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POINT OF INFINITY
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1. The present paper is a study of a particular case of differentiation
of a surface integral taken over a curved surface. The subject of integra-
tion is assumed fo depend upon the coordinates of a particular point O in
the surface and to have an infinity at O, and the differentiation contem-
plated corresponds to displacement of O in the surface. The resulting
formula is applied to some surface integrals which are important in
potential theory. '

A Theorem on Surface and Contour Integrals.

2. We begin by proving a lemma with regard to surface integrals
which may perhaps be described as a theorem in calculus of variations.

Consider a curved surface S and an area of integration upon it bounded
by a curve T'; it is assumed that the surface has no singular points in the
area of integration. Let f be a function of position on the surface.

Consider an infinitesimal correspondence between points on the sur-
face, namely P’ corresponding to P. Denote PP’ by ds, and let the
correspondence depend upon an infinitesimal parameter é\ in such a way
that for each point P the ratio ds/6A tends, for A — 0, to a definite value,
say ds/dA, a function of position of P.

For a selected correspondence of this character let the range of P be
the area enclosed by T, and let the corresponding range of P’ be the area
-enclosed by a curve I” on the surface, so that 7" is the curve correspond-
ing to T. In general the curve 1" lies near to T, and the greater part of
the area within T is also within 7",

Let dS be an element of area at P, and dS’ the corresponding element
of area at P'. If fp be the value of f at P,

frdS = fp(dS[dS")as’,
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T T
and so jfd8'=5 f'as,

where the first integral is over the area bounded by 7', the second is over
the area bounded by 7”, and

fr = (fdS/dS"p.

T
It is clear, however, that if we express S fdS in terms of P’ instead

of P we get the same value provided the boundary is properly chosen.

In fact T T
| reas = pras,

where the notation implies that P’ ranges over the area bounded by T ;
hence " T -
5fpdS=5 fpdS’—-—j frds',
"

the second integral on the right being through the strip between 1" and 7,
d8' being reckoned positive or negative according as it is outside or in-
side the curve 7.

Thus, putting fp-(df/ds)r 6s for fr, and assuming the properties of f
to be such that the closeness of this approximation can be ensured to any
arbitrary degree of accuracy by taking A sufficiently small, we have, by
equating the two different modified expressions for the original integral,

r (e %) s’ = 5 Lot (df 2, s} dS'—S: Lot (%) & j as.

If in this we neglect small quantities of higher order than Js, and note
that in the strip between 7' and 7" the element dS’' may be put equal to
ds s cos (ds, v}, where v is the outward normal to the contour in the tan-
gent plane to the surface and ds is an element of arc of the contour, we
get, to an approximation which can be rendered arbitrarily close,

jr' {fp (1_ gg) + (%)1 38} ds' = L'fpas cos (ds, ¥)ds.

Dividing by dA and noticing that the degree of approximation is un-
altered on the left-hand side by taking the element of area as dS and the
boundary as 7, we get

5 {f (dgisaxs) + (ds) 6—7\ as = 5 f %ﬁcosws, v) ds,



186 Dr. J. G. LEaTaEM [June 11,

as an equality which is approximate to an arbitrary degree of closeness
depending on the value of éA.

Proceeding to the limit for A — 0, and denoting Lim (dS dS> by 6,
> >0 \ dSOA

we get the result

j (f9+ Zﬁ g;) S= szl—z%cos (85, v) ds. )

8. The theorem of the preceding article is a somewhat general relation
between a surface integral and a line integral taken round the boundary
edge of the surface. Its significance may be illustrated by two special
cages.

First, let the surface be a plane surface and let the infinitesimal
correspondence be s translation of the whole area of integration, as if
rigid, in its own plane. Sueh a correspondence is given by éA = dz, ds
equal and parallel to 6z, and #=0. The theorem then yields the equality

j%fi dS=jfcos(x, v) ds,

a familiar result.
Second, let the surface be a curved surface on which there is a set of
orthogonal coordinates p, ¢ such that the element of arc is given by

ds® = Pidp*+ Q%dq*.
Let the correspondence consist in an increa.se of tbe p coordinate of every

point by the same amount dp. Then 0 is 13@ 8 (PQ), and the theorem
takes the form

1 9 _ -
5 7 op PNES = SfP cos (p, v)ds, @)

another well known result.

Differentiation of a Surface Integral.

4. Passing now to the differentfiation problem, we consider a surface
integral taken over the portion of a curved surface S which is bounded by
a curve T, and suppose the subject of integration f to be a function not
only of the position of the point P at which the element of area dS is
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situated but also of the position of a certain point O in the surface.
When necessary this may be emphasised by writing the subject of in-
fegration fop.

We suppose O to be in the region enclosed by 7', and if the function f
has an infinity at O the area of integration must be separated from O by
a surrounding cavity e whose dimensions are made fo tend to vanishing.

We want to differentiate, with respect to any vanishing displacement

T
of O in the surface, the integral j fordS, that is

.
Lim j fordS.

>0 Je

Let us consider a displacement of O to a neighbouring point O', and
denote OO' by JA.

Let us associate with the passage from O to O’ an infinitesimal corre-
spondence of the kind discussed in Art. 2, which makes O’ correspond to
O, P'to P, T" to T, and gives a cavity ¢ round O’ corresponding to e
round O.

The incremental ratio of the integral is

T T
L1 Lim 5 fopdS —LimS fopdS],
6A € e—>0 Je

£—>0
1. T T T

[ g— LLIm 5 fofp'dS’—Lim j fopdS—E fo'pds,],
(SK —»0 Je’ >0 Je T

which, if we denote dS’/dS by x and bear in mind the infinitesimal
correspondence, may be written

1 . T T

In the former of the integrals in this expression it is to be noted that
for is regarded as a function of the position of P; it has an infinity for
P — O because then P’ — (', but it has no infinity at O'. If x is a func-
tion free from peculiarities at O (and we shall assume it continuous at all
points in the area bounded by T), then the function fox has an infinity
at O of exactly the same character as the infinity of for at O. Thus the

T T
integrals J JorxdS and J Jford8 are subject to the same conditions as

to convergence ; if the lattér is convergent either absolutely or for some
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particular mode of vanishing of the cavity ¢, the former also is convergent
either absolutely or for the same mode of vanishing of the cavity as the
case may be.

Assuming convergence of the integral to be differentiated, we may

accordingly close the cavity in the above formula, and we get that the
incremental ratio equals

1 T T ,
8_A U (fO'P'X_fOP) dS’—jr fo/P'dS ]. (8)

When the nature of the (P, P') correspondence has been settled as well
as the particular arc through O upon which O’ is to lie, both fop and x
are functions of the position of P which depend on the parameter OO,
©e., 6A. Moreover when O’ coincides with O, since the correspondence
becomes an identity, forx has the value fop. Hence by the theorem of
mean value, assuming it to be applicable,

D
SorXxor—for = A [m (fx)]o,,’

the right-hand side having the value corresponding to some point O”
lying between O and (. The differentiation here denoted by the symbol
D is one in which, for a given P, the points O’ and P’ (or O" and P")
move simultaneously, varying as the correspondence varies quantitatively
but not qualitatively with the variation of the parameter JA.

Thus the first term of the incremental ratio is

J (@ xts 235)., o8 @

Making now a supposition which must be regarded as provisional
pending further study, we assume that the function, say ¢¢., which con-

stitutes the subject of integration in this formula is such (i) that j‘gbodS
is convergent, and (ii) that we can, by choosing JA sufficiently small, make

S(¢on—¢o) dS less than any arbitrarily assigned small quantity, so that
j ¢0~dS—>j ¢odS as O0"—> 0.

Since (x—1)/6A — 0 for éA — 0, (Dx/ddN)o = 0 ; also xo = 1. Sub-
stituting these in ¢o, we see that our provisional conelusion is

Lim & j(fo.px—fop)ds S(a% +/0)_as. 5)

8)\‘>0
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5. Let us now look more closely into the assumptions provisionally
made at the conelusion of the previous article. In this connexion two
things are of importance, namely the properties of the (P, P’) corre-
gpondence, and the nature of the funetion f.

Asg regards the correspondence we may postulate that it shall be con-
tinuous throughout the whole of the area enclosed by 7, so that not only
is the ratio of ds to 6A a continuous function, but also the direction of &8s
varies continuously. It has already been postulated that when P is at O
8s is the same as JA. Hence the continuity of the correspondence in-
volves that, as P approaches O, ds tends to equality and parallelism with
O\ as to a limit. Further we assume that the correspondenee is regular,
go that the difference between Js and &\, whether in magnitude or in
direction, tends to smallness of the order of OP as P> 0. Obviously
this might not be possible if O were a conical point or point of other
singularity on the surface, but we have already excluded such points from
consideration.

As regards the nature of f, it seems desirable to resirict the manner of
its dependence on the position of O. Denoting the coordinates of O by
{gs Ypr 20 and those of P by (x, y, 2), we shall suppose that f is the pro-
duet of two factors of which the first is a function of (x—uxy, ¥ —¥yg, 2—2p),
while the second is a function of (z, ¥, 2). In fact

f=g@—zo y—yp 2—2p kiz, y, 2).

We shall further suppose that 2(z, , 2) is continuous at O.
With these postulates before us, let us consider the integral on the
right-hand side of equation (5). The function 6 has no infinity or other

discontinuity at O, and so j(fO)OdS is convergent in the same manner as
j fdS. The other part of the subject of integration involves the operator

(D]d8N\)o, which for the sake of brevity we may denote by 9. In the
limit for P — O, o represents a rate of pure franslation in the tangent
plane at O corresponding to increase of oA, o\ itself being zero since O is
at O, as is implied by the suffix () ; let this limit operator of pure trans-
lation be denoted by fZo. Since (z—g, ¥y —¥y, 2—2,) are unafliected by
translation, if ¥ be any function of (z—=zy ¥y—¥q 2—%,) which is con-.
tinuous and so free from infinity at O, {ok = 0; in fact the continuity
and regularity of the correspondence make D(x—zy)/ddA, ete., small of the
order of OP or 7, 8o that 3ok = rth k, whore ¢y is an operator which does
not introduce any infinity at O.

As the function ¢ has an infinity at O it is not safe o take for granted
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that the. operation of 9 upon it necessarily obeys the same law as its
operation upon k. Suppose-g to be of the form %»~*, k being as described
above and u being positive. Then

Qokr—+ = ‘)'_”'30717 ——,u.kr"“1 Sor
== st ke —ukr—e .

Hence in this case J0g has just the same kind of infinity at O as has ¢
itgelf ; a similar argument would generally apply to infinities depending
on negative powers of z—uz,, etc. The occurrence in f of a negative
power of the distance of P from the tangent plane at O, though not
formally covered by the above argument, could be included by a slight
extension, account being taken of the definite curvature of the surface

at O.
Now Sof = h30g+9Sh,

and as we have supposed % to be continuous at O this shews that 3o f has
the same kind of infinity at O as has f. Consequently the integral

j¢ods or S(f—éf;\+f9)ods

has the same convergence as j fas.

Passing now to jg{amdS, we consider first the effect upon f of the

operator (D/ddA)y- or Qon, bearing in mind that the value of f, though
associated for purpose of integration with dS at P, is determined by the
positions of 0" and P". As regards the effect of the operator on P" we
see that for P" — 0" (which involves P — () the operator tends to a limit
operator £,» which represents a rate of pure translation in the tangent
plane to the surface at O”. And since zpr—=xon, etc., are unaffected by
iranslation, if & be any function of these arguments which is continuous
and so free from infinity for P” — 0", (which involves, when the function
is associated with dS at P, continuity for P — 0), tonk = 0; in fact the
continuity and regularity of the correspondence make Sor (X pe—Zom), ebe.,
small of the order of O"P" or r", t.e., of the order of r, so that

Sonk = ‘I‘t:)"k

where ¢h» is an operator which does not introduce any infinity for
P"_»O".
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The funetion gor has an infinity for P"— 0" and this may be treated
by precisely the same reasoning as has been applied to go, 7" taking the
place of 7 in the formul®, and it being borne in mind that » and »” are of
the same order of smallness and tend simultaneously to zero. The con-
clusion is that Sovgor and gor have, when regarded as functions of the
position of P” the same kind of infinity at O", and when regarded as
functions localised at P the same kind of infinity at O. Consequently
Sorfor when localised at P has the same kind of infinity at O as for
or fo.

The function x, being continuous, does not introduce any complication
into ¢er as compared with ¢o, and so we conclude that

j(/,(,.,ds or J(dD_aJ; x+/7X). as

has the same convergence as j fdS. This conclusion has been arrived af

without reference to the particular values of 00" or O0’, and is not in-
validated by any changes in these values.

Now the assumptions with regard to ¢o- made at the end of the last
article were important for the following reason. If at all points in the
area of integration ¢ is a continuous function of X it is generally possible,
by taking dX sufficiently small, to make | ¢o-—¢po | less than an arbitrarily

assigned small quantity «, and therefore also ‘ | (o — o) dS, less than

an arbitrarily assigned small quantity «'. If, however, after a value of
S\ has been fixed, P in the course of integration has to approach a point
of infinity, there is a danger that the function ¢¢—¢o may become so
great as to invalidate an inequality of the type

l J- (¢ov—¢io)ds ‘ < K’.

But the assumptions and reasoning of the present article have provided

against this contingency, for we have shewn that if j fdS is convergent
then both j pordS and I¢odS are convergent, so that mnecessarily

j (¢por— po) dS is convergent. This convergence is independent of éA and

cannot be modified or nullified by any arbitrary diminution of éA.
Hence the inequality stands, and the formula (5) is justified, provided the
transformation and the function f comply with the restrictions set out at.
the beginning of the present article.
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6. The second term of the incremental ratio as set out in formula (3)
is a surface integral over the strip between T and 7", which strip tends to
vanishing as éA—0. Taking the element of area as extending sacross
the strip, so that it is ultimately a parallelogram having for base the
element of are ds of T and for altitude Jscos (ds, v) where v is the out-
ward normal to 7', we see that

rfo'zvdS' — j for ds cos (s, v) ds
T T
-> (SA 5 fop d—s COB (88, v) ds.
T dA

Putting together the two terms of the incremental ratio, dividing by
JA, and proceeding to the limit for 6 — 0, we get

T T
adij fordS = J Qofo+fo6) dS—LfZ—‘;\ cos (68, v) ds. 6)

Now let us apply the theorem of Art. 2 to the function f in the area
bounded externally by 7' and internally by a eavity » surrounding the
point O. We get

d d T (df ds
L fﬁ cos (85, ») ds—_L fd—; cos (0s, v)ds = L (Ez{ 37“\ +f6) s,

where, for the curve 7, v is outward.
Eliminating the line-integral round 7 from these two equations (6)
and (7), and passing to the limit for » — 0, we find
a (7 s J T ( ar ds) . ds
d}\j fdS = Lim , Sf Js dn dS_{‘-lgoljf 2 €08 (0s, v) ds. (8)

>0

It is to be noted that 3f is a differentiation of f corresponding to a

simultaneous transfer of O to O' and P to P', while g{ % is a differ-

entiation corresponding to transfer of P to P' only. Hence Sf—g{ s—;
is the differentiation which corresponds to displacement of O to O’ leaving
P undisturbed. Call this df/0X. Also we note that, by the continuity of
the transformafion, ds/dA -1 for points on n as n—=0. So our final
formula for the differentiation is

d {7 ) T3
d_Aj fds = I'q‘—l;.(;l {L —a'gdS—Lfcos(J)\, v)ds}. 9)
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This is the general result, but we must not fail to note that in passing
from equations (6) and (7) to equation (8) it has been tacitly assumed that

[ 89f+/0)dS may be replaced by Lim | (9f+f0)dS. This is clearly
>0 7
legitimate without restriction upon the form of the eavity n if j fas,

and therefore also I(Sf+ f6)dS are absolutely eonvergent. But if j fdas

18 semi-convergent, so that it can only be rendered definite by specifying
a particular kind of vanishing cavity e, the argument of Art. 5 implies

that the same cavity must be associated with j(Sf+ -f0) dS ; consequently

in this case it is necessary in formula (9) to make » the same as e.

Illustrations in Potential Theory.

7. A simple illustration of the use of the differentiation formula which
has been obtained above is afforded by the potential and force integrala of
a surface concentration of gravitating matter of surface-density . We
put f = or~!, noting that o is a funetion of the position of P only while
r~! is a function of the coordinates of P relative to O. The potential ¥

is Ja-r“dS, an absolutely convergent integral, and we differentiate for a
displacement of O typified by dA. The result is

>0 n

av . T 971 o
o = Lim U o = (T) ds—LTcos @x, nds | .
Denoting the force-component at O, when surrounded by the cavity », by

F(n), we see that our result is

‘fz—;’ = Lim {F(,,)—L < cos (41, 1)ds | - (10)

The force-integral is semi-convergent, and the difference between the
potential gradient dV/dA and the force-component Lim F(y) is

—Lim J’m‘“ cos (A, v) ds,
—>Y

which is generally the same as

—a, Limjr‘1 cos (6N, ») ds.
=0
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The value of this difference clearly depends upon the form of the
vanishing cavity n. It is zero if the cavity vanishes as a circle with O as
¢entre, or as any curve having symmetry about the line through O per-
pendicular to dA in the tangent plane.

8. A second illustration is afforded by the potential integral ofja
double sheet of strength +. The main facts as to the convergence and
discontinuity of this integral are well known, but before proceeding to the
differentiation formula it seems worth while to give a fresh discussion of
these, in the hope that the method employed may be found an interesting
alternative to the methods in use elsewhere.

The cosines of the normal on the positive side of the double sheet at a
point P, (z, 7, 2), being denoted by (/, m, n), the potential at a point O,
not necessarily in the sheet, is

V= 57 (Z%+m%+n§a§) ~as,

58_ ) 58—, 55_) -l, considered as a vector localised at
&L Y Z r

P, is a solenoidal vector and therefore is the curl of some other vector -or
family of vectors. Such a vector is easily specified when we think of
grad (1/») as corresponding hydrodynamically to symmetrical flow from
the point O. We take O as the origin of a set of spherical polar coordi-
nates (r, 0, ¢), and we try a vector of magnitude §2 perpendicular to the
plane of the angle 6, in the direction of ¢ increasing. The flow through
the circle (r = const., 8 = const.) is — 27 (1—cos 8), and this must equal
the line-integral of €2, that is 277 sin 602 ; so

r being OP. Now (

1 1—ecos® 1 1
(2 = T _sin 6 = > tan 26. (11)

Having guessed this vector Q it is easy to verify that it really has the

property .
curl @ = grad (1/7). 12)

We note that  has an infinity for 8 = 7, independent of 7, as well as the
infinity r = 0.

Considering a region of the surface S bounded by a curve T and not
containing any infinity of (2, assuming the existence of -orthogonal curvi-
linear coordinates p. ¢ as in Art. 3, and indicating the components of (2
tangential to the curve T’ and the curves of increase of p and g by suffixes
¢, p, q respectively, we apply the second theorem of Art. 3, and so get
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jT'rQ,ds = j T {—Q, cos (g, )+, cos (p, v} ds

(18 5 oo

= S—r(curl Q)Nds+j (2 g—;-—gp @1— %g) ds,

where the suffix N refers to the normal to the surface. The first integral
of the last formula equals JT(grad 1/r)x 48, and so is the potential at O
of the part of the double sheet bounded by 7. The second has for
subject of integration the normal component of the vector produet
[grad +, Q].

It will be eonvenient to regard the boundary 7' as made up of two
curves, an outer edge which we shall henceforth call 7' and an inner
boundary e surrounding any point at which {2 has an infinity. Our
formula now takes the form

T
V= L -0, ds—J' -0, ds——j [grad =, Qv dS, 8)
the two line-integrations being taken in the same sense, namely that
corresponding to increase of ¢.

If O is not in the surface the only infinities of {2 occur at points
where the negative direction of the axis of spherical polar coordinates
chosen for the origin O cuts the surface, for at these points 6 = w. Let
@ be such a point, e the cavity round it, and P a point in the region of
integration near to Q. At P it is clear that Q is great of the order of
1/QP, so that the surface integral converges absolutely as ¢ > 0. Also,

from the original definition of , jQ,ds equals all of the symmetrical
flux from O except that part which passes through ¢, and so tends to —4=
whatever be the manner of vanishing of ¢; consequently

j € ds - Ty 5 Quds — — 47Ty,

T4 being reckoned positive when in the sense from @ to O. Thus, if O
is not in the surface

r
V = 47:'27'@—{-5 Tdis—j‘ [grad —, Q]ndS. (14)
T

If O is in the surface (at an ordinary point of the surface), 6 = }m,
and Q tends to infinity of the order 1/r. The surface integral is therefore

SER. 2. VoL. 14. No. 1230. L
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absolutely convergent. The integral j (,ds tends to equal half the total

flux from O, that is —2=, whatever the shape of ¢, and so
5 T7Qds > — 271 710.

Thus ¥ has a definite value, wherever O may be, but has a discon-
tinuity at the surface. For, as O approaches the surface in a direction
making an acube angle with the negative sense of the axis of spherical
polar coordinates for O, it gets nearer to a point @ which supplies a term
47rrgin V. When O is at @ this term disappears, being replaced by
277 : and when O crosses the surface the term 2zrg disappears also;
and during these changes all the other paris of 7 vary continuously.

9. Passing now to the differentiation of V, we notice that f or
7 (10/0z+m /oy +n0/0z)(1/r), though not as it stands the product of two
factors of the g and A types, is however the sum of three terms each of
which separately is such a product. Hence the theorem of Art. 6 is
applicable and we have, using the notation of Art. 7,
AV _ Pim | _S <_3_ m i)i
x = Lm {Fo—| = (15 +mg +usg (5) cos@nnds}. as)
The force-integral is semi-convergent, and the potential gradient
dV[dX differs from the force by

. o)1
—54_1)1(1)1\5” ) (l g) \7) cos (SN, v) ds,

which is the same as

—1 L b (z %) (—:—.—) cos (O, v) ds,

or, if we put { for the distance of a point P from the tangent plane at O,
TOS Er~2 cos (8, v) ds. (16)
n

Projecting on the tangent plane at O, taking as axes the principal direc-
tions of curvature corresponding to principal radii p, and p, putting
(cos 6, sin @) for the cosines of OP, (L, M) for the cosines of A, and
(', m’) for the cosines of the normal to the projection z' of #, the differ-
ence between potential gradient and force takes the form
2 2
gvoj (M + ?-m—-e) (LU + M) ds. (17)
7\ P P2
This is different for different vanishing forms of ». If 4’ be circular, with
O as centre, I’ = cos 6, m' = sin 6, and the line integral has zero limit.





