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On some Results connected with the Theory of Reciprocants.

By C. Lrupesporr, M.A.
[Read April Sth, 1886.]

» 1. Let 2 and y be two variables connected hy any rclation, and let
Y1 Y ... denote the successive differential cocflicients of y with re-
spect to 2, and =,, @, ... those of & with respect to 4. Then

=1 =
T =1, + 1,
Ty = "'?/1?/3'{’3;'/: ‘3—?/fa

Ty = — 4194+ 100 Yo 75—~ 15y + 9]
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and so on. If the numerators on the right be denoted by X, T, ...,
we notice the following properties of Y, :—

It is homogeneous, and every term of it is of degree n—1.

It is isobaric, and every term of it is of weight 2 (n—1) (if the
woight of ¥, be taken to be 7).

It only involves y, once, in the term —y!"%y,.

The denominator corresponding to it is "'

2. Let B (¥, ¥ ...) be a reciprocant every term of which is of
degree < and weight w, and which is equal to gy} I (%, 2, ...), where
g ==1. Then evidently ¢ is +1 or —1 according as the number of
factors in that term of B which contains the highest power of ¥, is
(neglecting the power of ¥,) even or odd. For

h= + E’;’;
£
but y’=—'2:‘, ya="£:‘+ou,
2 1
and in general yr=— -a:—:, +...

1

If R does not contain y,, then evidently ¢ = (—1)".

Again, A must be equal to the sum of the degree (5) and the weight
(w) of R. For, if we write ky for y (where k is a constant), 3™ be-
comes k"y", but 2 becomes k~""2" ; thus every term of R (3,7, ...)
will be multiplied by % and every term of R (z,, ay, ...) will be
multiplied by k-*; therefore

KR (4 Y ) = gRGE R (21, 2 .10),

so that %' = k*-*, which shows that A = w+4. More generally, it is
seen that any homogeneous and isobaric function F (y,, y;, ...) of
degree ¢ and weight w will, if transformed by means of the formulem
reciprocal to those in § 1, become a homogeneous and irobaric func-
tion YY" @ (2, 7y ...) of 2 24, ..

3. Let now F be any function of y,, y,, ...; it can of course be ex-
pressed in terms of 2,, z,, ... ; let it become 2;*® (z,, @5, ...) when so
expressed. If we write ¥—y0 (where 0 is an infinitesimal) in place
of z, and leave y unaltered, the change in & will be

—03 (0z);
0 2 (@oi);
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for the change makes z, into 2, — 0, and 2,, ,, ... are unaffected by it.
Let us examine the cffect of the change upon I
We have dy = 0, 6z = —y0, and therefore, writing w = dy—y,

= ./J1
oy = o' —yy,0 = y16,

dy, = " —yy,0 = 3y,v,0,
dyy = "' —yy,0 = (49,y,+3y}) 6,
and so on. Therefore

dF aFr ar
=Z=_9 el ot
=t et gy,

oys+...
=l i ] i 2 ji_ ]
= [y, gy, T3 g+ (ot 3y) g+ | FO
d d d .,
[ yldy +y (21/, d—yl+3y’¢i7h+"') +V] Fo,
where V is the well-known operator
352 & 110y, 9, 2
y’d + 10y, 9y 5 dy, +..

the coefficient of LA in ¥ being

WY
an (5’/:{1) —YYun— (‘"l + 1) Y1Ymy
that is, YY1+ st o Y s

¢, denoting the number of combinations of m things taken » together,
Equating the changes in F and ®, there resalts :
2dF a a —_vp = 2 (dz*)
9 gy (2y1dyl+3y, il ) P-VP="3000 . (D).
In the case where F is homogeneous and isobaric, this last equation
can be simplified. For, if F be of degree < and weight w, then, by
Euler’s theorem and the isobaric theorem,

(y, c—l‘_i—+y’£/-+ ) F=1F,

d

dy+ ) F=uwPF,

('.‘/1 an +2y,
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so that the equation reduces in this case to
ar , d
227 —_ = — (da? ,
Y 2, (w+2) y, F—VIF da!,( )

or, since A = w4+ (§ 2), to

aF o A0
P VF =4 — 2).
Y an VF =y . @)
If F is a pure function, 7.e., one which does not contain y,, then
dd
VE =— g i 3),
n (3)

a result in which is included the well-known proposition that if I is

& pure reciprocant VI =0.

4. The following preliminary proposition will be required in § 5.

Let F (yy 3 ...) be a rational homogeneous isobarvic function, of
degree 7 and weight w, of the differential coefficients of y with respect
to @ (excluding the first). 1f y7t**9 I is such that it is unchanged by
the substitution of x—y0 for a (where 6 is an infinitesimal), y re-
maining unaltered, then F' must be a pure reciprocant.

To prove this, let the substitutions
(1) w=X—Y‘§ 2 X=X } 3) X'=£—q}
y=Y ’ Y=X+Y ’ Y =g
be made successively in y-**? F. Since, by hypothesis, this function
is unchanged when ax—y6, y are written for », y respectively, it
follows that any number of such infinitesimal changes made

successively in & will have no effect on the function, and therefore
that we may write x—y for  and y for y without altering it. There-

fore YT (Y o) = YOI (Y Xy, 00)

dX"

Now let the second substitution be made in the right-hand member
of (4). We have

where Y, denotes

dY _ £l¥_'.
dT(‘HJX_"
2 thved

but aY_dY &,

dx' ax®
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and so in general Y, = Y, except when r = 1. Accordingly
Yr (Y, ¥y ) = 14+ Y) O P(Y,, Y, .0)

i) 1 Y, \°*
=Y, F (Y, T, )(lTIY) e (5).
1

Now let the third substitution be made in the right-hand member
of (8); it will evidently become
”l—(wol')F(’h’ Ny “.) ,]:Mw'

d'n
(where n, denotes 327) ,

that is, F (ny, us, ...) simply.
But now t=X—-Y=X~—(X+Y)=—n,
y=Y =X+Y = ¢
so0 that the cffect of the train of three substitutions is to change =«

into —y, and y into x. And, since 5, = —a,, ny = —a;, &c., therefore
I (4,1, ...) is equal to (—1)* I (wy, v, ...). It has therefore been shown

that ?/l_("‘”)F(ym Y o) = (=1)' F(ay g .0) 5

t.e., I'is a pure reciprocant.

5. The results of the preceding articles may now be made use of to
prove the converse of the proposition mentioned at the end of §3;
viz., that if I' is a rational integral homogencous isobaric function of
Yay Ya ..., then, if VI' = 0, I’ must be a puve reciprocant.

Let @ be changed into »—y%, as in §3; then, as already seen, I'is
changed to I"+ 817, where

3 = { —y %’E (w+3) I+ Vﬁ'} 6= (w+i) 7Y,

th

the other terms vanishing by hypothesis. Since dy, =420, this can
be written o {yr IR} =0,

which shows (§ 4) that I is a pure reciprocant.

* This result may also be seen from equation (3) of §3, which shows that, if
F(yz y3 -.-) be transforined by substituting for y,, 73, ... their values in terms of
7y, 2o, Ty ..., and become 27" '@ (v), @y, 2y, ...), then, when FF =0, also
?i = 0; that is, ¢ does not involve »,. Accordingly '

o
8 {ypim D F} = 89 (¥, a3, ...) = 0.
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6. Let F now stand again for any function of y,, y,, ... ; and let an
infinitesimal orthogonal change be given to z and y; t.e., let z become
z—yd and y become y+ 0, where 0 is infinitesimal. Then proceeding
as in § 3 to find the change in F, we have

w=0y—yde= (v+yy) 0,

therefore dy, = (1 +4}) 0,
and &y, dy, &c. have the same values as given in § 3. Thus
o AT dr }
{(l-*-j) Ly (3J,dJ G )+VF 8.....(6).

In the case, then, where F is an absolute orthogonal reciprocant O,
do dO =
-y 2 +y,( el L)HV0=0 (),

or, say, U.0=0.

If O be an orthogonal reciprocant, but no longer an absolute one; then
we can make it into an absolute one by dividing it by a suitable
power of y,; if this power be the k', then

U.0 =80 eeereercverveerrrsne e (8).
For U (0y;") = y;*UO—ky " "0dy, 6!
=y;*U0—38ky,y;*0
AL LI X 1) S ).

7. If F is a function of ¥,, y;, ... such that
UF = I’!h Fx

where p is some constant, then I’ must be a reciprocant, and an
orthogonal one; such, moreover, that y;*F' is an absolute orthogonal
reciprocant.

This proposition, the converse of that given in equation (7) of § 6,
is easily proved. For, if «—y0, y+0 be written for # and y, as in
§ 6, the change made in y % F

= U(y;»F) by (7)
=y ;¥ (UF—py,F) by (9)
=0,

by hypothesis.
Therefore y;#F is not altered by an infinitesimal orthogonal change
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given to » and y; and therefore is not altered by any number of such
changes made successively; that is to say, by any orthogonal change
in the variables. In other words, it is an absolute orthogonal re-
ciprocant.

8. Let R(y,, ya ...) be any reciprocant; let it be made absolute by
division by a suitable power of y,, say the . Thus,

'.‘/;‘R W ¥sr ) ==‘=“’;kR (e 2y ),
so that, by equation (1) of § 3,
apy . &
(g (g tdng+o) =V} 0rR) =2 1 (D).

But having regard to the value of U (y;*E), as given in (7) of § 6,
this may be written

a —& = & ok
( i 7) ;B (a: B),
-k — -k dR -k dR
so that U(y;'R) = Y; . F 2, T,

This last equation shows that, if B is an orthogonal reciprocant,
‘;—R must be a reciprocant ; and that, conversely, if Ris a reciprocant
N

such that %Ij is.also a reciprocant, then It must be an orthogonal one.
Y1

These are of course well-known results, due to Professor Sylvester.

9. In §3, let F stand for y 1Y, (¥, was defined in §1); then
¢ = a,, thus equation (1) of § 3 will give

—? d =(2=-1)7] —
[ liJ +yl( Jl iJl+3yi IJ+"')+V][-‘Y";'I1 ]_0’

o {=vibry (et )47 v = @u-yy T,
QdYu
or —y‘d +(n—=1421—2)y, Y, + VY, = @n-1)y, Y,

[since Y, is of degree n —1 and weight 2 (n—1)],

which reduces to

f‘lY" —(=2) Y= VT =0 ovvrrerrren., (10).



204 Mr. C. Leudesdorf on some Results [April 8,

10. The equation (10) may be put into a very simple form in the
following manner. But at this point it is convenient to abandon the
notation used so far, and to take the usual one; I write, then, ¢ in
place of v, and a, b, ¢, ... in place of y,, s, ¥y, .... This done, (10)

2 dYn

takes the form —(=2)tY,~VY, =0 ........eouennn. (11). .

Let Y, be written in the form
24 034, + P A+ ¢ 0, L,

where 4, 4,, ... are pure functions (v.e., they do not involve #), and
g =1 is a quantity put in to make the expression homogeneous.
Then, since Y, is homogeneous and of degree n—2, if considered as a
quantic in ¢ and ¢,

dYu d}’n — _
dt + dq (n 2) 1’11)
_therefore plL ‘lY" ~(n—2) tY,+1q ‘fll —

subtracting which from (11) (in which the VY,, must be multiplied
by g to make the equation homogeneous), we see that the latter takes
the very simple form

V¥m— t o (12).
The effect of the operator U on Y, may also be noticed ; we have
U. Y= (1) 43 (o-1) 47,4 VY, = Lt @u-1) 7, 13),
substituting for VY, from (11).

11. It is clear that by means of the ¥ functions any number of re-
ciprocants can be formed. For, if we take any homogeneous and
isobaric function of Y,,, Y,, Y,, ... and add to (or subtract from) it
the same function of y.., 4., 9,, ... multiplied by any power of y, or ¢,
we have an expression which does not change in value when y and 2
are written one for the other; 4.e, a reciprocant. But there will be
a change in sign in those expressions which are obtained by subtrac-
tion ; those obtained by addition will be unaltered even in sign when
x and y are interchanged. That is to say, the addition method wilil
give reciprocants of positive character, and the subtraction method
reciprocants of negative character.

The simplest set of reciprocants which can be formed in.this way



1886.] connected with the Theory of Reciprocants. 205

are obtained by adding y, multiplied by any power of y, to Y,, and
by subtracting the same expressions. If X, denote the same function
of a;, a,, ... that Y, is of y,, ¥, ..., we have

X"I 1 2n—
:E ylny:+ Y’n = :‘ba?’;_-l ?v';'*'w’u ‘.l/l !

1
=y {2 X et}
= £y § :!::v,.a:"‘+X,,} .
If, then, 3,7 be added to (subtracted from) Y,, the resalt is a re-

ciprocant of positive (negative) character, and of index 2n+X—1.
Writing down the Y’s in the ordinary notation,

Y =1,
Y, =—aq¢,
Y, = — tb+3a%

Y, = — t*¢+10tab—15a3,
Y; = — t*d+ ¢ (15ac +10b%) —105¢a’b + 10544,

it is seen at once that, ¢.g., —tb+ Y, 1s the Schwarzian, ¢+ ¥, is 5a
times the Schwarzian,— fc + Y, is 2¢ times the post-Schwarzian less the
negative reciprocant 15a°, while —b+¢Y; and —c+ Y, are well-known
orthogonal reciprocants, d&e., &e. 1f A be chosen so as to be equal to
n—2, we derive the most important species of reciprocants belonging
to this class, viz., the homogeneous ones. They form the series

N, =~ 2a,
N, = — 26+ 34,
N, = — 2% +10tab — 150 &ec.,
all of negative character ; and
Py = 3a?,
P, = 10tab—15a°,
P, = 158ac +10:*—105ta®s + 10544, &c.,
all of positive character.

N, and P, may with fitness be called the fundamental mixed homo-
geneous reciprocants (of negative and positive character respectively)
of order «,
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12. The equations giving the values of the Y’s in terms of y,, y,, &o.,
may be written in the form
Yo =— Y,
NYs = — Ys+3y:,
yiys = — Y,+a function of y,y, and y,,
yiys = — Yy +a function of Y1 %0 NiYs and yy,
&o., &ce.,
and, generally,

3/'1"2'3/.. = —K.+ﬂ fanction of y"-ayn»h y',"'!/n-a, seey and Ys-

1

Accordingly, by successive substitutions, y,™"y, may be expressed as
a function of ¥,, Y,_,, ..., ¥;. It follows that any homogcneous
isobaric function f of y,, y,, ... 9, can, by successive substitutions, be
expressed as a function ¢ of Y}, ¥, ... Y,, divided by some power of Y, ;
and, since Y, =1, such function can be made homogeneous and
isobaric by suitably inserting various powers of Y,. If

F@u Y o) =979 (Y, Y, .. Y),

it is readily seen that N\ = w—2/, where ¢, w are the degree and
weight of f, considering y, as of weight r.
For any term y; 3 y? ... in f will give rise (among others) to a term
3/.'"'”'” Y., yl-ﬂ("-‘l)Y: yl-v(P—ﬂlY;
in ¢, But thisis Y7, Y, Y, ... dividegl by y, raised to the power

(mu+nf+py..)=2 (a+B+v+...),
i.e., to the power w—2i.

We may then write

y;v—ﬁf(yn Yo oo Yu) = ¢ (), Yy, .. Yo) e (14).

The expression on the left of (14) is such that its weight is double
its degree (as is the case with the Y functions). For the weight is
w—2i+w, that is, 2 (w—1) ; and the degree is w—2¢+1, that is, w—1.
Consequently ¢ will satisfy the relations

=Y % v I  y 9
(w—2) ¢ Y'dY,+Y’dY3+Y’dY,+&c' ............ (15),

)oY, U oy B gy do ;
2 (w=2) ¢ Y‘dYI+2Y’dY,+3Y’dY,+&°' ...:.....(16).
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In particular, if f be a reciprocant I of degree ¢ and weight w, then,
ag in § 2,
R(Jn Ygs ooe yn) xy P+ R(a'u Lgy e wn)
==‘:ywodR(Ylyl-, Y’yl-s, . Y"yl-(g»-l))
_iy;“‘y-(zw YR (Y, Yn v Y),
since any term in K such as y° y° ... gives rise to a term
Y y-(2m-l)n Ypy-(ﬂu-l)ﬁ or Y Ypy:(ﬂw—u)
1 . "
therefore yY~"E (yy, Yy -+ ¥u) = B (X, ¥y, ... ¥3)
=+ Y 'R(Y, Y, o V) an,

(since Y, = 1) ; i.e., the reciprocant on the left-hand side of (17),
when expressed in terms of the ¥’s, takes exactly the same form,
except for a possible change of sign.

As an example, take the reciprocant yly‘—5y,y3, of degree 2 and
weight 5. Wb have

NY—SYYs = — 'l/:“ (24— S2y5)
=- yzyqa.s-a) (Y, Y,—5Y,Y,)
=- y,_l ()Y, -5¥:Ya) j
therefore YYo= YaYs = — (Y1Y,—5Y,Y,Y,),

where each expression ‘iz of degree 3 and weight 2x3 in its
coefficients.

From what has been said above, it is clear that any homogonéous
igobaric function of ¥;, Y;, ... ¥, (of degrec ¢ and weight ', taking
Y, as of weight +') can be expressed as a function of y,, y,, ... y. of a
similar kind. If this be done, the highest power of y, whieh will
oceur is the w'—2¢", For the highest power of %, which occms .in
Y, is y;"; therefore the highest power of y, in ¥ ¥,... will be the
(ma+n[3+ D=2 (a+B+..)",; tha,t 18, the w'— 2",

13. Referring back to § 10, let us write
Y'”z = t"A.o'*'t"-lqu'*'t”-zq’A,'f e +Q“A,.,

A, 4,, &. being homogeneous functions of y,, y;, ... ., and not in-
volving ¢ or y, (4,18 in fact —y,..); and ¢ =1 being imserted to
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mako the expression homogeneous. Then it has been proved that

Vsz == t‘.{.‘!.’i.’:’_

dyq
But VYoo = 0VA VA + 02V + gV AL,
and t:—;;# = "4, +26"'qd, + 30ty + L atgt A,
Equating coefticients of the various powers of ¢, we have
Ve, = —4,
Vd, =-—24,
VA, =—=38d, &7 cooveeeiviiiniiann, . (18),
Vd,., = —ud,
and, finally, Vd, =0

and we may write

D)
-

n-l
Yuc'..’ —_ tujlo_tn-quAu_*_ i_-}___ tu—'.'qﬂV‘J‘,lo_ et .(:':z'_i‘)_r tq"_l Vu-l[lo,

whare A, stands for —y,..; or, symbolically, and replacing #+2 by =,
Y, =— 12" g (19),

The T fanctions arc therclore of such a kind that, regarded as
quantics (d,, <, .. LYY g)% their coelicients satisfy velations (18)
of a kind precisely analogous to those satisticd by covaviants in the
ordinary theory of the binury quantics—the operator 1 heve replacing
the operator «dy+ 208, +8cd,+ &e. of the latter theory ; in fact they are
quast-covariunts, so Lo speuk. The term 4, may be called the svurce of
the quasi-covariant 17,,.; and, just as in Salmon’s Higher Algebra,
p- 127, it is scen ihat the source of the product of two quasi-
covariants is equal to the produact of their sources.

The X’s satisfy ulso the equation

LY,
WY, =t=*
n dt ?
where W = 00, + 2.+ 3dd,+ ....

This is a consequence of ¥, being of degree in—1 and weirht
" o o o

2 (n—1); for
('ll:- l) l’u = (tl§,+(l,3{‘+bél,+c€.-+ ) .1:,,
2 (n—=1) ¥, = (t0,+2ud, + 300, +4cd.+...) X,
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therefore 0 = (=18, +bd,+2cé.+...) Y,
or ' WY,,:t'Z—Y“ e reerrere e e ah e e (20).
dt
This equation and VY, = ddf"
are the analogues of the equations
=y il' OF =u gyg’

satisfied by the covariants of a binary quantic.

14. With the same notation as in § 13, let f be any homogeneous
and isobaric function of 4, 4,, ... 4,. Then

Vf (A Ay oo A) =20 Vit ‘lf VA + .. +ZALV*‘"

{A'dA +24, 1u,+ c+nd, ZAM}] ...... @1).

Now let Y,,, or (Ao, 4y .o 4,78 q)" be regavded as a purely
algebraic form, a quantic in ¢, ¢ of the ™ degree, of which 4,, 4,, &e.
are the coeflicients. Then the vanishing of the right-hand side of
(21) is the condition that f should be o seminvariant of the quantic,
in the sense of being unaltered if ¢ be changed into g+ X. For the
expression within the brackets is precisely the sccond (0) of the two
well-known operators (Salmon, Higher Alyebra, § 65) written with
non-binomial coeflicients. The vanishing of the left-hand side of (21) is
the necessary and suflicient condition that f should be a pure recipro-
cant, It follows that, when f is a seminvariant of

(4y 4y, . Xt q)"

in the sensc explained (and of conrse also when f is w full invariant
of the quantic), then f is a pure rcciprocant. And conversely, any
pure reciprocant £ is at least a scminvariant of the guantic in the
sensc explained. And evidently, if there be wuny nwmber of guantics
of the form (Au, Ay, Y q)" of varions degrees (corresponding to
various Y’s), what hus been suid about invariants and g-seminvaviants
of onc of them will hold good with regard to their joint invariants
and g-gseminvariants.

Any number of pure reciprocanis can therefore be formed from the
Y's by regarding any number of these as if they were w system of

VOL. XVIL.—No. 268. P
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covariants belonging to a binary quantic, and forming (in any of the
ordinary ways known to the theory of binary forms) invariants and
g-seminvariants of them.

For example, the discriminant of Y, gives 3uac—5b"; the resultant
of Y, and Y, gives 9a'd—45ube+ 408 ; if Y; be written

at®+30¢% + 3ytg® + 8¢’
the g-seminvariant 33yd—ad®—2y° gives

9a*d — 45abec +401%, &c., &o.

If in any of the Y’'s the ¢ and ¢ be replaced by ii— and — an

d
dt’
operntor will be formed whose effect on any of the Y s is to make it
into a reciprocant ; for example,

4 4302 2) v, = — 2at (3ac—5b°
( ¢lq+d dt) ¢ at (3ac =58,

and so on. And this last method is only a particular case of one (see
Fad de Bruno, Formes Binaires, p. 251) by the application of which
to any pair of ¥’s any number of reciprocants (“associated” quasi-
covariants) can be generated.

15. The following gives another method whereby pure veciprocants
can be formed in any numbor from the Y functions, and is simpler of
application than that of §14. Tho idea is an extension of that
applied to binary quantics by My, Gritliths. Writing

Y, = p iAot p g A+ 04+

where A, 4,, &. are still functions of a, b, ¢, &c., and do not involve
{, but where p and ¢ now stand for any quantities whatever which
ave functions of a, b, ¢, ..., let us see, following Mr. Griffiths’ method,
whether p and ¢ can be chosen so as to turn Y, iuto a reciprocant.
‘We have

VY, = p**VA +p"‘3qVA,+p""q’VA,+...
d}

+ == Vp+ Vq
(1«
—_— (IY,, A ‘__1_2:_ 'l_ 'n—" ), n=3 — ne-d_ 9
_.———dP Vp+ 4 q—p" A —2p" g d,—3p" g4, — &e.

_dY, dY,, _ ’
=3 V 2 (Vg=p) cerrvvnrmmnnninninnnninnn (22).
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But if Y, i3 to be a reciprocant, VY, must vanish; accordingly the
right-hand side of (22) must vanish. It follows that, if quantities
P> g can be found to satisfy the relation

dy, dy,

G Pt (emp =0,

then these quantities will, if substituted for £, g in the expression for
Y., givo rise to a reciprocant. We may then take p and ¢ to satisfy

cither =0, Vg=po.iinnn (23),
Y = ‘LX’;: <

or Vp =0, iz 0 i (24,
. . JY,, = ¢

or Vg =y, o 0 i (25).

Of these (23) are the most useful. For, since the equations (23) do
not, like (24) and (25), involve Y,, it is clear that they will give
values of p and g which, when substituted in any of the ¥’s, will give
reciprocants ; and moreover, since ¥ does not involve &, these vecipro-
cants will all be pure ones.

As a simple example of the application of (23), take p = 3d?, ¢ =¥}
if then we put 3a® for ¢, and b for ¢, in the expressions for ¥, Y,, ¥,
&e., as given in § 12, we get the series of pare reciprocants

0, 3d®(56*=3ac), 3d* (—Ya’d+45abec—40%), &ec., &c.

16. Proceeding exactly as in the last paragraph, only taking the
orthogonal operator U instead of the operator V,

UY, = ‘ﬂ’—" Up+ Yo ‘lY" Ug+p* VA 4+ p"qUA, + &c.......(26).
Now Ao is of degree 1, and of weight =,
Al tH 2’ ” 7b+ 1’
A, ”» 3, ” n+2, &0.,

therefore ¢ (2(9,+ 3ad, +...) operating on A, 4,, 4,, &c., gives the re-
sults At (n+1), At (n+3), At (n+5), &e.;
therefore Ud, =t (n+1) A+ VA, =t (n+1) 4,—

Ud, =t (n+3) 4,+ V4, =t (n+3) 4,—24,,
P2
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and 8o on ; thus the last part of the right-hand side of (26) is equal to
t[(n+1) dop" 2+ (n+8) 4,p" %+ ... ],

—[4pt+ 24,0+ ],

: , day, dy
that is, t t[ 1) Y.+ (2n—4) Y’ — ___,.]_ ay.
at is, to (n+1)Y,+(2n—-4) Y ,—2p P P ag

and therefore
dp

UY, = (Up—2pt)+ p (Ug—p)+8 (n—1) 1Y, ...(27).

Now let p, ¢ be chosen so as to satisfy any one of the equations

a4y,
T =0, Up=2p,
at the same time that it satisfies any one of the two
ay, .
'—dq- = O, Uq =p;
then will UY, =3 (n-1)tY,,

1.¢,, Y, will become an orthogonal reciprocant such that the factor
y; """ will make it absolute. And, just as in § 15, we see that, if the

two equations Up=2pt, Ug=1p.ccccocererrrririrreene...(28)

be chosen, then any values of p and ¢ which satisfy them will make
all the Y’s into orthogonal reciprocants.

As a simple example, take p =1+ #nd g =¢; then substitate
1+ ¢ for ¢ and ¢ for ¢ respectively in the expressions for Y, Y, ¥,,
&c., in § 11; we obtain the series of orthogonal reciprocants

0’ = —a,
0y = — (1 +) b+3ta?,
0, =— (1+8)'c+10 (1 +#*) tab—158",

and so on; and these can be made into absolute orthogonals by
dividing them by a, a* @°, &c., respectively.

17. The results of §13 are very convenient in the treatment of
mixed homogeneous reciprocants. For instance, we may make use
of them to prove and further extend the following theorems due to
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Mr. Rogeré, viz., that either of the operators
2 4y
V, 2y . v,

acting on a mixed homogeneous reciprocant, generates another mixed
homogeneous reciprocant. So far as T know, thesc theorems have

not been rigorously proved beforc.
Let B be any mixed homogeneous reciprocant of degree ¢ and
weight w; I’ the same made absolnte by a proper power of ,; so that
B (3 g o) =4y R Yy 9y o)

atolgrarld

Then VR = n
dR a1
=3% 2l —(n—2
v {yl o (n—=2)m Yu}
— J::Z]R‘ Fy i ysilﬁ_.;.z]‘g]; } ......... (29),

where the I’ within the brackets on the right is
YR (Y Yy ),
and the double sign corresponds to that in (17).
But now, writing R’ for ¢ in (15) and (16), and subtracting the
double of (15) from (16),

i +Y,‘§I; +ov, B 4 =o;

—Yoy dY,

12y,
substituting from this in (29), we have
121 ar
/= —_ Y, =22
VR " {?jl d.’/l + l{l).’, }

where the + or the — sign is to be taken according as I’ is of nega-
tive or positive character.
Apgain, from (30),

ar adr
—VR = el GITISTIen 1
2y Y VB =y G G @D,
and, more generally, if &k be any nnmber whatever,
® ar ar
(yfiJ,)——VR +y fdy * "Iy,
=5 i+ PR dY‘} ..... .(32),

a result which includes both (30) and (31) as particular cases.
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Now by an obvious extension of what has been said in §11, it is
clear that, since the expressions within the brackets on the right of
(80), (31), and (32) are symmetrical in the y’s and the Y’s, they will
be reciprocants; and they will of course still be reciprocants when
multiplied by y,. Therefore the expressions on the left of (30), (31),
(32) must all be reciprocants; and the first two of these will evi-
dently be homogeneous: Now,

V. = V.y-"R =y "VR;
therefore, if I is a mixed homogeneous reciprocant, VI?is also a mixed
homogeneous rcciprocant. To see that the operator

@y LoV s (33)
1

gives a reciprocant when it acts upon I (any homogeneous recipro-
cant), and not only when it acts on R, we notice that, by a simple
application of (17),

7 By y—5y’) = ¥, BY,Y,~5Y,);
raising which to a suitable power, and dividing (17) by the result, we

find EBOwy,..) - BF, Y. (34).

Byay,— 5" (BY,Y,—5Y )k~

Now (32) is equally true if for I¥' we snbstitute the expressions in
(34) ; but if we do so, then, since the operator (33) can have no effect
on the denominators, we arrive at an equation exactly like (32), but
with I in place of F. It is thereforc proved that the operator (33),
acting on a mixed homogeneous rcciprocant, produces another re-
ciprocant. In the particular cases (30) and (31), where L = 2, this
reciprocant is homogeneous.

Both Mr. Rogers and myself had already independently noticed that

Y
(1+y‘)d!/1 v

operating on a mixed homogeneous reciprocant, produces another re-
ciprocant ; but the complete theorem (82) is new, so far as I know.
Taking the signs on the right of (80) and (81) along with those of
(17), and with what has been said in § 11, it is seen that the operator
of (30) changes the character of the reciprocant on which it acts;
while that of (31) leaves the character nnaltered.
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18. I add various properties of the functions Y,, N,, P, :—
(1) The sum of the numerical coefficients in the expression for Y, is

(=1 (n—-1)!

This may be seen immediately by writing y = ¢* on the right-hand
and @ = log y on the left-hand side of the identity

®. = Y y-(’m-l)
£13 K n 1 .
(2) Y, Y,., are connected by the equation

’Yll¢l_y1—_(2n'—1)yi n -unl-u-..-u.n(35).

This comes simply from differentiating the same identity, and substi-
tuting for =,,,, its equ1va,1ent Yy @i,

3 Y,,,l may be derived from Y, by the operator
y

(ylys"?n n—l y’) dI; (J:y‘ 3n :11 ya!la) diy,
+ (yl%_ %ysyo) d—d‘y‘ +&e.

This may be deduced from (35) by means of the equations,

yl = y] {yg dJ +y3‘_+&c }

_ 4 d
n-1)7Y, =y, d_—y1+y,—dyq+&c.,
d d
2 (n—-1)Y, =y, ~—+ 2y, =+ &c.
(n—-1) el ay,

(4) N,, N, are connected by the equation

Nntl - yld

T Dy Na=(+1) 419 oo (86).

For, since N, = Yn—y;‘"ym

an, _

dz (n 2) y“-’yiyu_y;-'ynol)
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a‘nd anl = ml'—y';-]ynd H
substitnting from which in (35), the result (36) follows.

(5) P,, P,., are connected by the equation
Poi= = (20-1) g Pt (14 1) 47 050
This is found in the same way as (36).

19. The method of §3 can easily be extended to Mr. Elliott’s
ternary, &c. reciprocants; but the results are somewhat complicated.
dz dz &z d%
a2’ Ay’ da¥ dvdy’
pendent variables, z a dependent variable. The effect on' F of
changing @ into x — 6z, and y into y—¢z (where @ and ¢ are infini-
tesimals), can be expressed without difficulty. If

Let F be any function of - , &c., where z, y are inde-

dz dz _
0z ﬂ+¢z@ = w,

then (see, e.g., Todhunter, History of the Calculus of Variations)

dz _ dz
0= =226
de ~ do? d’u d J¢ +
5% _ % (lz oz +
dy dody d1 +3 4y’ dy’
and so on; writing (m, u) fo denote Jd%?'—;. the general formula is
" dy
dnnn
d (m, n) = (m+1, ») 02+ (m, n+1) q)z+ T
Yy
and then OF = 3 —=—_9 (m, n).
d( n, )

Since the changes in z and y are quite arbitrary, and independent of
one another, the parts of ¢F which involve 6 and ¢ respectively can
be calculated independently. We shall thus find

OF = 65,F+ ¢4, F,
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dI\ { dln‘ll dz
3 paded
whero 8= 3 g (m], n)z+d1,,,dj,,( dm)} ...... a7,

(lp dunu dz
F=3 {(m, R (z@)} ...... (38).

If then F become, by transforming it so as to make «# the dependent,
dz da d"z,

dy’ da’ dy®
then, exactly as in” §38, it is seen that the partial differential

and y, z the independent variables, a function ® of

cocfficient of ® with respect to Z——: is equal to the expression on the

right of (37). And, again, if F' become by & similar transformation a

function ¥ of %y gu’ i'ﬁ, &c., then the differential coeflicient of ¥
L

with respect to %y- will be equal tothe expression on the right of (38).
7]

If F be a reciprocant, it must then clearly satisfy two relations of a

kind analogous to equation (1) of § 3; and these can be written down

without difficulty for the case of any special class of ternary recipro-

cants. Similar reasoning applies to the case of n-ary reciprocants;
these will satisfy n+1 independent relations of this kind.

20. Pure ternary reciprocants will then possess a pair of annihila-
tors. Referring to § 3, it is seen that the process of calculating V for
ordinary pure reciprocants may be arranged as follows :—

w = yy0

W = (yy+y)) 0

W = (yyYs+3yy,) 0

W’ = (yyatdnys | +3y) 0
o = (yys+50nys | +10y575) 6,

and so on ; and the part on the right of the vertical line gives 8 times V.
In precisely the same manner the pair of annihilators for pure ternary

reciprocants can be calculated. We have only to write down zd—z-,

dx
and differentiate it any number of times for & or y, cutting off after
"differentiation all terms involving z, Zz, or Z—:’ What remains will

give the annihilator corresponding to the change of 2into £—6z. And

a similar process applied to z%_ will give the second annihilator,
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that corresponding to the change of y into y—¢z I have only had
the courage to calculate a few terms of the z-annihilator; these I
give below. The corresponding terms of the y-annihilator can be
derived from them by symmetry.

w=s%=z(10),

;_l:z = £(20) + (10)*,

dw

== (11)+(10)(01) ;

g’# = 2 (30) +3 (10)(20), %’ =2 (12)+2 (11)(01)+(10)(o2),
Do

=" (21) +2 (10)(11)+(01)(20) ;

d'w o
CE=3(20 +.
&
2 dy
&u
dzdy’

=3 (11)(20) +...,

= (20)(02) +2 (11)*+
= 3 (11)(02) +...

i._
iy
dv _ 19

2o =10 20)(30) + ..

= d’ ";_. = 4/(11)(30) +6 (20)(21) +...

dd; .= (02)(30)+3(20)(12)+6 (11)(21) +...

dlw
Fooy = (20)(03)+3 (ONE+6 AVAD +...

d'w

B = 4 (11)(03) +6 (02)(12)+...

and so on, the omitted part being in each case that involving z or
(10) or (01). The annihilator will therefore be

8 (20)' % d(30)+3 AV ) 355 (21) e+ {(20)(02) +2 (A1)} =, 4(12)

+3(02)(11) =2 +4 (20)(30) mwc.;

d (03)
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the coefficient of ﬁm) being
an» {Z

._(_1.9_)_5_ — terms in this which involve z, (10), or (01).
dﬂ:m dyn

In a similar manner, by following the method of §6, the pair of
operators for * orthogonal’ ternary reciprocants, analogous to the
operator U of § 6, might be worked out; the one by writing #—28 for
x and z+ 260 for z simultaneously, and the second by writing y—z¢
for y and z+y¢ for z simultaneously. But the calculation would be
very laborious.

21. The method of § 11 is clearly applicable, mutatis mutandis, to
ternary reciprocants. As an example, take one of the simplest cases,
and let aj, b, ¢}, ai’, by’ ¢’ be each expressed in terms of p, g, a,, b,, ¢,.
(For the notation I refer to Mr. Elliott’s paper, Proceedings, Vol. xvir.,
p- 172.) It is found that

—a; = g'a,—2pgb, + p'c,

'_b; = pbl—qal o P‘;
- =
—-—a'=q
—H=gb—ps [+

—a'= q'a,—2pgb, +p'e,
Then a; p*+4a;’¢"—a, and ¢; p*+¢;'¢°— ¢, each give the veciprocant
(1+¢") &,—2pgh + (1 +57) &
while b; p*+ b’q*~b, gives the reciprocant
(L+p+g) bi—ga,—pa.

These two reciprocants correspond to those obtained by the addition °
method of § 11. Others can be formed, involving the imaginary cube
roots of unity, corresponding to those fonnd by the subtraction
method of §11. I have not pursued this method further; but it is
evidently one which may be expected to yield good results, giving, as
it does, the means of forming any number of ternary reciprocants.





