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Hence the general solution is 
- log sec2 1= -f[2 - log(Sin2 u/sin2 1)]. .................(x) 

Consider the solution 
x =J(og see ) 1...............(Xi) 

giving y =V(log sec 5'. cot 1 . sini u. ).(.i) 

Before accepting this solution we must determine the limit, as I approaches 
zero, of ,/(log sec 1). cot 1. 

It Lt cotl. /[ log(l - 1/)+...] 
.), after an easy reductioni. 

The equation to a meridian is 
x =,/(log sec 1), 

and the equation to a parallel is 
y = x. sin U!,, (e2x2 1). 

G. P. BLAKLE. 
Bradfield College, Berks. 

456. [D. 6. c. 8.] Iitvestigation of a simple formula for calculating the 
successive " numbers of Bernoulli." 

Let ---=y=ao+aix+a2j..+.(1) Let y a,+a,x+x - 2F +-). ........................,.1 

where a2, -a4 , a6, - a8, ... are Bernoulli's nunibers. 
Then e(,Y)=y+.v; 

.. ex(y1+y)=yj+1 and ex(y2+2,y,,+)=y2, etc. 

putting x=O, a1+a-=al+l [whence a0=1]. ..........................(2) 
a2 +2a+ao=-a2 [whence a,= - '], and so on; 

the expansion on the left being of binomial type, with suffixes instead of 
powers. 

If we symbolize a2, a3, a4l,... by a2, a3, a', etc., and remember that a==1, 
the formulae, excluding the first, become 

(a +1)2= a2, (a+1)3 a3, (a+1)4=a4, etc. .............(3) 
Hence we obtaiii the difference equations, 

a(a+j)2=a2(a-1U, a(a+j)3=a3(a-1), a(a+1)4=a4(a-1), etc.; ...(4) 
and, again taking differences, 

a2(a? 1)2= a2(a -1)2, a2(a?l1)3=a3(a -1)2, etc .............(5) 
and, generally, ar(a + 1)s = as(a - 1) . ...................(............... 6) 
with the exception of (2) and any pr-ocesses involving (2). 

These are avoided if s is greater than 1. 
The series of equations 

a2(a+1)2=a2(a-1)2, a3(a+1)3=-a3(a-1)3. ...... ar(a+l)r=a'(a 1)-, 
shows that all the odd as, except a,, are zero; and the equations 

a(a+l)2-a2(a-1), a2(a+1)3=a3(a-1)2. ...... 

i.e. a?1(a+ ))1+1=W1+1 (a - 1)'', 
determine in succession the values of a2, a4, ... a2fl. 

Thus, from a(a+1)2=a2(a- 1) we have a3+2a2+al=a3 -a2 
3a a2 2 == -a, 2= " 

and, from the next equation, we obtaini 

a,+3a4+3a3+a2 a.- 2a4+a3, also a3=O; 

5a4+a920; a4 :i 
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When n> 1, we call use the general equation, 
an(a+l )"+l=a a+l(a-- 1), and omit the odd a's; 

whence, writing Cr for ""Cr and C,' for "+lC~, we have 

Cl'a(n + C3'a_2 + C5'a-4 + ... + Cla2n + C3a,,2 + C5a_4+ .. ; ... = .....(7) 
.g. if n=2, 3, 4, 5, 6 in succession, 

(3 +2)a4+(l+ 0)a2=0, * .n =-:1; 

(4+3)a6+(4+1)a4=0, '.-. a6= of s3= -; 

(5+4)a8+(10+4)a,+(1+0)a4=0, .-. a8=-1-_+--}= - ; 

(6 +5)a,o+(20+ 1)a8+(6+ )a6=0, * alo=-i{ 1 -- } 5=-6 

(7 + 6)a,2 + (35 + 20)a,o0+(21 +6)a8+(1 0)a6=0, 
*a* 2=T-1 - + tA 42- }=- 7. 

The positive values of these fractions, beginning with a2, are, Bernoulli's 
numbers, generally denoted by B1, B2, .... The above results give them as 
far as B6. The next one, B7, is ; after that they are heavy numbers. 

The advantage of formula (7), as a basis of calculation, over the formula 
(3), which is usually taken as the basis, is two-fold: 

(1) The calculation of any coefficient a2,, when n is even, depends on 
En previous coefficients instead of n +1 coefficients; and, when n is odd, 
it depends on I(n -1) coefficients instead of n+ 1. 

(2) The multipliers needed in (7) are much lighter than those of (3), 
as they consist of pairs of binomial coefficients of degrees n + and n 
instead of binomial coefficients of degree 2n +1. 

For example, a18 is calculated from 4 terms, with binomial multipliers of 
the 9th and 10th degrees, instead of from 10 terms with binomial multipliers 
of the 19th degree. 

If desired, formula (7) may be written in the form 
2it - 1 2n- 3 

(2n+l)a2n++ - C2 a2n-2+ --- a2-4+- 

but it is rather easier to work in its original form, and it is probably easiest 
to remember in the unreduced symbolic form, 

an(a + l)n+l = an+1(a - )n. A. LODGE. 

457. [L1. a.] In Russell's Pure Geometry (1893, p. 47) it is "proved" 
that a pair of points is a conic by reciprocating a pair of straight lines. 
Now a pair of straight lines, A OB, COD, is a conic only when considered as 
the limit of a hyperbola, i.e. if the order of description be AOCDOBA or 
AODCOBA. The tangent to such a conic rotates at 0, and the true 
reciprocal is seen to be either the finite straight line which is the limit of an 
ellipse, or the straight line with a finite gap which is the limit of a hyper- 
bola. The paradox that two points, though a conic, cannot be obtained as a 
section of a cone, is thus avoided. 

A similar argument applies to the statement in Askwith's Analytical 
Geometry (1908, p. 397), that the tangential equation of the second degree 
represents two points when it reduces to the form 

(A l+Bm+ Cn)(A'+ B'm + C'n)= 0. 
C. W. ADAMS. 

458. [D. 6. c.] On certain coefficients connected with the expansions of 
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