MATHEMATICAL ASSOCIATION

456. Investigation of a Simple Formula for Calculating the Successive "Numbers of Bernoulli" Author(s): A. Lodge Source: The Mathematical Gazette, Vol. 8, No. 120 (Dec., 1915), pp. 178-179 Published by: <u>Mathematical Association</u> Stable URL: <u>http://www.jstor.org/stable/3603978</u> Accessed: 27-01-2016 22:11 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at <u>http://www.jstor.org/page/info/about/policies/terms.jsp</u>

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.

Hence the general solution is

 $x^{2} - \log \sec^{2} l = f[x^{2} - \log(\sin^{2} u/\sin^{2} l)].$ Consider the solution $x = \sqrt{(\log \sec l)},$ giving $y = \sqrt{(\log \sec l)}. \cot l . \sin u.$ Consider this solution we must determine the limit as l approaches

Before accepting this solution we must determine the limit, as l approaches zero, of $\sqrt{(\log \sec l)}$. cot l.

It = Lt cot $l \cdot \sqrt{[-\log(1-l^2/2)+...]}$

 $=\frac{1}{2}$, after an easy reduction.

The equation to a meridian is

$$= \sqrt{(\log \sec l)},$$

and the equation to a parallel is

 $y = x \cdot \sin u / \sqrt{(e^{2x^2} - 1)}$.

G. P. BLAKE.

Bradfield College, Berks.

456. [D. 6. c. δ .] Investigation of a simple formula for calculating the successive "numbers of Bernoulli."

 $e^{x}(y) = y + x;$

where a_2 , $-a_4$, a_6 , $-a_8$, ... are Bernoulli's numbers.

Then

...

$$\therefore e^{x}(y_{1}+y) = y_{1}+1 \text{ and } e^{x}(y_{2}+2y_{1}+y) = y_{2}, \text{ etc.}$$

putting $x=0$, $a_{1}+a_{0}=a_{1}+1$ [whence $a_{0}=1$],(2)
 $a_{2}+2a_{1}+a_{0}=a_{2}$ [whence $a_{1}=-\frac{1}{2}$], and so on ;

the expansion on the left being of binomial type, with suffixes instead of powers.

If we symbolize a_2, a_3, a_4, \ldots by a^2, a^3, a^4 , etc., and remember that $a_0=1$, the formulae, excluding the first, become

 $(a+1)^2 = a^2$, $(a+1)^3 = a^3$, $(a+1)^4 = a^4$, etc.(3) Hence we obtain the difference equations,

 $a(a+1)^2 = a^2(a-1), a(a+1)^3 = a^3(a-1), a(a+1)^4 = a^4(a-1), \text{ etc. ; ...(4)}$ and, again taking differences,

$$a^{2}(a+1)^{2} = a^{2}(a-1)^{2}, a^{2}(a+1)^{3} = a^{3}(a-1)^{2},$$
 etc.,(5)
and, generally, $a^{r}(a+1)^{s} = a^{s}(a-1)^{r},$ (6)

with the exception of (2) and any processes involving (2).

These are avoided if s is greater than 1.

The series of equations

$$a^{2}(a+1)^{2} = a^{2}(a-1)^{2}$$
, $a^{3}(a+1)^{3} = a^{3}(a-1)^{3}$, $a^{r}(a+1)^{r} = a^{r}(a-1)^{r}$,
shows that all the odd *a*'s, except a_{1} , are zero; and the equations

$$a(a+1)^2 = a^2(a-1), \quad a^2(a+1)^3 = a^3(a-1)^2, \quad \dots,$$

i.e. $a^n(a+1)^{n+1} = a^{n+1}(a-1)^n,$

determine in succession the values of $a_2, a_4, \ldots a_{2n}$.

Thus, from
$$a(a+1)^2 = a^2(a-1)$$
 we have $a_3 + 2a_2 + a_1 = a_3 - a_2$;
 $\therefore 3a_2 = -a_1$; $\therefore a_2 = \frac{1}{6}$;

and, from the next equation, we obtain

$$a_5 + 3a_4 + 3a_3 + a_2 = a_5 - 2a_4 + a_3, \text{ also } a_3 = 0;$$

$$\therefore 5a_4 + a_2 = 0; \quad \therefore a_4 = -\frac{1}{30}.$$

178

When n > 1, we can use the general equation,

 $a^{n}(a+1)^{n+1} = a^{n+1}(a-1)^{n}$, and omit the odd a's;

whence, writing C_r for ${}^{n}C_r$ and C_r' for ${}^{n+1}C_r$, we have

 $C_1'a_{2n} + C_3'a_{n-2} + C_5'a_{n-4} + \ldots + C_1a_{2n} + C_3a_{n-2} + C_5a_{n-4} + \ldots = 0; \ldots (7)$.g. if n=2, 3, 4, 5, 6 in succession,

$$\begin{array}{rcl} (3+2)a_4+(1+0)a_2=0, & \therefore & a_{11}=-\frac{1}{30}; \\ (4+3)a_6+(4+1)a_4=0, & \therefore & a_6=\frac{5}{7} \text{ of } \frac{1}{30}=\frac{1}{42}; \\ (5+4)a_8+(10+4)a_6+(1+0)a_4=0, & \therefore & a_8=\frac{1}{9}\{-\frac{1}{3}+\frac{1}{30}\}=-\frac{1}{30}; \\ (6+5)a_{10}+(20+10)a_8+(6+1)a_6=0, & \therefore & a_{10}=\frac{1}{11}\{1-\frac{1}{6}\}=\frac{5}{66}; \\ (7+6)a_{12}+(35+20)a_{10}+(21+6)a_8+(1+0)a_6=0, \\ & \therefore & a_{12}=\frac{1}{13}\{-\frac{2}{6}+\frac{9}{10}-\frac{1}{42}\}=-\frac{691}{2730}. \end{array}$$

The positive values of these fractions, beginning with a_2 , are Bernoulli's numbers, generally denoted by B_1, B_2, \ldots . The above results give them as far as B_6 . The next one, B_7 , is $\frac{7}{6}$; after that they are heavy numbers. The advantage of formula (7), as a basis of calculation, over the formula (3), which is usually taken as the basis, is two-fold :

(1) The calculation of any coefficient a_{2n} , when n is even, depends on $\frac{1}{2}n$ previous coefficients instead of n+1 coefficients; and, when n is odd, it depends on $\frac{1}{2}(n-1)$ coefficients instead of n+1.

(2) The multipliers needed in (7) are much lighter than those of (3), as they consist of pairs of binomial coefficients of degrees n+1 and n instead of binomial coefficients of degree 2n+1.

For example, a_{18} is calculated from 4 terms, with binomial multipliers of the 9th and 10th degrees, instead of from 10 terms with binomial multipliers of the 19th degree.

If desired, formula (7) may be written in the form

$$(2n+1)a_{2n}+\frac{2n-1}{3}C_2.a_{2n-2}+\frac{2n-3}{5}C_4.a_{2n-4}+\ldots,$$

but it is rather easier to work in its original form, and it is probably easiest to *remember* in the unreduced symbolic form,

$$a^{n}(a+1)^{n+1} = a^{n+1}(a-1)^{n}$$
. A. LODGE.

457. [L¹. a.] In Russell's Pure Geometry (1893, p. 47) it is "proved" that a pair of points is a conic by reciprocating a pair of straight lines. Now a pair of straight lines, AOB, COD, is a conic only when considered as the limit of a hyperbola, i.e. if the order of description be AOCDOBA or AODCOBA. The tangent to such a conic rotates at O, and the true reciprocal is seen to be either the finite straight line which is the limit of an ellipse, or the straight line with a finite gap which is the limit of a hyperbola. The paradox that two points, though a conic, cannot be obtained as a section of a cone, is thus avoided.

A similar argument applies to the statement in Askwith's Analytical Geometry (1908, p. 397), that the tangential equation of the second degree represents two points when it reduces to the form

$$(Al+Bm+Cn)(Al'+B'm+C'n)=0.$$

C. W. ADAMS.

458. [D. 6. c.] On certain coefficients connected with the expansions of $(e^{x}-1)^{n}$, $(xD)^{n}f(x)$, and (x+1)(x+2)(x+3)...(x+n).

Let $f, f_1, f_2, ...$ denote any function of x and its 1st, 2nd, ... differential coefficients.