

Multigrid solver by using PETSc

Kab Seok Kang kskang@ipp.mpg.de

High Level Support Team (HLST) Department of Computational Plasma Physics Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany

December 7, Max-Planck-Institut für Plasmaphysik

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Eurotom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

K. S. Kang (HLST, IPP)

2018 HLST

HLST meeting 1/27

OUTLINE

BOUT++

- Using PETSc libraries in BOUT++
- 5 Numerical results

4 AR 1 4 B 1

• Use or develope algebraic multigrid solver in BOUT++

• Use existence AMG in PETSc

• Find optimal options for 2D Laplace solver

• Prepare AMG solver for 3D problem in BOUT++

BOUT++ Overview

What BOUT++ is:

- \bigcirc
- ^{*} A toolbox for solving PDEs on parallel computers. Aims to reduce duplication of effort, and allow quick development and testing of new models
- Focused on flute-reduced plasma models in field-aligned coordinate systems, though has more general capabilities

A toolbox for plasma simulations

- * Collection of useful data types and associated routines. Occupies a middle ground between problem-specific codes and general libraries (PETSc, Trilinos, Overture, Chombo,...)
- * Researchers can make use of a well tested library of simulation code and input/output tools
- Greatly reduces the time needed to develop a new simuation

Key features:

- * Finite difference initial value code in 3D
- * Implicit or explicit time integration methods
- * Coordinate system set in metric tensor components
- * Handles topology of multiple X-points
- * Written in C++, quite modular design
- * Open Source (LGPL), available on github

K. S. Kang (HLST, IPP)

Coordinate system

- Logically rectangular. Defined by metric tensor
- Field aligned: x (radial), y (parallel), z (toroidal)

$$x = \psi - \psi_0; \quad y = heta; \quad z = \phi - \int_{ heta_0}^{ heta} \frac{B_{\phi}}{RB_{ heta}} dl_{ heta}$$

(The v unit vector \hat{e}_v is along the magnetic field) \rightarrow Has a singularity at the X-point

- A branch-cut, hole at the X-point itself
- Flux-Coordinate-Independent (FCI) scheme : Construct grid poloidal planes. Field-align parallel derivatives, but not grid. Under active development in BOI
- Varios time solvers: Choice of fully-implicit or fully-explicit methods available Sundials CVODE, PVODE, RK4, PETSc, RK3SSP, Sundials IDA Karniadakis, POWER, Euler -User-supplied preconditioner possible for implicit solvers: CVODE, PETSc. Physics-based preconditioner can improve performance

Computational domain

- 2D(x z)-1D (y) decoupling: Current implementation
- $nx \times nz$ on ny planes.
- Use NPEX MPI tasks through x-direction for $nx \times nz$
- Use NPEY MPI tasks through y-direction

K. S. Kang (HLST, IPP)

2018 HLST

Computational domain for 3D problem

- z-direction: Periodic boundary condition
- x and y direction: Periodic, Neumann, or Dirichlet BD condition

• • • • • • • • • • • • •

Laplace solvers

* Solve the equation

$$d\nabla_{\perp}^2 f + \frac{1}{c_1} \nabla c_2 \cdot \nabla_{\perp} f + af = b$$

– Inverted for the potential f where d, c_1 , c_2 , a are constant. * With conformal mapping g on the reference domain

$$\begin{aligned} \nabla_{\perp}^{2}f &= G_{1}\frac{\partial f}{\partial x} + \left(G_{2} - \frac{1}{J}\frac{\partial}{\partial y}\left(\frac{J}{g_{22}}\right)\right)\frac{\partial f}{\partial y} + G_{3}\frac{\partial f}{\partial z} + g^{11}\frac{\partial^{2}}{\partial x^{2}} \\ &+ \left(g^{22} - \frac{1}{g^{22}}\right)\frac{\partial^{2}f}{\partial y^{2}} + g^{33}\frac{\partial^{2}f}{\partial z^{2}} + 2g^{12}\frac{\partial^{2}}{\partial x\partial y} + 2g^{13}\frac{\partial^{2}f}{\partial x\partial z} + 2g^{23}\frac{\partial^{2}f}{\partial y\partial z} \\ \nabla c \cdot \nabla_{\perp}f &= \left(g^{11}\frac{\partial c}{\partial x} + g^{12}\frac{\partial c}{\partial y} + g^{13}\frac{\partial c}{\partial z}\right)\frac{\partial f}{\partial x} + \left(g^{12}\frac{\partial c}{\partial x} + \left(g^{22} - \frac{1}{g^{22}}\right)\frac{\partial c}{\partial y} + g^{23}\frac{\partial c}{\partial z}\right)\frac{\partial f}{\partial y} \\ &+ \left(g^{13}\frac{\partial c}{\partial x} + g^{23}\frac{\partial c}{\partial y} + g^{33}\frac{\partial c}{\partial z}\right)\frac{\partial f}{\partial z}. \end{aligned}$$

 \ast poloidal fileds are perpendicular with toroidal field \rightarrow In red can be neglected for 2D-1D

formulation	٩		500
K. S. Kang (HLST, IPP)	2018 HLST	HLST meeting	8/27

2D-1D approach vs. 3D solver

 \bigcirc

- 2D-1D approach: Fit when g^{12}, g^{23} are small
- Limitations
- Cannot implement parallel boundary conditions
- \rightarrow The sheath boundary conditions on the potential (critical to the correct description of the SOL) cannot be applied
- The integrability conditions restrict the perpendicular boundary conditions that can be applied
- \rightarrow Do not allow all-Neumann boundary conditions
- Impose spurious constraints on the parallel variation of the solution \rightarrow Fail to be s good approximation to the solution of the 3D problem, introducing unphysical behaviour.
- * So we need the 3D solver
- Weed to handle boundary conditions

Discretization

K. S. Kang (HLST, IPP)

 $M17 = dxdy^{*}V/4.0$,

2018 HLST

 $M18 = dydz^*V/4.0$

3

ヘロト ヘ戸ト ヘヨト ヘヨト

- Divide Rectangular shape with Guarde cell
- x and y directional parallelization
- \rightarrow Easily extentable for z directional parallelization

- Use Index set: Standard in PETSc.
- Can define a differnt shape fo domain by imposing the connectivity
- Don't need guad cell for periodic boundary condition

Overview of the PETSc

- \bigcirc
- * The Portable, Extensible Toolkit for Scientific Computation (PETSc)
 - Easy the development of large-scale scientific application codes in Fortran, C, C++, and Python
 - A powerful set of tools for the numerical solution of partial differential equations and related problems on high performance computers
 - Provides clean and effective codes for the various phases of solving PDEs, with a uniform approach for each class of problem.
 → Enables easy comparison and use of different algorithms
 - Provides a rich environment for modeling scientific applications as well as for rapid algorithm design and prototyping.
 - Enable easy customization and extension of both algorithms and implementations.

 \rightarrow Promotes code reuse and flexibility, and separates the issues of parallelism from the choice of algorithms

K. S. Kang (HLST, IPP)

2018 HLST

• • • • • • • •

PETSc modules

- index sets (IS), including permutations, for indexing into vectors, renumbering, etc;
- vectors (Vec);
- matrices (Mat) (generally sparse);
- over thirty Krylov subspace methods (KSP);
- dozens of preconditioners, including multigrid, block solvers, and sparse direct solvers (PC);
- managing interactions between mesh data structures and vectors and matrices (DM);
- nonlinear solvers (SNES);
- time steppers for solving time-dependent (nonlinear) PDEs, including support for differential algebraic equations, and the computation of adjoints (sensitivities/gradients of the solutions) (TS)

< ロ > < 同 > < 回 > < 回 >

 \bigcirc

- * Krylov Subspace Methods (KSP)
- Need the operators (Mat), vectors (Vec), and preconditioners (PC)
- Support various iterative solvers including direct solver
- * Algebraic multigrid preconditioner for GMRES
- GAMG: PETSc's native AMG framework
- \rightarrow GAMG: parallel sparce matrices with the AIJ format
- Two 3rd party solvers: hypre(BoomerAMG) and Trililos(ML)
- $\leftarrow \textit{Need configure before compilation PETSc}$
- \bullet Add <code>-download-hyper</code> for hypre and <code>-download-ml</code> for ML
- Framework for multigrid method (MG) for AMG and GMG

Configures and selecting solver

 \bigcirc

- Configure option: \$./configure -with-petsc
- Include header files: <petscksp.h>
- $\rightarrow call < \texttt{petscpc.h} >, < \texttt{petscmat.h} >, < \texttt{petscvec.h} >$

- For direct solver: ksptype = preonly pctype = pclu
KSPSetType(ksp,KSPREONLY) PCSetType(pc,PCLU)

- For GMRES with BJacobi: ksptype = kspgmres pctype = bjacobi
KSPSetType(ksp,KSPGMRES) PCSetType(pc,PCBJACOBI)

- For GAMG: PCSetType (pc, PCGAMG)
- * Use Aggregation options with PCGAMGSetType (pc, PCGAMGAGG)
- Set the number of Smooth Aggregation: 1 (default) or PCGAMGSetNSmooths (pc, 2 (or 4))
- ML in Trillios: PCSetType (pc, PCML)
- BoomerAMG in HYPRE: PCSetType (pc, PCHYPRE) and PCHYPRESetType (pc, "boomeramg")

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setting options in BOUT++ in BOUT.inp

```
\bigcirc
```

```
myq = 1
mxa = 1
solution = f(x,y,z); input = f(x,y,z)
[mesh]
symmetricGlobalX = true
nx = 34; ny = 4; nz = nx-2*mxg
dx = 0.003636363636363636364/(nx-2*mxq)
dv = 2.*pi/ny
dz = 2.* pi/nz/600
g_{11} = g_{22} = g_{33} = g_{12} = g_{13} = g_{23} = g_{11} = g_{22} = g_{11} = g_{22} = g_{11} = g_{12} = g
g 33 = ; g 12 = ; g 13 = ; g 23 = ; J = ; Bxy = ; G1 11 = ; G1 22 = ;
G1_{33} = ; G1_{12} = ; G1_{13} = ; G1_{23} = ; G2_{11} = ; G2_{22} = ; G2_{33} = ;
G2 \ 12 = ; \ G2 \ 13 = ; \ G2 \ 23 = ; \ G3 \ 11 = ; \ G3 \ 22 = ; \ G3 \ 33 = ; \ G3 \ 12 = ;
G3 \ 13 = ; \ G3 \ 23 = ; \ G1 = ; \ G2 = ; \ G3 = ;
Lx = 0.003636363636363636364
|z| = 0.0209439510239320
[laplace]
type = petscamg
flags = 0
[petscamg]
solvertype = hypre
 multigridlevel = 6
```

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q (>

Test problems and verification

 \bigcirc

- Using test cases: prepared by J. Omotani (CCFE)
- -nx = nz, ny = 16 according to given $nx = 2^k$ for $k = 5, 6, \dots, 15$
- Numerical error in I^2 and I^{∞} for $k = 5, 6, \dots, 10$

 \rightarrow Error convergent factor is 2: typical for centered finite diff. method \rightarrow Verified matrix generation and data conversion

K. S. Kang (HLST, IPP)

2018 HLST

Solution time on single core

- Tested several preconditioners:
- Some with default options fail: GAMG with Classical and Geometric
- Some options also fail. Might need more implementation
- GAMG : 1 aggregation smoothed GAMG (default options)
- GAMG2(4): 2 (4) aggregation smoother GAMG

DoF	Direct	GMRES	GAMG	GAMG2	GAMG4	ML	Hypre
32^{2}	0.003	0.15	0.03	0.02	0.03	0.02	0.007
64^2	0.014	0.85	0.11	0.09	0.09	0.07	0.012
128^{2}	0.098	6.43	0.54	0.43	0.41	0.30	0.081
256^{2}	0.682	87.68	2.50	1.95	1.90	1.27	0.410
512^2	5.045	1275.77	14.01	10.20	10.16	6.69	2.337
1024^2	42.523	*	73.11	54.71	51.99	33.11	10.656
2048^2	*	*	329.75	251.34	251.49	147.66	45.155
Ratio	6.88	9.58	4.85	4.69	4.64	4.47	4.33

- BoomerAMG (Hypre) has the best performance on 1 core from 64² DoF and the ratio

Figure of solution time on single core

K. S. Kang (HLST, IPP)

2018 HLST

HLST meeting 19/27

DoF	GMRES	GAMG	GAMG2	GAMG4	ML	Hypre
32^{2}	838	69	54	42	73	10
64^2	1884	94	73	53	91	12
128^{2}	5370	120	84	58	109	23
256^{2}	23613	138	93	65	116	28
512^{2}	83777	158	106	74	132	31
1024^2	*	182	125	90	150	32
2048^2	*	206	141	111	167	33
Ratio	3.16	1.31	1.26	1.27	1.23	1.37

– Required number of iterations of GMRES from 1024 2 are over the limit

- Other preconditioners have a typical required number of iterations

K. S. Kang (HLST, IPP)

2018 HLST

Comparison preconditioners (Strong scaling 1)

- GAMG4(solid line), ML (+ + +), BoomerAMG in Hypre (• • •)

- 1024² DoF in black and 2048² DoF in red. - - for Ideal

K. S. Kang (HLST, IPP)

Comparison preconditioners (Strong scaling 2)

Comparison preconditioners (Weak scaling 1)

K. S. Kang (HLST, IPP)

Comparison preconditioners (Weak scaling 2)

Strong scaling of BoomerAMG

Weak scaling of BoomerAMG

 $2^{14}(-), 2^{15}(+), 2^{16}(\Box), 2^{17}(\star), 2^{18}(\circ), 2^{19}(\diamond), 2^{20}(\star), 2^{21}(\bullet)$ per MPI task

K. S. Kang (HLST, IPP)

- * Set an algebraic multigrid branch in github of BOUT++
- * Installed on the Marconi machine with PETSc with Hypre and ML
- * Made verification of data conversion with discretization error for the test problems
- Investigate convergence behavior of several solvers:
 Direct solver on single core, PGMRES with Block Jacobi, GAMG, ML, and BoomerAMG precoditioners
- * BoomerAMG in Hypre is the best solvers and acceptable
- * Developing 3D solvers including generating matrix