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ordinary Algebra, differing from the latter in the substitution of three
arbitrary quantities z, i, and u for the quantities 0, 1, and oc .
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On some Results connected with the Theory of Reciprocants.

By C. LEUDESDORF, M.A.

[Read April 8*A, 1886.]

• 1. Let x and y be two variables connected by any relation, and let
yx, y2, ... denote the successive differential coefficients of y with re-
spect to x, and xu x2, ... those of x with respect to y. Then

se, = — ?/., -f- ?/3 ,

ViVz—1^2/3 *̂ " 2/71
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and so on. If the numerators on the right be denoted by Yv Yv ...,
we notice the following properties of Yn :—

It is homogeneous, and every term of it is of degree »—li-
l t is isobaric, and every terra of it is of weight 2 (w— 1) (if the

woight of yr be taken to be r).
It only involves yn once, in the term "-y"'9y».
The denominator corresponding to it is yj"*1.

2. Let R(yuyv ...) be a reciprocant every term of which is of
degree i and weight to, and which is eqnal to qy*R (xu <e9, . . .), where
q = ± 1. Then evidently q is + 1 or — 1 according as the number of
factors in that term of B which contains the highest power of y1 is
(neglecting the power of y,) even or odd. For

but

and in general yr = — -7^ + ....

If 22 does not contain y,, then evidently q = ( — 1)'.

Again, \ must be equal to the sum of the degree (•') and the weight
(10) of R. For, if we write ly for y (where k is a constant), y™ be-
comes kmy"\ but as™ becomes k~'"rx™ ; thus every term of B (yv y%, ...)
will be multiplied by Jc{ and every term of R (a;,, xt) ...) will be
multiplied by h'w; therefoi'e

so that /c* = fe*'"1, which shows that X = «> + «'. More generally, it is
seen that any homogeneous and isobaric function F (yu yiy ...) of
degree i and weight w will, if transformed by means of the formuloe
reciprocal to those in § 1, become a homogeneous and teobaric func-
tion y p ' « (as,, as,,...) of as,, «,, ....

3. Let now F be any function of yv yif ...; it can of course be ex-
pressed in terms of xu xit ...; let it become asf** (xlt xv ...) when so
expressed. If we write x—yd (where 0 is an infinitesimal) in place
of xt and leave y unaltered, the change in $ will be
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for the change makes xx into x1—6i and x2, xs, ... are unaffected by it.
Let us examine the effect of the change upon F.

We have Sy = 0, ox — — yd, and therefore, writing u = Sy—yl ex

and so on. Therefore

«TH dF * . dF» , dF

where F is the well-known operator

the coefficient of -— in V being

g f y.y,,,,
that is, c™y,y„,., + t^yzym. 2 + . . . + c ^ ym_i y,,

c"' denoting the number of combinations of m things taken r together.
Equating the changes in F and «&, there results

In the case where JP is homogeneous and isobaric, this last equation
can be simplified. For, if F be of degree i and weight w, then, by
Euler's theorem and the isobaric theorem,
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so that the equation reduces in this case to

or, since \ = w + i (§ 2), to

If F is a jpwre function, i.e., one which does not contain ylt then

a result in which is included the well-known proposition that if F is

a pure reciprocant VF = 0.

4. The following preliminary proposition will be required in § 5.
Let F(y%, 7/3, ...) be a rational homogeneous isobaric function, of

degree i and weight w, of the differential coefficients of y with respect
to x (excluding the first). If 7/-((t'*'> F is such that it is unchanged by
the substitution of x—yd for x (where 6 is an infinitesimal), y re-
maining unaltered, then F must be a pure reciprocant.

To prove this, let the substitutions

y I v' \ ' v ~
= A f i J x — r]

be made successively in y~{w+%) F. Since, by hypothesis, this function
is unchanged when x—yO, y are written for ,r, y respectively, it
follows that any number of such infinitesimal changes made
successively in x will have no effect on the function, and therefore
that we may write x—y for x and y for y without altering it. There-
fore «-<-"F(y2, ?/3, ...) = Yr^^FiY,, Y,, ...) (4),

drY
where Yr denotes ——.

dA.
Now let the second substitution be made in the right-hand member

of (4). We have
dY _ x , dT .
dx dt''
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and so in general Yr = Y'r except when r = 1. Accordingly

(5).

Now let the third substitution be made in the right-hand member
of (5); it will evidently become

f where »?,. denotes -

tha t is, -F(»?2)'/s> •••) simply.

B a t now x = X-Y= X'-(X'+ T) — - v,

y=T = X'+T = *,

so that the effect of the train of three substitutions is to change x
into — y, and y into x. And, since i;2 = — ,r2, IJS = —a's, &c, therefore
•F('/2)'/3> •••) is equal to ( — 1)' F (.r2, .r3,...). It has therefore been shown

that 9;l"">F(y*y» •••) = (-!) ' '^(^ .a- . , .») ;

i.e., .F is a pure reciprocant.

5. The results of the preceding articles may now be made use of to
prove the converse of the proposition mentioned at the end of § 3;
viz., that if F is a rational integral homogeneous isobario function of
y.,, ?/3, ..., then, if VF = 0, F must be a pure reciprocant.

Let ,v be changed into .v —y'-i, as in § 3 ; then, as already seen, F is
changed to F + BF, where

SF= \ -y^+(u> + t) F+VF]$= (w + i) FB,

the other terms vanishing by hypothesis. Since ^ = y20, this can

be written 5 {y"(ie+Q JP} = 0,*

which shows (§ 4) that .F is a pure reciprocant.

* This result may also be seen from equation (3) of § 3, which shows that, if
F('/•:> i/.3> •••) b° transformed by substituting for //«,, y3) ... their values in terms of
^u 3s»'r3> •••> a n ( i become tff(" *!) * (.i'i, ;»"2, .r3, . . .) , then, when VF = 0, also
-— = 0; that is, * does not involve .r,. Accordingly

{ i ^ ) } = 8* (a-a, a-3, ...) = 0.
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6. Let Fnow stand again for any function of yu T/8, ...; and let an
infinitesimal orthogonal change be given to x and y; i.e., let x become
x—yd and y become y + xQ, where 6 is infinitesimal. Then- proceeding
as in § 3 to find the change in F, we have

w = ty-y,&c = (x+yyj 0,

therefore %i = (l+2/j)0>

and $yv fyp &c. have the same values as given in § 3. Thus

In the case, then, where F is an. absolute orthogonal reciprocant 0,

or, say, ft". 0 = 0.

If 0 be an orthogonal reciprocant, but no longer an absolute one, then
we can make it into an absolute one by dividing it by a suitable
power of y3; if this power be the ktu, then

V.O = ZkyxO (8).

For V(Oy;k) = y;*UO-ht?'

3^,0) (9).

7. If F is a funct ion of yv yi} ••• such t h a t

where /x is some constant, then F must be a reciprocant, and an
orthogonal one; such, moreover, that y~**F is an absolute orthogonal
reciprocant.

This proposition, the converse of that given in equation (7) of § 6,
is easily proved. For, if x — yti, y + xd be written for z and y, as in
§ 6, the change made in y'^F

by (7)

mF) by (9)

= 0,
by hypothesis.

Therefore y~**F is not altered by an infinitesimal orthogonal change
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given to as and y; and therefore is not altered by any number of such
changes made successively; that is to say, by any orthogonal change
in the variables. In other words, it is an absolute orthogonal re-
ciprocant.

8. Let B(yu yv ...) be any reciprocant; let it be made absolute by
division by a suitable power of y2, say the fcth. Thus,

so that, by equation (1) of § 3,

But having regard to the value of U (y~kB)} as given in (7) of § 6,
this may be written

This last equation shows that, if B is an orthogonal reciprocant,

— must be a reciprocant; and that, conversely, if B is a reciprocant
dBsuch that —— is. also a reciprocant. then B must be an orthogonal one.
dyt

These are of course well-known results, due to Professor Sylvester.

9. In § 3, let F stand for y~lu~l) Ylt (Y,, was defined in § 1); then
* = :»„, thus equation (1) of § 3 will give

or {-^4
or _ 2 / ; ^ ' + ( w _l + 2vt-2)7/ir(,+ 7rH = (2n-l)yiYn

[since Yu is of degree n — 1 and weight 2 (u—1)],

which reduces to

(n2)ylYu-VYH = 0 (10).
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10. The equation (10) may be put into a very simple form in the
following manner. But at this point it is convenient to abandon the
notation used so far, and to take the usual one; I write, then, t in
place of yu and a, b, c, ... in place of y2, y3, y4, .... This done, (10)

takes the form *«f?Z»-(M_2) tYH-VYn = 0 (11).
ctt

Let Yn be written in the form

where Ao, Ax, ... are pure functions {i.e., they do not involve t), and
2 = 1 is a quantity put in to make the expression homogeneous.
Then, since Yn is homogeneous and of degree n — 2, if considered as a
quantic in t and q,

. dYn , dYn i 0 , v

therefore *»£!»_(„_ 2) tYn + tq ̂  = 0,
at dq

subtracting which from (11) (in which the VYU must be multiplied
by q to make the equation homogeneous), we see that the latter takes
the very simple form

V Y n = - t ^ (12).
ctq

The effect of the operator JJ on Yn may also be noticed ; we have

U. rB= ( 1 - 0 ^ + 3 (n-l)*7M+FT. = ^p

substituting for VYn from (11).
11. It is clear that by means of the Y functions any number of re-

ciprocants can be formed. For, if we take any homogeneous and
isobaric function of Y,H, Ya, Yp, ... and add to (or subtract from) it
the same function of ym, yn, yp, ... multiplied by any power of yx or t,
we have an expression which does not change in value when y and x
are written one for the other; i.e., a recipi'ocant. But there will be
a change in sign in those expressions which are obtained by subtrac-
tion ; those obtained by addition will be unaltered even in sign when
x and y are interchanged. That is to say, the addition method will
give reciprocants of positive character, and the subtraction method
reciprocants of negative character.
. The simplest set of reciprocants which can be formed in. this way
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are obtained by adding yn multiplied by any power of yx to Y,,, and
by subtracting the same expressions. If Xn denote the same function
of xlt x2) ... that Yn is of yv y2) ..., we have

If, then, ynt
x be added to (subtracted from) YH, the result is a re-

ciprocant of positive (negative) character, and of index 2» + X — 1.
Writing down the Y's in the ordinary notation,

Y, = 1,

Y6 = - tsd + i2(15ac + 106s) -105to96 + 105a4,

it is seen at once that, e.g., —tb + Ya is the Schwarzian, tic+Y4 is 5a
times the Schwarzian,— tc+ Y4 is 2t times the post-Schwai*zian less the
negative reciprocant 15a8, while — b + tYs and —c+ Y4 are well-known
orthogonal reciprocants, &c, &c. If X be chosen so as to be equal to
n — 2, we derive the most important species of reciprocants belonging
to this class, viz., the homogeneous ones. They form the series

Nt = — 2a,

+ - 15a8,

all of negative character; and

P8 = 3a3,

P5 = 15*2ac + 1 0 W - 105taib + 105a*, &c,

all of positive character.

NH and PH may with Btness be called the fundamental mixed homo*
geneous reciprocants (of negative and positive character respectively)
of order n.
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12. The equations giving the values of the Y's in terms of yu t/a, &c,
may be written in the form

y% = —

y'iyi = — Yt + & function of yxy3 and t/3,

y\y6 = — Y5 + a function of yjy4l y,y8, and yv

&c, &c,

and, generally,

2/""2y» = —Y"n + a function of y""fy.-i> y""'y»-a» •••> a n d 2/s-

Accordingly, by successive substitutions, yn~lyn may be expressed as
a function of Yn, Y,,_I( ..., Yr It follows that any homogeneous
isobaric function/of yu yit ... yn can, by successive substitutions, be
expressed as a function ^ of Yif Y8, ... YH> divided by some power of Y, ;
and, since Y, = 1, such function can be made homogeneous and
isobaric by suitably inserting various powers of Y,. If

f(yx,&,... y») = y r>( y i» ^ - r») .

it is readily seen that \ = tw—2i, where i, w; are the degree and
weight of / , considering yf as of weight r.

For any term ya
mylyr

v ... i n / will give rise (amongothers) to a term

«-.(>»-a)y 7.-/9(»-'.»)y%-i(p-2)yi'
yi J- t»y, •*• nifi J-p . . .

in ^. But this is yr» ^H Y]» ••• divided by yx raised to the power

i.e., to the power w—2i.

We may then write

The expression on the left of (14) is such that its weight is double
its degree (as is the case with the Y functions). For the weight is
w—2i+w, that is, 2 (w—i) ; and the degree is w — 2i + i, that is, w—i.
Consequently <p will satisfy the relations

,it
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In particular, if / be a reciprocant B of degree i and weight w, then,
as in § 2,

» y y,d = ± y" * '& (*» *» - •. »»)

since any term in B such as y'my^ ... gives rise to a term

y v-(lM-l).y*v-(Sll-l)* y . y0 -(2u,-i)
-*m»'i x n *i . . . ui J. m J. ,,^j i

therefore j£-«B (y,, y,, ... y,,) =±iJ5(Y1, r,, ... Fn)

=±Yr: t <B(rI ,r1 >. . . r.) (17),

(since Y, = 1) ; i.e., the reciprocant on the left-hand side of (17),
when expressed in terms of the Y's, takes exactly the same form,
except for a possible change of sign.

As an example, take the reciprocant yiyt—5y2ya, of degree 2 and
weight 5. We have

therefore ^ - S

where each expression is of degree 3 and weight 2 x 3 in its
coefficients.

From what has been said above, it is clear that any homogoiieous
isobaric function of Yv Y8, ... Y,,.(of degree i' and weight %u\ taking
Yr as of weight r') can be expressed as a function of y,, ya, ... y,, of a
similar kind. If this be done, the highest power of y, which will
occur is the to— 2i'th. For the highest power of yv which occurs in
Yr is y["s; therefore the highest power of y, in Y'm Y*n ... will bo the
(ma+n/3+. . . ) -2 («+/3+...) th ; that is, the u>'-2tnl1.

13. Referring back to § 10, let us write

Ao, Ait &c. being homogeneous functions of yit y3, ... y(l, and not in-
volving t or yx (AQ is in fact — y,,+2); and 2 = 1 being inserted to
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make the expression homogeneous. Then it has been proved that

V V — — / - - 7 i - - 3

dq

But VY,,,, = t"VAa + t"-1
<1VAl + t"-YVA.i+ ... +qaVAut

and t j - ^ - t"Ax

Equating coefficients of the various powers of t, we have

VA, = - , 1 ,

VAX = - 2,1,

VA, =-3A,,&c

aud, finally, VAn = 0

and we may write

(18),

where -fl0 stands for — T/,1+2 ; or, symbolically, and replacing ?i + 2 by n,

The l r functions are thcreibre of such a kind that, regarded as
qualities (/l0, -I,, ... A,,^t, q)H, their cocilieients satisfy relations (18)
of a kind precisely analogous to those satisfied by covariants in the
ordinary theory of the binary qualities—the operator Fhei'e replacing
the operator «o6 + 2/j5,. + yr ,̂,-f-»te. of the latter theory; in fact they are
quasi-covariants, so to speak. The term Au may be called the source of
the quasi-covariant l'M...; and, just as in Salmon's Higher Algebra,
p. 127, it is seen ili.it the source of the product of two quasi-
covariants is equal to the product of their sourees.

The i"s satisfy also the equation

1 " dt '

w here IV = hSb + 2de + SdSd +....

This is a consequence of Yu being of degree n— 1 and weight
2 ( M - 1 ) ; for

(n-1) YH = (

2 (n-1) Yn = 0$< + 2uao+



1886.] connected with the Theory of Reciprocants. 209

therefore 0 = ( - t$t + b$b + 2cBe +. . . ) Y,,,

or WYn = t 1 ^ (20).
at

This equation and VYn = — t -—•
dq

are the analogues of the equations

LIU =1J-—, Ul< — X — ,
ax ay

satisfied by the covariants of a binary quantio.

14. With the same notation as in § 13, let / be any homogeneous
and isobaric function of Ati, Av ... An. Then

. A A.) =fL rA,+ M VAl + ...

Now let y,i+2 or (̂ 40, Au ... An\t, q)n be regarded as a purely
algebraic form, a quantic in t, q of the nth degree, of which Ao, Av &c.
are the coefficients. Then the vanishing of the right-hand side of
(21) is the condition t h a t / should be a seminvariant of the quantic,
in the sense of being unaltered if q be changed into g + A. For the
expression within the brackets is precisely the second (0) of the two
well-known operators (Salmon, Higher Alyebra, § 05) written with
non-binomial coefficients. The vanishing of the left-hand side of (2.1) is
the necessary and suliicient condition that /should be a pure recipi'O-
cant. It follows that, when / is a seminvariant of

in the sense explained (and of course also when / is a full invariant
of the quantic), then / is a pure reeiprocant. And conversely, any
pure reciprocant/is at least a seminvariant of the quantic in the
sense explained. And evidently, if there be any number of qualities
of the form (Am Au ... \ t , q}n of various degrees (corresponding to
various Y's), what has been suid about invariants and rj-seminvariants
of one of them will hold good with regard to their joint invariants
and 2-seininvariants.

Any number of pia-e reciprocals can therefore be forinod from the
Y's by regarding any number of these as if they were a system of

VOL. XVII.—NO. 26$. l>
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covariants belonging to a binary quantic, and forming (in any of the
ordinary ways known to the theory of binary forms) invariants and
g-seminvariants of them.

For example, the discrimiuant of Y4« gives 3ac — bh% \ the resultant
of Y8 and Yt gives OaW—^babc + ̂ Qh*; if Y6 be written

the g-seminvariant 3/}y3—at)3 —2y3 gives

&a, &c.

If in any of the Y's the t and </ be replaced by — and — - , an
J dq dt

operator will be formed whose effect on any of the Y's is to make it
into a reciprocal!t; for example,

i . +-3a2-) Yt = - 2at (3ac-56s),
dq dt/

and so on. And this last method is only a particular case of one (see
Faa de Bruno, Formes Binaires, p. 251) by the application of which
to any pair of Y's any number of reciprocants (" associated " quasi-
covariants) can be generated.

15. The following gives another method whereby pure reciprocanta
can be formed in any number from the Y functions, and is simpler of
application than that of § 14. Tho idea is an extension of that
applied to binary quantics by Mr. Griffiths. Writing

whore d0, Au &c. are still functions of a, b, c, &c, and do not involve
/, but where p and q now stand for any quantities whatever which
aio functions of a, b, e, ..., let us see, following Mr. Griffiths' method,
whether p and q can be chosen so as to turn Y', into a reciprocant.
We have

VY'n =p»-»VA0+p

dY'n „ . dY'n
dp dq



1886.] connected with tJie theory of Ueciprocants. 211

Bat if Y'n is to be a reciprocant, VY'n must vanish; accordingly the
right-hand side of (22) must vanish. It follows that, if quantities
p, q can be found to satisfy the relation

then these quantities will, if substituted for t, q in the expression for
Y,,, give rise to a reciprocant. We may then take p and q to satisfy

either Vp = 0, Vq-p (23),

or Vp — Ot - -p = 0 (24),

Vq=P, ' ^ = 0 (25).

Of these (23) are the most useful. For, since the equations (23) do
not, like (24) and (25), involve Y,',, it is clear that they will give
values of p and q which, when substituted in any of the Y's, will give
reciprocants; and moreover, since Fdocs not involve fih these recipro-
cants will all be pure ones.

As a simple example of the application of (23), take p = 3<i2, q = b ;
if then we put 3a" for t, and b for q, in the expressions for Ys, Y4, Y6,
&c, as given in § 12, wo get the scries of pure reciprocants

0, 3as (.562-3ac), 3d4 ( - • ) ^ + 45a6c-4063), &c, &c.

It). Proceeding exactly as in the last paragraph, only taking the
orthogonal operator U instead of the operator F,

UY:i = ^Up+l^Uq+pn-2UA0+p"-3qUAi + &c (26).
dp aq

Now Ao is of degree 1, and of weight n,

A „ 2, „ » + l ,

A% „ 3, „ w + 2, &o.,

therefore tf ( 2 ^ + 3a£n-f...) operating on Aw Au At, &c, gives the re-

sults AQt(n + l), ^ ^ ( n + 3), Att(n + 5)f &c.;

therefore UA0 = t (n +1) Ao+ VA0 = t (» +1) A0—Alt

VAX = t (w + 3) ^1,+ F^! = t (
p 2
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and so on ; thus the last part of the right-hand side of (26) is equal to

t [ ]

that is, to t ["(n+1) r ; + (2n-4) Y'm-2ptp]-p$ZtL dp J aq

and therefore

UY'n = *p (Up-2pt)+$p (Z7<z-.p) + 3 (n-1) tY'n ...(27).
dp aq

Now let p, q be chosen so as to satisfy any one of the equations

at the same time that it satisfies any one of the two

then will UY;, = 3 (» - 1 ) fF,,',

«.c, Y,' will become an orthogonal reciprocant such that the factor
^-(n-i) -will make it absolute. And, just as in § 15, we see that, if the

two equations Up=2pt, Uq = p (28)

be chosen, then any values of p and q which satisfy them will make
all the Y's into orthogonal reciprocants.

As a simple example, take p = 1 + £2 rfnd 5 = t; then substitute
1 +12 for t and t for q respectively in the expressions for Y3, Ys, Yit

&c, in § 11; we obtain the series of orthogonal reciprocants

O9 = — a,

Ot = -

and so on; and these can be made into absolute orthogonals by
dividing them by a, a2, a8, &c, respectively.

17. The results of § 13 are very convenient in the treatment of
mixed homogeneous reciprocants. For instance, we may make use
of them to prove and further extend the following theorems due to
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Mr. Rogers, viz., that either of the operators

acting on a mixed homogeneous reoiprocant, generates another mixed
homogeneous reciprocant. So far as I know, these theorems have
not been rigorously proved before.

Let B be any mixed homogeneous reciprocant of degree i and
weight to; It' the same made absolute by a proper power of yx; so that

Then VW = 2 ~- VYH

where the JK' within the brackets on the right is

Y'r2iH'(Y» Yv . . . ) ,
and the double sign corresponds to that in (17).

But now, writing IE'for <j> in (15) and (10), and subtracting the
double of (15) from (16),

substituting from this in (29), we have

( 8 O ) |

where the + or the — sign is to be taken according as R' is of nega-
tive or positive character.

Again, from (30),

and, more generally, if h be any number whatever,

a result which includes both (30) and (31) as particular cases.
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Now by an obvious extension of what has been said in § 11, it is
clear that, since the expressions within the brackets on the right of
(30), (31), and (32) are symmetrical in the y's and the Y's, they will
be reciprocants; and they will of course still be reciprocants when
multiplied by yv Therefore the expressions on the left of (30), (31),
(32) must all be reciprocants; and the first two of these will evi-
dently be homogeneous; Now,

V. B' = V. y»-2iR = yf-"VR-\

therefore, if B is a mixed homogeneous reciprocant, VBis also a mixed
homogeneous reciprocant. To see that tho operator

gives a reciprocant when it acts upon B (any homogeneous recipro-
cant), and not only when it acts on 12', we notice that, by a simple
application of (17),

raising which to a suitable power, and dividing (17) by the result, we

find -BQ/i.fo. •••) = R(Y» y2. •••)

Now (32) is equally true if for R' we substitute the expressions in
(34) ; but if we do so, then, since the operator (33) can have no effect
on the denominators, we arrive at an equation exactly like (32), but
with B in place of B'. It is therefore proved that the operator (33),
acting on a mixed homogeneous reciprocant, produces another re-
ciprocant. In the particular cases (30) and (31), where h = 2, this
reciprocant is homogeneous.

Both Mr. Rogers and myself had already independently noticed that

operating on a mixed homogeneous reciprocant, produces another re-
ciprocant ; but the complete theorem (32) is new, so far as I know.
Taking the signs on the right of (30) and (31) along with those of
(17), and with what has been said in § 11, it is seen that the operator
of (30) changes the character of the reciprocant on which it acts ;
while that of (31) leaves the character unaltered.
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18. I add various properties of the functions Yn, Nn, Pn:—

(1) The sum of the numerical coefficients in the expression for Yn is

This may be seen immediately by writing y = e* on the right-hand
and x = log y on the left-hand side of the identity

(2) Yn, Yn+i are connected by the equation

d^ (35).

This comes simply from difEerentiating the same identity, and substi-
tuting for JB,,+1 its equivalent YII+i2/'l2"+1)-

(3) Yin-i may be derived from Yn by the operator

2w—1 »\ d . / 3n—1 \ d

This may be deduced from (35) by means of the equations,

2(n-l)rn = y j A + 2y8-f
dyx dyt

(4) ^n , Nn+x are connected by the equation

Nm.t= y 1 ^ - ( 2 n - l ) y l ^ . - ( n + l)y;-V,y. (36).

For, since 2/n = Yn-y""1^,
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substituting from which in (35), the restilt (36) follows.

(5) Pn, Pn+) are connected by the equation

This is found in the same way as (36).

19. The method of §3 can easily be extended to Mr. Elliott's
ternary, &c. reciprocants ; but the results are somewhat complicated.

Let F be any function of ~, ^ , £? - ^ - , &c, where », y are inde-
clx ay ax ax ay

pendent variables, z a dependent variable. The effect on F of
changing x into x — dz, and y into y — <pz (where 0 and <p are infini-
tesimals), can be expressed without difficulty. If

a dz , . dz
ax ay

then (see, e.g., Todhunter, History of the Calculus of Variations)

a*
ay dxdy ay ay

and so on ; writing (in, n) to denote ~ -^—? the general formula is
dx dy

jm+n

8(m, n) — (m+1, n)0s + (m, n+l) <j>z+ ^md n,

and then SF - 2 ~^—r % (m, n).
d (m, n)

Since the changes in x and y are quite arbitrary, and independent of
one another, the parts of hF which involve 0 and <j> respectively can
be calculated independently. We shall thus find

iF = e
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d(m,n)

If then .F become, by transforming it so as to make x the dependent,

and y, z the independent variables, a function * of ~ , -^, - 4 , &c,
dy dz dif

then, exactly as in § 3, it is seen that the partial differential
dx

coefficient of $ with respect to ^- is equal to the expression on the
dz

right of (37). And, again, if F become by a similar transformation a
function ¥ of %L, %L, ^ 1 , &c, then the differential coefficient of ¥

ax dz dx
with respect to -^ will be equal to the expression on the right of (38).

dz
If F be a reciprocant, it must then clearly satisfy two relations of a

kind analogous to equation (1) of § 3 ; and these can be written down
without difficulty for the case of any special class of ternary recipro-
cants. Similar reasoning applies to the case of ??-ary reciprocants;
these will satisfy n + \ independent relations of this kind.

20. Pure ternary reciprocants will then possess a pair of annihila-
tors. Referi'ing to § 3, it is seen that the process of calculating V for
ordinary pure reciprocants may be arranged as follows :—

'""" = (2/2/5

and so on ; and the part on the right of the vertical line gives 0 times V.
In precisely the same manner the pair of annihilators for pure ternary

reciprocants can be calculated. We have only to write down 2—,
dx

and differentiate it any number of times for x or y, cutting off after
differentiation all terms involving z, —, or -^-. What remains will

dx dy

give the annihilator corresponding to the change of x into x—dz. And

a similar process applied to z j - will give the second annihilator,
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that corresponding to the change of y into y — <pz. I have only had
the courage to calculate a few terms of the a-annihilator; these I
give below. The corresponding terms of the y-annihilator can be
derived from them by symmetry.

£ = «(20) + (10)\ ^ = z

*(30) + 3 (10)(20), p% = . (12)+2

dxdy

^ = 3(20)'+...,

dxdy*

dy*

axay

^ 1

ax ay

and so on, the omitted part being in each case that involving z or
(10) or (01). The annihilator will therefore be

d , o/ii\/nn\ d . (/nr\\/T\o\ io/inj) *{(20)(02) + 2(ll)"}



1886.] connected with the Theory of Reciprocants. 219

the coefficient of being
a (mn)

dm*n i
i

da; dyn
— terms in this which involve z, (10), or (01).

In a similar manner, by following the method of § 6, the pair of
operators for " orthogonal" ternary reciprocants, analogous to the
operator U of § 6, might be worked out; the one by writing x—zQ for
x and z + z9 for z simultaneously, and the second by writing y—zip
for y and z + y$ for z simultaneously. But the calculation would be
very laborious.

21. The method of § 11 is clearly applicable, mutatis mutandis, to
ternary reciprocants. As an example, take one of the simplest cases,
and let a[, b'u c[, a", b'x, c" be each expressed in terms of p, q, alf bv cu

(For the notation I refer to Mr. Elliott's paper, Proceedings, Vol. xvn.,
p. 172.) It is found that

Then a[pa+a['qa—al and c[pi-\-c['qi—cl each give the veciprocant

while b{p* + b'l'q*—bl gives the reciprocant

x—qax— pcx

These two reciprocants correspond to those obtained by the addition
method of § 11. Others can be formed, involving the imaginary cube
roots of unity, corresponding to those found by the subtraction
method of § 11. I have not pursued this method further; but it is
evidently one which may be expected to yield good results, giving, as
it does, the means of forming any number of ternary reciprocants.




