realizations, I compute the logarithmic
distance

log d = 1 +
µ

5
(3.8)

with the distance modulus µ = mJ − MJ . To obtain the absolute magnitude MJ , I
interpolate between the values given in Pickles (1998), which were transformed using
the relations derived by Carpenter (2001). From these 21 sets of parameters, I keep the
one that yields the lowest χ2

avg, which is the mean of χ2
min (compare Section 3.2.4). To

visualize the distribution of realizations in AV and Teff , I imposed an evenly spaced grid
of 1000 AV fractions and performed the procedure described above for luminosity classes
I, III and V on an arbitrary GROND observation. Figure 3.6 shows the distribution with
a clear clustering among the luminosity classes superimposed by a χ2

avg heatmap, which
I reconstructed from the results by interpolating on a triangular grid between the points.
The trend of higher effective temperatures for larger extinction is expected from Galactic
extinction models (Bailer-Jones 2011). In this case, a star with Teff = (3972± 29)K and
AV = 0.22mag yields the best fit with χ2

avg = 0.95.
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Figure 3.6.: χ2 map of 3000 runs of TeffFit with varying AV . I run the fit for a single object
with 1000 evenly spaced fractions of AV for each luminosity class, respectively. The color
scale shows the average χ2 of a run, which I interpolate on a triangular grid between the
points. The clustering of the three different luminosity classes can clearly be seen. The
best match (χ2

avg = 0.95) for this object is a K7V star with Teff = (3972± 29)K and
AV = 0.22mag. This is almost the maximum extinction Amax

V = 0.23mag along this line of
sight.
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Figure 3.7 shows a preliminary estimate of distance d and interstellar reddening AV by
this procedure for 1058 stars observed with GROND. These stars remained in the sample
after saturated sources were removed. Since the observation was a very deep exposure,
the sample contains mainly stars of faint apparent brightness, consistent with the large
inferred distances and extinction estimates in the plot.
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Figure 3.7.: Extinction versus distance for a set of 1058 target stars. For each object, I perform
de-reddening with seven different fractions of Av and run TeffFit for each of three assumed
luminosity classes. Of these 21 combinations, the result with the lowest mean χ2

min is kept
and depicted in the plot. The quality of the fit (compare Section 3.2) is reflected by the size
of the point, with larger points meaning better quality.

The technique described in this section is an ongoing effort. First tests show a reasonable
relative distribution of objects for the applied luminosity classes in terms of distance, ef-
fective temperature, and interstellar reddening (see Figure 3.6 and Figure 3.7). However,
the inferred distances will have to be tested against predictions from Galactic population
models and distances determined by other methods.

3.4. Outlook

lcps is generally compatible with any time series data and is ready to be used on pho-
tometry of future exoplanet detection surveys such as TESS or PLATO. It was tested
with Kepler long cadence light curves and yielded the first results.
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3.4. Outlook

TeffFit is software under development. The tests described above show that it succeeds
in constraining the effective temperature of a star of known luminosity class with adequate
accuracy. Temperature uncertainties, which are inferred from the histogram of χ2 minima
(see Figure 3.3), have yet to be tested for consistency by a cross-check with representative
photometry. In its current version, the tool lacks the capability of reliable distance
determination and distinction of luminosity classes from photometry alone. Ongoing work
seeks to achieve a simultaneous inference of distance and Galactic extinction without
additional observables of a target. A future version could automatically distinguish
between luminosity classes, e.g. by the approach described by Huber et al. (2016), who
distinguish between giants and dwarfs based on analytical functions of Teff and log(g).
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4. Results

In this chapter, I describe the path from selecting the sample of targets, to the investi-
gation of the selected objects, to deeper inspection of interesting candidates. I show how
I constrained orbital parameters for a serendipitously discovered exoplanet, a candidate
hot Jupiter around a main-sequence star in Section 4.3. Finally, I outline the observation
and analysis of a quasar subject to aperiodic dipping events in Section 4.4.

4.1. Selecting the Targets

Since the approach of visual inspection consumes a lot of time, it is appropriate to focus
only on targets where the detection of such an event is feasible. Depending on the K2
Campaign, I applied one of two different methods to reduce the set of K2 targets to a
manageable number of promising objects.

4.1.1. Conditions on Host Star Colors

In the K2 Campaigns 3 to 6, I imposed conditions on the target stars to focus my
search on late-type dwarfs of mainly class M. These stars are particularly favorable for
several reasons: Their comparatively small size leads to a larger signal in a transit event,
i.e. a higher planet-to-star ratio Rp/R? for planetary transits (Howard et al. 2012). The
stronger signature extends the range of detectable transiting bodies towards smaller sizes.
According to statistical studies that focused on M dwarfs observed by Kepler (Dressing
& Charbonneau 2013), planets exist nearly around all class M dwarf stars. These targets
have yielded a disproportionate number of multiplanet systems and potentially habitable
planets (inferred from their irradiation level similar to the Earth’s, Mann et al. 2013).
Restricting to class M stars leaves a sufficient number of targets, since ∼ 70% of all stars
are M dwarfs (Bochanski & Claire 2010).

In order to obtain a list of only late-type stars, I applied conservative constraints on the
2MASS colors to the initial set of objects. A star is kept in the target list if

J −H ≥ 0.55 and (4.1)
H −K ≥ 0.1 (4.2)

with J , H, and K the 2MASS magnitudes of the star. With these criteria, I ended up
with a few thousand targets per K2 Campaign (see Table 4.1).
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4.1.2. Conditions on Light Curve Shapes

In Campaigns 7 and 8, I selected targets based on the shape of their light curve prior to
visual inspection. The Sliding Window technique described in Section 3.1 is particularly
useful in the search for deep and long-lasting dips similar to the examples presented in
Section 2.5. I used lcps to search for such signatures in the long cadence photometry
of K2 Campaigns 7 and 8. To do so, I allowed only dip lengths of dmin = 30 points to
dmax = 199 points within a 200 point window, corresponding to dip durations of 14.7 h to
97.6 h. The upper limit dmax mitigated false detections resulting from long-term trends
in the time series. I chose the flux threshold for each run individually such that I reduced
the targets to a manageable number while discarding as few potentially interesting light
curves as possible. The limited number of targets after the pre-selection made restraints
on host star colors, as described in Section 4.1.1, superfluous.

I applied the pre-selection both on the standard Kepler pipeline photometry and on
the K2SFF product of Vanderburg & Johnson (2014) (compare Section 2.4.1). For each
given Campaign, I investigated first the photometry from the pipeline, which is released
several weeks earlier than its K2SFF counterpart. When the latter was released, I used
only K2SFF data as its better photometric precision allows to search for shallower dips
in the data (see Table 4.1) and I adapted the threshold flux factor fthresh accordingly.

lcps Input parameters Number of targets
C HLSP dwin nstep dmin dmax fthresh initial selected inspected
3 K2SFF – – – – – 16834 7138 252
4 K2SFF – – – – – 17203 7920 340
5 K2SFF – – – – – 25775 8054 7
6 K2SFF – – – – – 28290 8384 50
7 PDC 200 10 30 199 0.95 13469 275 275
7 K2SFF 200 10 30 199 0.98 13469 422 137
8 PDC 200 10 30 199 0.9 24187 141 141
8 K2SFF 200 10 30 199 0.95 24187 266 82

Table 4.1.: Pre-selection of targets for K2 Campaigns C3 to C8. The window size dwin, the step
increment nstep, and the minimum and maximum dip durations dmin and dmax are given in
number of data points, respectively. fthresh is the fraction of the local median flux m, below
which a dip is detected. The actual detection threshold can be lower in noisy regions of
the data (see Section 3.1.2). Light curves from C3 to C6 were not processed by lcps but
pre-selected based on color criteria (see Section 4.1.1).

In the pre-selection of Campaign 7, I manually discarded the light curves of EPIC
200061226 – 200062827. These 1602 datasets belong to large tiled regions that cover
the paths of the dwarf planet Pluto and the Trojan and Hilda asteroids, as well as the
open cluster Ruprecht 1471.

1see K2 programs GO7012, GO7025, and GO7035; http://keplerscience.arc.nasa.gov/
k2-approved-programs.html
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4.2. Investigation of Light Curves

The PDC photometry of Campaign 8 shows strong systematics on timescales similar to
the dip durations I looked for. I mitigated large numbers of erroneous detections by
lowering the threshold factor for this Campaign to fthresh = 0.9.

4.2. Investigation of Light Curves

For each selected target, I performed a visual inspection of the K2SFF light curve ex-
tracted with the default “best” photometric aperture (compare Figure B.2). After a
cross-match of our sample with the corresponding coordinates in the K2 target list, I
queried the 2MASS All-Sky Catalog of Point Sources (Skrutskie et al. 2006) via the
Vizier2 service. These photometric data can be used to infer the spectral type of a can-
didate’s host star using the TeffFit tool (see Section 3.2). For Campaigns 3 – 6, I also
used the obtained magnitudes to constrain the list of targets for visual inspection to
late-type stars (see Section 4.1).

To speed up the investigation routine, I applied a custom Python script that performs all
additional steps other than the actual eyeballing. On start-up, it creates a target list for
the investigation session. It contains either all targets of a Campaign that obey the color
criteria in Equation 4.1 or the results from a light curve pre-selection (Section 4.1.2).
Objects that have already been investigated are discarded. For every object in the
target list, the script parses the light curve file to the TOPCAT3 software where one can
investigate the light curve in a plot of corrected flux vs. BJD. Upon exiting TOPCAT, the
script provides a prompt where a set of evaluation flags can be typed in. The flags are
then stored in a notes file together with the EPIC number of the target for a potential
follow-up investigation.

I performed visual inspection on 649 of 31496 color-selected targets from K2 Campaigns
3 – 6, and on 635 of 1104 targets selected by lcps from Campaigns 7 and 8 (compare
Table 4.1). The main bulk of the color-selected light curves are essentially flat or show
only low-frequency features related to spacecraft induced systematics. However, I have
rediscovered a number of planetary candidates and confirmed planets, as well as EB
systems and stars with spot-induced variations. With the deployment of lcps from
Campaign 7 on, the flat and slowly varying light curves disappeared from the target list.
Now, all of the pre-selected objects had some sort of dimming event in their photometry,
with the majority associated to systematic errors or intrinsic stellar variability. A large
fraction of targets showed clear indicators of EB systems; I did not further investigate
them.

2http://vizier.u-strasbg.fr/
3Tool for OPerations on Catalogues And Tables by Taylor (2005)
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4. Results

4.3. EPIC 217393088.01: A New Planetary Candidate

I identified a possible transit signature of a planetary companion in the light curve of
EPIC 217393088. This object was observed in Campaign 7 in long cadence mode at
coordinates (J2000) RA= 19 h 17 m 45.39 s, Dec= −20 h 39 m 15.75 s. It has a Kepler
magnitude of Kp = 15.293mag and is listed in the 2MASS catalog under the alias
2MASS J19174538-2039156 with

J −H = 0.314± 0.042 (4.3)
H −K = −0.006± 0.058 (4.4)

and thus does not meet the color criteria I applied for earlier Campaigns (compare Equa-
tion 4.1). It was not selected by lcps either, since I tuned the parameters in Table 4.1
to search for deep and extended dips.

I encountered EPIC 217393088’s light curve during a test run of my inspection script
on May 18, 2016. It was included in a sample of 51 targets that were randomly chosen
without conditions on their photometric color or on the shape of their light curve. The
target is not listed as a planetary candidate or Kepler Object of Interest (KOI) on the
NASA Exoplanet Archive (as of December 10, 2016), so I evaluated the planetary origin
of the transit signal and determined planetary and orbital parameters of this candidate.

4.3.1. K2 Light Curve

The K2SFF light curve of EPIC 217393088 shows numerous periodic dips in flux of ∼ 1%
depth (see top panel of Figure 4.1). The signal is also present in the PDC data, and
an investigation of the target pixel file revealed no conspicuous features that one might
correlate to a false positive scenario.

The processed photometry still contains significant low-frequency variations. Thus, I
detrended the time series by repeatedly removing outliers and applying a running median
filter to the data. The reason for choosing this technique is its better preservation of
shape and features of the signal compared to other approaches such as moving average
or a Savitzky–Golay filter (Savitzky & Golay 1964). The data are at first cleaned from
upward outlier points which, if kept, would affect the detrending and impair the accuracy
of our transit analysis. Large positive excursions from the bulk light curve are usually
caused by cosmic rays hitting the detector or asteroids passing through the photometric
aperture (Vanderburg et al. 2015b). I excluded points that are farther than a standard
deviation from the mean and then applied a running median filter without these outliers.
I implemented the filter as follows: For each flux measurement Fi, I computed the median
m of the fluxes in a range [i−N/2, i+N/2], where N is the bin size. The new flux value
is Fi,new = Fi/m. The bin was then shifted by one data point, i→ i+1, and the previous
steps were repeated. Through trial and error, I found that a bin size of N = 31 allowed
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4.3. EPIC 217393088.01: A New Planetary Candidate

a robust removal of the systematic variations while safely preserving the shape of the
transits.

The outlier removal and filtering are repeated for two iterations (see Figure 4.1). Through
detrending, the out-of-transit RMS deviation decreased from σrms = 8500 ppm to σrms =
730 ppm. Following the definition of Kovács et al. (2002), the mean relative transit depth
of δ̄ = 0.012 implies a signal with SNR = δ/σrms ≈ 16 in the detrended light curve.
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Figure 4.1.: Detrending of EPIC 217393088 photometry. Top: Original K2SFF data (green,
some extreme outliers not shown) and data between iterations of outlier-removal and de-
trending (blue), offset for clarity. In each step, upward outliers farther than one standard
deviation from the mean were removed and a running median filter was applied. Bottom:
Detrended light curve. I removed regions with prominent artifacts from further analysis
(shaded areas). The 52 uncorrupted transits are located at the orange markers and clearly
visible by eye.

The bottom frame of Figure 4.1 shows the K2SFF light curve after detrending. Some
regions show remaining trends or significant artifacts that were existent in the original
data. I excluded these parts from further analysis to prevent losses of accuracy of our
fit (grayed out areas in the figure). After this vetting step, I recognized 52 remaining
transit signatures in the data set (orange markers).
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4.3.2. Periodicity

For the following analysis, a precise measurement of the orbital period is vital. Classical
spectral tools such as the Fourier transform (for evenly spaced data) or the Lomb-Scargle
Periodogram (for unevenly spaced data; see Lomb 1976) are hardly suitable, because
they are based on variations of sinusoidal shape (Feigelson & Babu 2012). Kovács et al.
(2002) introduced a Box Least Squares (BLS) technique, which models the time series
as an alternation between two discrete levels, i.e. a box-shaped signal. It considers a
set of trial periods and folds the data about each of these periods. After a binning step,
a least squares fit is performed and the spectral power is determined from the relative
amplitude of the low-level state.

I determined the period of the signal in the detrended light curve with a BLS periodogram
using the implementation of the NASA Exoplanet Archive (Akeson et al. 2013). With
a fixed period step size of ∆P = 2× 10−4 d and a bin size of 6.3 h, I obtained the
periodogram shown in Figure 4.2. It reveals a distinctive peak at P ≈ 1.32 d and its
harmonic frequencies. There is another signal around ∼ 0.062 d = 1.49 h without a
corresponding entry in the list of known spurious frequencies (Christiansen 2013). I
suspect this is a higher harmonic of remaining systematics due to thruster burns of the
spacecraft, which occur roughly every six hours (Scaringi et al. 2016). To fine-tune the
period, I ran the algorithm again with a narrow range of test periods of 1.27 d to 1.37 d
and a step size of ∆P = 5× 10−5 d. The resulting periodogram (see right panel of
Figure 4.2) resembles a sinc function, which is the Fourier transform of a box-shaped
signal. This narrowed down the period to P = (1.3195± 0.0048) d, giving the half width
at half maximum (HWHM) of the peak as the uncertainty.
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Figure 4.2.: BLS periodogram of the detrended light curve of EPIC 217393088. Left: Full
periodogram ranging from 0.04 d to 80 d. The peak with the highest power corresponds to
the transit signal at P ≈ 1.32 d. Other prominent peaks with multiples of this period can
be identified as harmonics of the transit period. There is another signal apparent around
∼ 0.062 d with no corresponding entry in the list of known spurious frequencies (Christiansen
2013). Right: High-resolution periodogram about the transit period. This signal results from
a second BLS run with a narrow range of test periods of 1.27 d to 1.37 d. It allows a fine-
tuning of the orbital period to P = (1.3195± 0.0048) d.
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4.3. EPIC 217393088.01: A New Planetary Candidate

Each transit lasts only about three hours. With Kepler ’s integration time of 29.424min
in long cadence mode, there is significant smearing that distorts the transit signal and
leads to poor sampling of single transits. To compensate for this effect, I assume that
the system’s geometry does not change between two transit events and phase-fold the
time series about the orbital period P . Using the phase

Φ =
t− t0
P
−Norb (4.5)

with orbit number Norb instead of the original time data t as the time axis, I cover all
parts of the folded transit with a high sampling rate. I fixed t0 to the first time of inferior
conjunction in the data set. The top panel of Figure 4.3 shows the phase-folded light
curve color-coded by absolute time of the original data. The color-coding helps to spot
temporary features that are poorly resolved with Kepler ’s cadence, such as spot-crossing
events. Indeed, one can see a delayed start of the dimming for a few transits early in
the light curve. This could in principle be explained by an additional massive body
in the system. However, a planet with such a short period is expected to experience
strong tidal forces that cause a transfer of orbital angular momentum to the stellar spin
(Maciejewski et al. 2016). This orbital decay quickly destroys a potential mean-motion
resonance necessary to produce detectable TTVs. I therefore exclude TTVs as the cause
for the delayed ingress. It can be explained by a stellar spot that was occulted by the
planet during ingress. However, the light curve shows an overall lower quality before
BJD− 2454833 ≈ 2476, making the feature likely a spurious deviation.

The phase-folded light curve appears to have a slight bulge surrounding the transit sig-
nal. This detail is not visible when folding the PDC data, I therefore attribute this to
systematics of the detrending routine.

4.3.3. Light Curve Model and Stellar Limb Darkening

Accurate light curve models can be fit to transit events to constrain stellar and planetary
parameters (Hubbard et al. 2001). To first order, the course of the light curve during
the transit depends on the stellar and planetary radii and on the projected trajectory of
the planet. However, the shape of the resulting dip is significantly altered by stellar limb
darkening, which causes a dimmer image near the edge of the stellar disk. Thus, limb
darkening has to be taken into account to compute accurate transit models. The com-
plexity of this calculation is largely dominated by the assumed stellar intensity profile.
Several functional forms have been used, including linear (Schwarzschild & Villiger 1906),
quadratic (Kopal 1950), square-root (Diaz-Cordoves & Gimenez 1992), logarithmic (Klin-
glesmith & Sobieski 1970), exponential (Claret & Hauschildt 2003), and four-parameter
nonlinear laws (Claret 2000). Some of these profiles do not have analytic solutions. In
these cases, one obtains the missing flux δ caused by a transiting planet by integrating
the projected intensity I over the area masked by the disk of the planet S, i.e.

δ =

∫
S
I dS. (4.6)

39



4. Results

0.985

0.990

0.995

1.000

0.985

0.990

0.995

1.000

R
el

at
iv

e
F

lu
x

Relative flux

Binned flux

Best fit

0.0 0.2 0.4 0.6 0.8 1.0

Orbital Phase

−0.001

0.000

0.001

2470

2480

2490

2500

2510

2520

2530

2540 B
JD−

2454833

Figure 4.3.: Phase-folded light curve and transit fit of EPIC 217393088. Top: The detrended
time series are folded about the transit period and color-coded by absolute time. Middle:
Phase-folded photometry (gray points) is placed into bins of 4.75min width (blue points).
I fit a transit model to the binned data and show the best-fit model in orange. Bottom:
Residuals of the transit fit with an deviation of 2.9× 10−4.

This can be computationally expensive if high accuracy is needed (Kreidberg 2015). The
batman4 package provides efficient computation of transit light curves for any of the
mentioned radially symmetric limb darkening laws. I used the software to obtain the
models I needed for the following transit analysis.

Since there is no reliable source of theoretical limb darkening coefficients for EPIC
217393088, I fit them in the transit-fitting procedure (see Section 4.3.4). The opti-
mal choice of a limb darkening law for this purpose depends largely on its behavior on
accuracy and precision in the retrieval of transit parameters. In this context, Espinoza
& Jordán (2016) studied the bias-variance trade-off in the Kepler bandpass for Rp/R?,
a/R?, and i using a metric based on the mean-squared error

MSE = Bias(θi)
2 + Var(θi) (4.7)

and light curves from the batman package. The performance of the compared limb dark-
ening laws shows a strong dependence on the light curve noise level. Since the authors

4BAsic Transit Model cAlculatioN in Python (Kreidberg 2015)
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4.3. EPIC 217393088.01: A New Planetary Candidate

made their analysis code available5, I used it to compare the performance of the different
laws in the parameter regime of my transit signal, i.e. with P ≈ 1.3 d, Rp/R? ≈ 0.09,
a/R? ≈ 3, i ≈ 89.1◦, and a light curve precision of 730 ppm. These first-guess values were
obtained from a simplified transit fit on the phase-folded light curve of EPIC 217393088.
I adopted stellar parameters of the target from the EPIC (compare Table 3.1). I did
not consider an exponential law, since its negative intensity values near the outermost
regions of a stellar disk prove it to be fundamentally non-physical (Espinoza & Jordán
2016). Consistent with the findings of Espinoza & Jordán (see their Figure 7), there is
few difference in MSE between the laws in this noise level regime. I therefore opted for
the widely used quadratic law

I(µ) = I0(1− u0(1− µ)− u1(1− µ)2), (4.8)

with the intensity at the center of the disk I0, the normalized radial coordinate µ, and
the limb darkening parameters u0 and u1, due to the compact prior volume (Kipping
2013a) and to facilitate comparison.

4.3.4. Planetary Parameter Estimation

To determine credible regions for selected planetary parameters of EPIC 217393088.01, I
performed an MCMC analysis and obtained a joint a-posteriori probability distribution
(hereinafter also referred to as “posterior”) of Rp/R?, u0, u1, t0, a/R?, i, e, and ω. The
phase-folded light curve was placed into bins of 0.0025×P = 4.75min width, and transit
models as described in Section 4.3.3 were fit to the binned data. The orbital period of
the planet is known from the BLS periodogram with high accuracy, thus I fixed P to the
value determined in Section 4.3.2.

Orbital Eccentricity

In a transit fit, the eccentricity of the orbit typically shows a strong covariance with other
parameters. In the following, I will justify my assumption of a circular orbit, e = 0, for
EPIC 217393088.01. I performed a first fit in which I treated e and the argument of
periastron as free parameters. I adopted a uniform prior for ω, since there should be
no preferred orientation of exoplanet orbits in space. In contrast, there is evidence for
a non-uniform distribution of eccentricities, largely due to tidal circularization (Trilling
2000). As advocated in Kipping (2013b), the Beta distribution

P (e, α, β) = (1− e)β−1eα−1 Γ(α+ β)

Γ(α)Γ(β)
, (4.9)

here expressed in terms of Gamma functions, provides a good match to the currently
observed distribution of e. Kipping proposes to use the shape parameters α = 0.697
and β = 3.27 for short-period planets, which show a larger fraction of low-eccentricity

5https://github.com/nespinoza/ld-exosim/
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orbits. I adopted these values and used Equation 4.9 as a prior for e. For comparison,
I also performed a fit with a uniform prior. Figure 4.4 shows the marginalized posterior
distributions of e for both runs, together with P (e). Both distributions strongly favor a
low eccentricity. This result is consistent with tidal circularization, which can take place
on timescales shorter than the lifetime of the system by tidal interaction of close-in giant
planets with their host star (Trilling 2000). As derived from Goldreich & Soter (1966),
this timescale is given by

τcirc =
4

63
Qp

(
a3

GM?

)1/2(
Mp

M?

)(
a

Rp

)5

, (4.10)

where a is the semi-major axis of the planet, G is the gravitational constant, M? is the
mass of the host star, Mp is the mass of the planet, and Qp is the planet’s tidal lag.
The distribution of eccentricities of known short-period giant planets further strengthens
the zero-eccentricity hypothesis. More than 80% of the planets with Rp > 0.5RJup

and P < 2.0 d in the NASA Exoplanet Archive (Akeson et al. 2013) have eccentricities
lower than e = 0.05 (compare Figure A.3). Therefore, I assume a circular orbit of EPIC
217393088 and fixed ω to arbitrary 90◦ for all of the following analysis.
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Figure 4.4.: Prior and posterior probability distribution for the orbital eccentricity. P (e) is a
Beta distribution with α = 0.697 and β = 3.27 and served as a prior for the fit that resulted in
the blue posterior distribution P (e|~y). The fit corresponding to the green histogram adopted
a flat prior for e.

Prior Probabilities

For all remaining free parameters, I adopted priors that are uninformative but prohibited
non-physical solutions by the choice of appropriate bounds. I enforced the following
requirements via log likelihood penalization (Kipping & Sandford 2016), i.e. adding a
logarithmic prior logP (θ) = logP (b) + logP (Rp/R?) + logP (a/R?) to the logarithmic
likelihood logL(θ).

The existence of a transit implies that the impact parameter must obey

|b| = |a/R? cos i| < 1 +Rp/R?, (4.11)
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4.3. EPIC 217393088.01: A New Planetary Candidate

giving rise to the log prior

logP (b) =

{
0, if |b| < 1 +Rp/R?;

−∞, otherwise.
(4.12)

Similarly, the planet size should be positive and (by definition) not larger than the size
of the star, i.e.

logP (Rp/R?) =

{
0, if 0 ≤ Rp/R? ≤ 1;

−∞, otherwise.
(4.13)

In addition, the planet should not be in contact with the star, thus I set

logP (a/R?) =

{
0, if a/R? > 1 +Rp/R?;

−∞, otherwise.
(4.14)

For the remaining parameters u0, u1, and t0, I adopted uniform priors.

MCMC Analysis

The likelihood function was chosen according to Equation 2.7, where I set the uncertainty
σ to the standard deviation of the detrended out-of-transit flux. I used the MCMC
sampler emcee (Foreman-Mackey et al. 2013) to sample the parameter space with 450
“walkers” (Goodman & Weare 2010), each of which exploring for 250 iterations after a
burn-in phase of 100 steps. To mitigate correlation between the samples, I kept only
every 10th iteration. The correlation length6 of the thinned Markov chain ranged from
7 to 10, corresponding to an effective sample size of 1100 to 1600 per parameter.

In Figure 4.5, I visualize all one- and two-dimensional projections of the posterior in a
corner plot7. It shows the marginalized distributions of all parameters used for the fit
as well as the covariances between them. For all parameters, I give the 50th percentile
of the respective marginalized posterior distribution as the result and quote their 16th
and 84th percentiles as uncertainties. One can immediately see that the best constrained
parameter is the time of inferior conjunction t0. It does not show any significant correla-
tions to other parameters. Its best-fit value of 0.4991± 0.0004 in phase units translates
into a determination of the mid-transit time with 45 s precision. There is, however, a
positive correlation between the planet-to-star ratio Rp/R? and the scaled semi-major
axis a/R?. This is not surprising: The transit duration is, by simple geometric considera-
tion, directly proportional to Rp and inversely proportional to the transverse component
of the relative orbital velocity. The latter in turn is, from Kepler’s second law, inversely
proportional to the distance from the star to the planet at the time of conjunction. This

6computed using acor (Goodman & Weare 2010), https://github.com/dfm/acor
7created with corner.py (Foreman-Mackey 2016), http://corner.readthedocs.io
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Figure 4.5.: Corner plot showing posterior probability distributions (along diagonal) and co-
variances (off-diagonal) of all parameters of interest in the EPIC 217393088 system.

degeneracy can not be lifted without complementary data, e.g. from precise RV mea-
surements. In addition, Rp/R? is correlated with the orbital inclination i, since any
positive or negative deviation from an edge-on configuration (i = 90◦) will result in a
shorter transit duration. This explains the fairly symmetric shape of the correlation plots
involving i. I infer from the largely normally distributed samples a planet-to-star ratio
of Rp/R? = 0.0927± 0.0026. The marginalized distribution of a/R? is somewhat skewed
from the strong correlation with i. By the same argument as above, both a/R? and i are
a function of transit duration. We are observing this planetary system nearly edge-on
with i = 89.8+3.0

−3.4
◦. Under the assumption of zero eccentricity, the scaled orbital radius
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of the planet amounts to a/R? = 3.30+0.10
−0.12. For the limb darkening parameters, I found

u0 = 0.44+0.17
−0.19 and u1 = 0.84+0.34

−0.33. All transit parameters are listed in Table 4.2.

4.3.5. Host Star Analysis

I determined the effective temperature of the star using TeffFit and photometry listed
on ExoFOP. The goodness of fits for giant (χ2

avg = 4.94) and supergiant (χ2
avg = 3.07)

templates yielded less satisfactory solutions compared to χ2
avg = 1.58 for luminosity class

V. Under the assumption that the object is a dwarf star, its effective temperature is
(5449± 42)K (see Figure 4.6). This is more than 500K lower than the value from the
EPIC (Huber et al. 2016), (5981± 176)K. To investigate this discrepancy, I performed
an SED fit to all available photometry using the VOSA tool and an ATLAS9 stellar model
(Castelli & Kurucz 2004). The fit yielded a photospheric temperature of (5500± 150)K,
consistent with our result. A black body fit to the photometry gave Teff = (5550± 100)K.
Huber et al. infer their properties of EPIC 217393088 based on reduced proper motion
and broadband colors. They report a possible overestimation of EB−V in their analysis
for near stars in Campaigns with a FOV close to the Galactic plane, which is the case
for C7 (see Figure 2.3). Indeed, the extinction listed in the EPIC, EB−V = 0.1669mag,
is much higher than the value in Schlafly & Finkbeiner (2011) at these coordinates, who
report EB−V = (0.0861± 0.0049)mag. Thus, I suspect that the target was de-reddened
too much in the spectral typing procedure of Huber et al. (2016), giving rise to an
SED that fits a hotter star. I adopt the temperature of TeffFit, which classifies EPIC
217393088 as a G8V star (Mamajek et al. 2012).

Although I can not reliably constrain other stellar parameters such as M?, R?, log g,
or the density ρ without additional information, I estimated the stellar radius using
the empirical temperature-radius relation in Boyajian et al. (2012). I do not provide
uncertainties for this estimate since the missing covariances in the relation impede a
proper error propagation. I found R? ≈ 0.81R�, which translates into a planetary
radius Rp = 0.73RJup, i.e. roughly the size of Saturn.

4.3.6. Equilibrium Temperature

The stellar radius estimate suggests a remarkably close orbit with a = 0.012 AU for the
planet; this is about 1/30 of the orbital radius of Mercury. Such proximity to the host star
is naturally accompanied by immense irradiance, leading to high temperatures especially
on the planet’s day side. The temperature profile of this close-in exoplanet is a function
of many unconstrained parameters, including the albedo, intrinsic luminosity, chemical
composition, and the efficiency of heat redistribution across the planet (Sudarsky et al.
2002). While such detailed meteorology is beyond the context of this thesis, we can
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Figure 4.6.: Effective temperature fit of EPIC 217393088 with TeffFit. The magnitudes for this
fit were queried from ExoFOP. Top: Goodness of fit results for template stars (gray crosses)
and interpolated χ2 (gray lines). Blue diamonds indicate the minima of the interpolations.
Bottom: Histogram of χ2 minima. A Gaussian PDF (red dashed line) is fit to the histogram
to obtain a mean effective temperature of 5449K with σ = 42K.

estimate an equilibrium temperature Teq that the planet would have if it was a zero-
albedo black body with no intrinsic luminosity. This temperature is given by

Teq =

√
R? Teff√

2a(1− e)1/8
(4.15)

if the planet re-radiates from its entire surface area (Fischer et al. 2015). The equilibrium
temperature of EPIC 217393088.01 amounts to Teq = 2120K.

4.3.7. Missing Secondary Eclipse

Despite the short orbit period that guarantees a strong irradiance, there are no visible
signatures of phase variations (modulations of the light from the planet as it orbits the
star) or secondary eclipses (occultations of the planet by the star). To see this periodic
switch-off of the light from the planet, its amplitude has to be higher than the photometric
noise in the light curve.

Radiation from a planet consists of its thermal emission and starlight reflected from the
planet. The ratio of these fluxes is strongly wavelength-dependent: While the thermal
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emission of a hot Jupiter peaks at several µm, their reflected light dominates in regimes of
shorter wavelengths such as in the Kepler response band (Rouan et al. 2011). Neglecting
the thermal contribution, the ratio of the flux reflected from the exoplanet Fp,λ to the
flux from the star F?,λ, i.e. the expected amplitude of the secondary eclipse signal, can
be approximated by

δSE, reflected =
Fp,λ

F?,λ
≈
(
Rp

a

)2

pλ, (4.16)

where pλ is the wavelength-dependent geometric albedo (Cowan et al. 2007). In the ex-
treme case of pλ = 1, and using the best-fit parameters from Section 4.3.3, Equation 4.16
yields δSE, reflected ≈ 7.9× 10−4 = 790 ppm, comparable to the RMS deviation of the
detrended light curve. However, this high-reflectance scenario is questionable since gas
giants have shown to be dark in the visible (Sudarsky et al. 2002; Demory et al. 2011).
The high temperature of this planet makes a detectable signal of the phase curve in the
infrared likely.

4.3.8. Discussion

My analysis allows the conclusion that the signatures in the light curve of EPIC 217393088
are caused by a giant gas planet with an orbital period of P = (1.3195± 0.0048) d. If
the estimated stellar radius of R? = 0.81R� is taken at face value, the inferred absolute
orbital radius of a = 0.012 AU makes EPIC 217393088.01 one of the closest-orbiting ex-
oplanets ever detected and the only giant planet with such a small orbital radius8. The
proximity to the host star leads to a hot and extreme environment at the position of the
planet, which has an equilibrium temperature Teq = 2120K.

The size of the orbit is of the same order as the size of the star; thus, the gravitational
force of the star varies significantly across the volume of the planet. Such systems are
expected to be subject to tidal locking of the planet’s rotational period to the orbital
period, i.e. one side of the planet always faces the star (Gladman et al. 1996). By the
same tidal forces, energy is dissipated and angular momentum of the orbital movement is
transferred to the stellar spin. This effect causes planets on orbits of very short periods
to spiral in toward their host (Rodríguez & Ferraz-Mello 2010), in rare occasions even on
detectable timescales (see e.g. Maciejewski et al. 2016). Computing an absolute timescale
τa for this process is challenging due to the large uncertainty in Q′?, which is the ratio
between the present annual tidal quality factor Q? and the tidal Love number of degree
2, k2, ? (typically 105 < Q′? < 1010, Pätzold et al. 2004). However, τa is very sensitive to
the semi-major axis with τa ∼ a5 (Levrard et al. 2009). With better knowledge about the
star, it could be evaluated if τa is small enough to detect the orbital decay on timescales
of years or decades.

As discussed in Section 4.3.7, the chances are high to observe a phase curve and secondary
eclipses in longer wavelengths than the Kepler band provides. If done in more than one

8as of December 12, 2016; NASA Exoplanet Archive (Akeson et al. 2013)
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Parameter Valuea Source
Literature
K2 Campaign 7 A
Right Ascension (J2000) +19 h 17 m 45.39 s A
Declination (J2000) −20 h 39 m 15.75 s A
2MASS Designation J19174538-2039156 A
Kepler magnitude Kp [mag] 15.293 A

Orbital Parameters
Period P [d] 1.3195 ± 0.0048 B
Eccentricityb e 0.0 C,D
Inclination i [◦] 89.8 +

−
3.0
3.4 D

Scaled Semi-Major Axis a/R? 3.30 +
−

0.10
0.12 D

Semi-Major Axis a [AU] 0.012 D,E

Planetary Parameters
Scaled Planetary Radius Rp/R? 0.0927 ± 0.0026 D
Planetary Radius Rp [RJup] 0.73 D,E
Equilibrium Temperature Teq [K] 2120 E,F,G

Stellar Parameters
Effective Temperature Teff [K] 5449 ± 42 G
Linear Limb Darkening u0 0.44 +

−
0.17
0.19 D

Quadratic Limb Darkening u1 0.84 +
−

0.34
0.33 D

Radius R? [R�] 0.81 E
a Uncertainties correspond to 16% and 84% quantiles.
b The orbital eccentricity was held to zero, following the discussion in Section 4.3.4.
A: EPIC
B: Periodogram in Section 4.3.2
C: Following the discussion in Section 4.3.4
D: MCMC analysis in Section 4.3.4
E: Based on empirical estimate (see Section 4.3.5)
F: Assuming a circular orbit, zero albedo, no intrinsic luminosity,
F: and perfect heat redistribution (see Section 4.3.6)
G: Photometric fit with TeffFit

Table 4.2.: System parameters for EPIC 217393088.

48



4.4. EPIC 220262993: Irregular Dips

filter band, it is possible to construct an SED of the light emitted by the planet from these
observations. Due to its tight orbit and hot surface temperature, EPIC 217393088.01 is
also likely one of the few planets suitable for emission spectroscopy (Stevenson et al.
2014).

The extreme parameters of this planet can also cause dust emission and might ultimately
lead to its disruption (e.g. Li et al. 2010; Sanchis-Ojeda et al. 2015). Although such events
are relatively rare (Sanchis-Ojeda et al. 2015), the high irradiance of EPIC 217393088.01
makes it a potential candidate for detection of these effects.

4.4. EPIC 220262993: Irregular Dips

EPIC 220262993 was observed in K2 Campaign 8 in long cadence mode. It is located
at RA= 01h 03m 30.92s, Dec= 01h 50m 41.7s (J2000 coordinates) and has a baseline
magnitude of mKep = 18.78. The target was flagged by lcps, since its K2SFF light
curve shows isolated dips in flux of up to ∼ 25% (see Figure 4.7).

4.4.1. K2 Light Curve and Contamination Check

The strongest features are two steep, V-shaped dips in the first third of the photometry
that are not periodic within the 79 d observation. The first of these dips shows a dimming
rate of −72%d−1, whereas the rate of the second dip amounts to −21%d−1.
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Figure 4.7.: K2SFF light curve of EPIC 220262993. Besides small-scale variabilities, the light
curve exhibits two dramatic V-shaped dips of 0.8 d and 2.8 d duration, respectively. During
the larger of these dimming events, a maximum of 25% of the total flux disappears.

I checked the PDC data to make sure the signal does not stem from the K2SFF detrending
process. It is present in these data as well with very similar shape. An inspection of the
flux time series of the individual pixels in the target mask did not reveal any anomalies
(see Figure B.1). I also obtained the EVEREST data of EPIC 220262993 for a cross-
check. Their processed light curve preserves the two major dips, albeit shallower than
in the PDC and K2SFF data. EVEREST’s contamination statistics shows no signs of
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light from background or foreground sources in the aperture (see Figure B.2). Available
archival images show no bright nearby companions within the K2 aperture (compare
Figure 4.8). The object is known, however, its classifications based on optical and mid-

Figure 4.8.: Contamination analysis of EPIC 220262993. Left panel: Coadded image of all
K2 cadences. The red region encloses the ’best’ photometric aperture used for the K2SFF
product; the green dot denotes the position of the object according to the astrometry infor-
mation from the Kepler target pixel file. There are no conspicuous features visible in the
point spread function (PSF). Credit: Andrew Vanderburg. Right panel: SDSS Finder Chart
for EPIC 220262993. This image from SDSS, data release 10, shows the environment within
80′′ of EPIC 220262993. There are no nearby companions visible.

infrared colors are inconsistent: It was identified as a possible quasi-stellar object (QSO;
Crampton et al. 1997; Brescia et al. 2015; Richards et al. 2015) and as a white dwarf
(WD; Gentile Fusillo et al. 2015). It is also listed in the initial Gaia source list with
nearly zero proper motions, (µRA; µDec) = (2.1 ± 6.2; −5.6 ± 6.2)mas yr−1 (Smart &
Nicastro 2014), which favors it being an extragalactic object. An analysis with TeffFit
did not yield consistent results, and there was no spectroscopic data available. To reveal
the nature of EPIC 220262993, we conducted a series of follow-up observations.

4.4.2. Photometry: GROND

We observed EPIC 220262993 in seven bands using GROND. This instrument allows
simultaneous exposures in four optical channels (g′, r′, i′, z′) and three near-infrared
channels (J,H,K). It is mounted on the MPI/ESO 2.2m telescope in La Silla, Chile. On
October 19, 2016, we took a single exposure of the target in each band. Table 4.3 shows
the magnitudes from this observation and, for comparison, listed magnitudes. The optical
channels are from SDSS, near-infrared (NIR) channels stem from the UKIRT Infrared
Deep Sky Survey (UKIDSS) catalog. Apart from the g′ band, the object appeared
∼ 0.1mag brighter in all GROND measurements (note that UKIDSS magnitudes are
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Band SDSS/UKIDSS magnitude GROND AB magnitude
g′ 18.885± 0.009 18.69± 0.02
r′ 18.740± 0.010 18.62± 0.01
i′ 18.622± 0.011 18.56± 0.01
z′ 18.608± 0.033 18.50± 0.01
J 17.751† 18.54± 0.03
H 17.077† 18.30± 0.07
K 16.655† 18.78± 0.12

† Vega photometric system

Table 4.3.: Multi-band photometry of EPIC 220262993. I list magnitudes from the SDSS and
UKIDSS catalogs together with our observations with the GROND instrument. Our data
are generally brighter than the previous observations (note that UKIDSS magnitudes are
given in the Vega system).

given in the Vega photometric system). There is no significant color change between the
listed values and our measurements.

The SED from these data is not blue enough for a typical WD. The larger amplitude in
g′ strengthens the QSO hypothesis. The observed flat SED in the NIR is not a common
feature of these objects, as it would imply either a strong contribution of the host galaxy
or substantial dust emission (Greiner 2016). We could not sufficiently distinguish between
a QSO and a WD without additional observations.

4.4.3. Low-Res Spectroscopy: FIRE

In order to distinguish the possible cases for EPIC 220262993, we obtained a NIR spec-
trum of this object. It was observed with the Folded-port InfraRed Echellette (FIRE)
spectrometer mounted on the Magellan Baade 6.5m telescope at the Las Campanas Ob-
servatory in Chile in the night of October 26, 2016. FIRE was set to High-Throughput
Prism Mode, which resulted in a spectrum with spectral resolving power R = 300− 500
spanning 0.8 µm to 2.5 µm wavelengths with a 1′′ slit width (Simcoe et al. 2013). Five
120 s exposures were obtained in ABBA nodding sequence and reduced with the facil-
ity pipeline. The reduction included flat fielding, sky subtraction, extraction of one-
dimensional spectra, their wavelength calibration with NeAr lamp spectra, and a telluric
correction. For the latter we used the A-type star BD-18 220, observed just before the
science target. The final spectrum is shown in Figure 4.9. It shows a feature at ∼ 1.5 µm
that, upon inspection, appears only in the spectra from the nodding side B and is most
likely a detector artifact. Apart from this feature, the spectrum is flat. The SNR at the
continuum level is too low to draw conclusions as to whether EPIC 220262993 is a white
dwarf, a QSO, or something else.
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Figure 4.9.: NIR spectrum of EPIC 220262993, taken with the FIRE spectrometer on the
Magellan Baade telescope. The spectrum is flat, except of a feature at ∼ 1.5 µm that we
relate to a detector artifact.

4.4.4. Echellette Spectroscopy: ESI

On November 19, 2016, we observed EPIC 220262993 in the optical with the Echellette
Spectrograph and Imager (ESI, Sheinis et al. 2002) at the Keck II 10m telescope on
the Mauna Kea summit, Hawaii. A slit width of 1′′ was chosen, corresponding to a
resolution of ∼ 4000. The target was observed with a single exposure of 900 s duration.
We used the MAKEE9 package to reduce the data and calibrated the spectrum with the
flux calibration star BD+284211. A wavelength binning of 5× 10−4 µm was applied, and
overlapping Echelle orders were averaged using a median filter to create the combined
spectrum (Figure 4.10) with a usable coverage from 0.4 µm to 1.0 µm. We shifted the
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Figure 4.10.: Optical spectrum of EPIC 220262993, taken with the ESI spectrograph on the
Keck II telescope. The measured spectrum (blue line) was shifted into the rest frame of a
synthetic QSO spectrum at z = 1.42 (dashed green line). Two prominent features in the
ESI spectrum correspond to the C III] and Mg II emission lines, respectively. The ESI
spectrum is flatter compared to the composite spectrum, suggesting a substantial continuum
contribution of the host galaxy.

9MAuna Kea Echelle Extraction, http://www.astro.caltech.edu/~tb/ipac_staff/tab/makee/
index.html
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spectrum in wavelength into the rest frame of a composite QSO spectrum (Vanden Berk
et al. 2001) at z = 1.42. Two prominent features in the ESI spectrum correspond to
broad emission lines at 0.19 µm (C III]) and at 0.28 µm (Mg II) in this composite. The
agreement of these features allows us to draw the conclusion that the object is a quasar.
Our observed spectrum is flatter, presumably due to a strong continuum contribution of
the host galaxy.

4.4.5. Discussion

The brightnesses of a large number of quasars have been monitored from the ground
(e.g. with OGLE, Sumi et al. 2005; MACHO, Kim et al. 2011; and other surveys), but
they typically lack either the SNR or the cadence to detect flux variations comparable
to the features in EPIC 220262993’s light curve. Only few quasars have been observed
with an accuracy and cadence comparable to Kepler ’s (e.g. Mushotzky et al. 2011), and
none of them exhibit variations with 20% to 25% amplitude on timescales of hours.
There have been claims of intraday variability for a few powerful radio loud quasars
(e.g. Foschini et al. 2015). EPIC 220262993, however, was not detected in the FIRST
survey, which was carried out at 1400MHz (Becker et al. 1994). Adopting a ΛCDM
cosmology with H0 = 70 and ΩM = 0.286, its detection limit for z = 1.42 translates
to a spectral luminosity L6 . 1024.5 WHz−1. The criterion for radio loud quasars is
L6 & 1023.2 WHz−1 (Kellermann et al. 2016), suggesting that this object is either a radio
quiet QSO or a weak radio loud QSO. Even among radio loud quasars, a drop in flux of
this magnitude has not been seen (Capellupo et al. 2013).

The cause of the irregular dimming events remains unclear. Their short timescales make
a physical process taking place inside the quasar’s continuum emitting region unlikely,
since the dimensions of this region are in the ballpark of 0.02 pc (Wayth et al. 2008),
which translates into about three light weeks. Thus, any synchronized emission process
across the entire volume can not happen on timescales faster than three weeks since
the synchronization is limited by the light travel time. Variations of shorter timescales
can occur in radio loud quasars, which exhibit emission from more compact regions and
collimated jets. Another possible explanation is an occultation event by one or several
opaque bodies or a dust cloud in the vicinity of the QSO. In this case, the transiting
object must cover more than 20% of the emitting region to account for the depth of the
dips.
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In this chapter, I summarize what I have accomplished and conclude by looking at
possible future extensions of this work.

I developed an algorithm that determines the effective temperature of an object from
available multi-band photometry. A number of tests showed that it successfully recovers
the temperature of synthetic stars and agrees with results of other methods. Ongoing
work builds on this capability and extends TeffFit towards an estimate of distance and
extinction from photometry alone. First tests show a reasonable distribution of distances
and extinctions among the involved luminosity classes. The long-term goal is to obtain
a more accurate Galactic dust reddening along a specific line of sight than possible with
currently available grids.

I used this software to characterize the host star of a planetary candidate I discovered,
which allowed me to estimate physical parameters of this extrasolar system. The results
of my analysis are consistent with a Saturn-sized planet in a circular orbit with a radius
of only 0.012 AU, making EPIC 217393088.01 the giant planet with the tightest orbit
discovered to date. However, additional observations are needed to rule out possible
astrophysical false positives and confirm the planetary origin of the transit signal. The
next step will be to obtain additional transit photometry in multiple filter bands. As
opposed to an eclipsing binary system, planetary transits produce the same depth in
all wavelengths since they only block stellar light and do not contribute significant own
radiation. We also plan to conduct low-resolution spectroscopic observations in order to
get an estimate of the RV amplitude. To ultimately confirm the discovery, we need to
detect an RV signal by employing high-resolution spectroscopy. This would also yield
constraints on the stellar and planetary masses and improve the accuracy of the parame-
ters derived in this work. While I found no evidence of TTVs within the ∼ 79 d baseline
of K2 long cadence data, the extremely tight orbit of EPIC 217393088.01 potentially
offers the opportunity of observing the decay of its orbit and possibly a progressive tidal
disruption by the host star.

Furthermore, I created a tool to find dips in time series regardless of their shape. My
software lcps is compatible with any time series data; it has been successfully applied
to K2 long cadence photometry. To quantitatively assess the detection performance, I
plan to test the algorithm by injecting transit signatures with a broad range of shapes
and amplitudes.
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The lcps software led to an enigmatic finding: I discovered an unidentified object that
exhibits steep dips in flux of up to 25% with no apparent periodicity. Follow-up obser-
vations using multi-band photometry, as well as optical and NIR spectroscopy revealed
the extragalactic nature of EPIC 220262993 and allowed us to classify it as a quasar
at z = 1.42 that is either radio quiet or only weakly emitting in radio bands with
L6 . 1024.5 WHz−1. It is the first such object with deep dips in flux on hour timescales.
Further photometric monitoring is crucial to detect future dimming events and learn if
they occur periodically or not. If they do, it should be assessed whether the dips change
their shape and/or depth in order to gain knowledge about the physical processes that
cause them. Continuous long-term monitoring will become available at the latest through
the Large Synoptic Survey Telescope (LSST), which will enable a revisit time of 3 d to 4 d
(Ivezic et al. 2008). In case EPIC 220262993 is the progenitor of a new class of objects,
there is a high chance that more of them will by detected in future.
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Appendix A.

Eccentricity of EPIC 217393088
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Figure A.1.: Corner plot showing posterior probability distributions (along diagonal) and co-
variances (off-diagonal) of all free parameters for EPIC 217393088. These posteriors were
obtained from a transit fit with free e and ω. I used the beta distribution described in
Section 4.3.4 as prior probability distribution.
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Appendix A. Eccentricity of EPIC 217393088
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Figure A.2.: Same as Figure A.1, but using a flat prior for e.

Figure A.3.: Eccentricities of confirmed short period giant planets. The sample contains only
planets with Rp > 0.5RJup and P < 2.0d. Left: Histogram of eccentricities. Right: Ec-
centricities plotted against orbital period. Planet data provided from the NASA Exoplanet
Archive (Akeson et al. 2013).
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Appendix B.

Contamination Check for EPIC
220262993

I checked the data of EPIC 220262993 for signs of background or foreground stars and
other contaminants using the object’s target pixel file (see Figure B.1) and available
diagnostics of the EVEREST product (see Figure B.2).
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Appendix B. Contamination Check for EPIC 220262993
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Figure B.1.: Individual pixel time series of EPIC 220262993. Blue curves show the flux time
series of each individual pixel in the target mask. Only the pixel with a gray background
is included in the photometric aperture used to construct the PDC light curve. There is no
signature of bright companions or other contaminants visible. This plot was created from a
target pixel file using the PyKE tool (Kinemuchi et al. 2012).
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Figure B.2.: EVEREST contamination statistics for the first timestamp. The top row shows
from left to right the image, an optimized PSF model, and the difference between data and
model divided by the brightest pixel in the aperture. In the bottom row, a binned version of
the PSF model and its difference to the data is depicted. The bottom right panel shows 50
evaluations of the contamination metric throughout Campaign 8. From these diagnostics, I
did not find indications of contamination by other sources. This plot was downloaded from
the MAST.
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