Effect of salt and fat replacement by seaweed on the sensory and volatile component profile of frankfurters

Elena Garicano Vilar^{1,2}, Hao Ouyang², Maurice G O'Sullivan², Michael O'Grady², Joseph P Kerry², Kieran N Kilcawley^{1*}

¹Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland

² School of Food and Nutritional Sciences, University College Cork, Cork, Ireland *Corresponding author: Kieran N. Kilcawley (kieran.kilcawley@teagasc.ie)

Introduction

Processed meat consumption increases the risk of chronic diseases due to the high levels of saturated fats and sodium. The optimization of processed meats through the replacement of salt and fat with edible seaweeds could potentially offset the risk.

This study aimed to obtain sensory and volatile component profiles of frankfurters with edible seaweeds as part of the ingredients, in order to evaluate the impact of matrix changes on the volatile profile related to flavour perception and overall acceptability.

P-values from ANOVA partial least squares regression

Dulse

Control Sea Spaghetti Wakame Nori Attribute

Sensory and hedonic terms								
Colour	-<0.0001***	-<0.0001***	<0.0001***	<0.0001***	0.0012**			
Liking of appearance	<0.0001***	0.0260*	-0.0179*	-<0.0001***	-0.0002***			
Liking of aroma	<0.0001***	0.8732 ns	-0.5142 ns	-0.0009***	-0.0005***			
Liking of flavour	<0.0001***	0.0017**	0.0015**	-0.0026**	-<0.0001***			
Liking of texture	0.0209*	0.0162*	0.1118 ns	-0.0095**	-<0.0001***			
Overall acceptability	<0.0001***	0.0017**	0.0753 ns	-0.0001***	-<0.0001***			
Tenderness	0.0661ns	-0.0132*	-0.0066**	-0.9556 ns	0.0047**			
Juiciness	0.0002***	0.2658 ns	-0.5795 ns	-0.0014**	-0.0044**			
Salt taste	<0.0001***	-0.7731 ns	-0.1403 ns	-0.0029**	-<0.0001***			
Meat flavour	<0.0001***	0.0017**	0.0589 ns	-0.1931 ns	-0.5057 ns			
Off flavour	-<0.0001***	-0.0253*	-0.0404*	0.0004***	<0.0001***			
Seaweed flavour	-<0.0001***	-0.1263 ns	-0.0009***	0.0002***	<0.0001***			
Instrumental measurements								
Texture	-0.0001***	-0.1883 ns	-0.7241 ns	0.0045**	0.0001***			
Hardness	0.0015**	0.0075**	-<0.0001***	-<0.0001***	<0.0001***			
Adhesiveness	-<0.0001***	-<0.0001***	0.0419*	<0.0001***	<0.0001***			
Springiness	-<0.0001***	-<0.0001***	0.0553 ns	<0.0001***	<0.0001***			
Cohesiveness	<0.0001***	-<0.0001***	-0.3415 ns	<0.0001***	<0.0001***			
Gumminess	0.0002***	-0.8391 ns	-<0.0001***	<0.0001***	<0.0001***			
Chewiness	0.0419*	-0.0002***	-<0.0001***	0.0595 ns	<0.0001***			
Resilience	<0.0001***	-<0.0001***	-<0.0001***	<0.0001***	<0.0001***			

722488

1274323

555488

517382

24843030

282339

1858898

973876

13181035

27918452

1362373

752218

209955

26692224

159322

34880

424450

37093

202375

1777807

181427 30654

Significance of Table 1. estimated P-values from **ANOVA** partial least squares regression (APLSR) (ANOVA values) for the sensory and hedonic terms and instrumental measurements various frankfurters Of formulations containing different edible seaweeds, correlation. including Samples with Dulse were scored higher (P<0.05) in all hedonic sensory, and instrumental terms, except for meat flavour; followed by samples with Nori, which scored lower in terms of tenderness, meat flavour and chewiness.

The volatile fraction of frankfurters prepared with edible seaweed belonging to four species (*Himanthalia elongata*, *Undaria pinnatifida*, *Porphyra Umbilicalis* Palmaria palmata) was analysed using gas chromatography-mass and spectrometry, after cooking and thermal desorption extraction of samples. ANOVA Partial Least Squares Regression was applied to the instrumental data to visualize differences between the samples in terms of volatile compounds and sensory attributes.

Significance of P-values: ns, not significant; *P<0.05, **P<0.01, ***P<0.001. Sign dictates weather the correlation is positive or negative.

Volatile component profile

Dulse		Control	Sea Spaghetti	Wakame	Nori	Dulse	
5241159	D-Limonene *	14735669	21874509	20735870	20552228	20267454	1
2303708	Terpinolene	10438952	17092884	17385950	17236170	17112085	
877186	(+)-2-Bornanone	1299645	1725494	1632722	1801136	1836362	
1062706	endo-Borneol *	7013908	7386190	7386169	7574794	7888705	
9622003	α-Terpineol *	3580464	4019989	3872466	4128811	4204452	
7535182	α-Curcumene	953214	1233233	1159406	1362703	1388053	
577824 24710377	(1R)-2,6,6-Trimethylbicyclo [3.1.1]hept-2-ene	23336475	37065656	31762534	24007267	26157158	
1836211	▲ 2-Pentene, 4-methyl- *	450516	1875466	2269021	3814335	2043657	
3856052	4-Cyanocyclohexene	575456	456425	261876	392458	318545	
3848950	Eucalyptol *	888786	1006746	924779	873466	1039763	
1647374	Camphene *	2174271	9089935	9865812	9344668	8571768	
311200	ß-Phellandrene	50279593	56200636	52816688	49414999	53862191	
2029586	ß-Myrcene *	8207171	13787790	13088027	12814956	12436695	
880957	ß-Pinene *	30430611	37140499	35242351	31015401	33780745	
1050166	α-Phellandrene	12089326	19566419	19943855	20632605	20901337	
14055977	3-Carene *	10207554	17189499	16155648	14914075	15150878	
2231472	(+)-4-Carene	18709351	27198575	28249877	28341246	28468366	
2384428	o-Cymene *	12237204	25037300	25075844	24727173	22959260	
3102247	ß-Phellandrene	25059276	36634361	35698877	36530816	36691938	
8581210	gamma-Terpinene	33591329	44147622	44823084	45056646	44757666	
30220756	m-Cymene *	2753020	10909648	10697449	10762416	8986212	
966315	Linalool *	11878640	13196770	12186185	13096789	14495306	
801597	α-Fenchene *	337733	1685723	1441502	1159294	1093271	
2918904	B α-Copaene *	1242894	1731291	1611636	1831550	1808512	
	Caryophyllene	2443649	3284550	3033741	3471967	3583414	
25198508	α-Cedrene *	1199032	1092475	998357	1399511	1672423	
141823	ß-Bisabolene *	312579	421086	374828	438973	451834	
48094	β-Cedrene	685617	965248	909436	1097114	1061106	1
2689958	Prenol *	918676	1115783	992519	1104213	1408208] E
1947582	2,4-Di-tert-butylphenol	11343132	11810459	10121407	14061569	11174388	٦.
296934	Safrole *	1385673	1664269	1537177	1776538	1839828	1
105580	Methyleugenol	487683	600439	565063	680039	679553	G
69415	Myristicin *	1843209	2218644	2070231	2603146	2512542	U
4477	C Elemicin	980362	1470560	1311079	2101541	1351600	1
36832	Acetoin	17135432	17487831	16673290	19737996	18536281	1
884827	Acetone *	22230909	14971948	17426538	15733315	20269101	U
1080053	2,3-Butanedione	1697064	2363769	2600692	2328447	2579201	П
16430591	2-Butanone *	4289556	2284575	2258287	2755003	4861174	
7965148	D Methyl Isobutyl Ketone *	170468	589876	613551	911454	587814	1
585788	J Toluene *	494778	576630	719712	924442	850096]

Methods

Sensory analysis

- Consumer Testing
- Ranking Descriptive Analysis

Sample extraction

Cook

Thermal desorption

Texture analysis Texture profile

analysis

Statistical analysis PLSR-ANOVA

Color analysis ♦ CIE L* a* b* colour

system

Results

ANOVA Partial Least Squares Regression

Pentane *	1159845	3709643	5250350	6491157	2689958		
Heptane *	1565369	1621239	2081207	2428076	1947582		2,4
Tetradecane *	288091	268501	263505	282329	296934	1	
Ethyl ether	67972	70817	93388	117514	105580	1	
Butanoic acid, methyl ester *	815137	1660626	95824	730883	69415		
Methyl valerate	64962	128360	7301	57739	4477	C	
Hexanoic acid, methyl ester *	735465	1476465	69264	631476	36832	Ŭ	
Bornyl acetate *	610747	803644	740623	870072	884827		
Diethyl Phthalate *	1343526	1588131	814838	934461	1080053	1	
Sulfur dioxide *	8963907	12394442	14085403	18348353	16430591	1 I	
Carbon disulfide *	7825594	4715791	4434677	6185759	7965148	D	Meth
Disulfide, dimethyl *	373255	218240	374388	307400	585788	7	

483098

602138

124378

81227

90121

Isopropyl Alcohol

3-Buten-2-ol, 2-methyl-

2-Propanol, 1-methoxy

3-Buten-1-ol, 3-methyl-

2-Pentanol, 4-methyl

1-Hexanol, 2-ethyl-

1-Propano

1-Butanol

1-Pentanol 1-Hexano

1-Octen-3-ol 3

1-Octanol

4-Thujano

Fencho

cis-4-Thuianol

Terpinen-4-ol

Pentana

α-Thujenal

2-Heptenal. (Z)-

1H-1,2,3-Triazole-

4-carboxaldehyde

2-Decenal, (E)-

2-Undecenal *

Hexana

Octana

Nonanal

Propanal, 2-methyl-Butanal, 3-methyl-

1-Penten-3-ol

Figure 2. Heat-map of volatile compounds derived from frankfurters produced with different edible seaweeds. A total of 28 terpenes (E), 17 alcohols (A), 14 aldehydes (B), 6 esters (C), 5 ketones (H), 4 phenylpropenoids (G), 3 sulphur compounds (D), 2 phenols (F) and 1 hydrocarbon (I), were detected among the 80 volatile compounds identified. Terpenes and esters reached their highest levels in Sea Spaghetti; aldehydes, hydrocarbons, phenylpropanes and phenols in Nori; alcohols, ketones and sulphur compounds in Dulse; while Wakame was not predominant in any class of compounds. Highest amounts of β-Phellandrene, γ-Terpinene, (1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene, Caryophyllene and α -Thujenal were present across all samples, while lowest levels were found for 2-Undecenal, Methyl valerate and Ethyl ether. 1-Propanol; 2-Propanol, 1-methoxy; 4-Thujanol; cis-4-Thujanol; Propanal, 2-methyl; Octanal; 2-Undecenal; Acetone and 4-Cyanocyclohexene presented lower levels in all four modified frankfurters compared to Control. It is apparent from the heat-map that reformulation of frankfurters influenced the abundance of these volatiles. *Significant difference (P<0.05).

Conclusions

- △ Sensory acceptance test & Ranked Descriptive Analysis (untrained panellists)
 - Consumers found significant differences in colour, liking of appearance, aroma, flavour and texture attributes between the samples, except for liking of aroma on Sea Spaghetti and Wakame frankfurters, and liking of texture in Wakame frankfurters.
 - The overall acceptability of frankfurters containing seaweed was greatly influenced by seaweeds; however, there was no significant difference between frankfurters containing Wakame and Control.
 - Panellists found positive significant differences in *meat flavour* on Sea

Figure 1. ANOVA-Partial Least Squares Regression (APLSR) correlation loadings plot for frankfurter formulations with different salt/fat replacers (code: PP = Palmaria Palmata (Dulse); Nori = Porphyra Umbilicalis; Wakame = Undaria pinnatifida; SS = Himanthalia elongata (Sea Spaghetti). Shown are the X-(sensory and instrumental data) and Y- (treatment groups) variables for the first 2 PCs for the • = sensory descriptors, instrumental variables and volatile compounds, and **a** = control and reformulated frankfurters. The concentric circles represent 100% (outer) and 50% (inner) explained variance. Texture and gumminess; texture and cohesiveness; and chewiness, as measured by the texture analyzer, were significantly (P<0.05) negatively correlated to frankfurters containing Sea Spaghetti, Wakame and Nori samples, respectively. Liking of aroma and meat flavor were greatly significantly (P<0.01) positively correlated to Sea Spaghetti, whereas tenderness was greatly significantly (P<0.01) negatively correlated to Nori.

- Spaghetti frankfurters, and in tenderness, off- and seaweed flavour on Nori and Dulse frankfurters.
- Sea Spaghetti was the most significantly positively correlated salt/fat substitute in frankfurters with regards to sensory attributes.
- △ **Texture analysis**
 - Dulse was the most positively correlated to instrumental measurements.
- △ Aromatic Volatile Analysis (cooking + thermal desorption)
 - 80 volatile compounds were identified, mostly terpenes. ß-Phellandrene was the most discriminating volatile compound.
 - o Inclusion of seaweed in frankfurters influenced the abundance of volatiles compounds.
- △ The frankfurters containing seaweed spanned the APLSR with differences in sensory and flavour chemistry characteristics.
- Sea Spaghetti, Wakame, Nori and Dulse have the potential to reduce salt/fat levels in frankfurters, but the impact on overall acceptability is dependent upon type and dose.

This work was supported by Teagasc Moorepark (Ireland) and funded by the Department of Agriculture, Food and the Marine (DAFM). The first author gratefully acknowledges Teagasc for award of a Walsh Fellowship.