
Multigrid solver by using
PETSc

Kab Seok Kang kskang@ipp.mpg.de

High Level Support Team (HLST)
Department of Computational Plasma Physics

Max-Planck-Institut für Plasmaphysik,
Boltzmannstraße 2, D-85748 Garching, Germany

BOUT++ Workshop 2018
December 7, 2018

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 1 / 27

OUTLINE

1 BOUT++

2 Laplace Solvers

3 PETSc Library

4 Using PETSc libraries in BOUT++

5 Numerical results

6 Summary

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 2 / 27

Purpose of AMGBOUT

• Use or develope algebraic multigrid solver in BOUT++

• Use existence AMG in PETSc

• Find optimal options for 2D Laplace solver

• Prepare AMG solver for 3D problem in BOUT++

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 3 / 27

BOUT++ Overview

What BOUT++ is:
* A toolbox for solving PDEs on parallel computers. Aims to reduce duplication of effort, and

allow quick development and testing of new models
* Focused on flute-reduced plasma models in field-aligned coordinate systems, though has

more general capabilities

A toolbox for plasma simulations
* Collection of useful data types and associated routines.

Occupies a middle ground between problem-specific codes and general libraries (PETSc,
Trilinos, Overture, Chombo,...)

* Researchers can make use of a well tested library of simulation code and input/output tools
* Greatly reduces the time needed to develop a new simuation

Key features:
* Finite difference initial value code in 3D
* Implicit or explicit time integration methods
* Coordinate system set in metric tensor components
* Handles topology of multiple X-points
* Written in C++, quite modular design
* Open Source (LGPL), available on github

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 4 / 27

Coordinate system

* Logically rectangular. Defined by metric tensor

* Field aligned: x (radial), y (parallel), z (toroidal)

x = ψ − ψ0; y = θ; z = φ−
∫ θ

θ0

Bφ

RBθ
dlθ

(The y unit vector êy is along the magnetic field)
→ Has a singularity at the X-point

* A branch-cut, hole at the X-point itself

* Flux-Coordinate-Independent (FCI) scheme :
Construct grid poloidal planes. Field-align parallel
derivatives, but not grid. Under active development in BOUT++

* Varios time solvers: Choice of fully-implicit
or fully-explicit methods available
Sundials CVODE, PVODE, RK4, PETSc,
RK3SSP, Sundials IDA Karniadakis, POWER, Euler
−User-supplied preconditioner possible for implicit
solvers: CVODE, PETSc,
Physics-based preconditioner can improve performance

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 5 / 27

Computational domain

• 2D(x − z)-1D (y) decoupling: Current implementation
• nx × nz on ny planes.
• Use NPEX MPI tasks through x-direction for nx × nz
• Use NPEY MPI tasks through y -direction

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 6 / 27

Computational domain for 3D problem

– z-direction: Periodic boundary condition
– x and y direction: Periodic, Neumann, or Dirichlet BD condition

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 7 / 27

Laplace solvers

∗ Solve the equation

d∇2
⊥f +

1
c1
∇c2 · ∇⊥f + af = b

− Inverted for the potential f where d , c1, c2 , a are constant.
∗With conformal mapping g on the reference domain

∇2
⊥f = G1

∂f
∂x

+

(
G2 −

1
J
∂

∂y

(
J

g22

))
∂f
∂y

+ G3
∂f
∂z

+ g11 ∂2

∂x2

+

(
g22 −

1
g22

)
∂2f
∂y2

+ g33 ∂
2f

∂z2
+ 2g12 ∂2

∂x∂y
+ 2g13 ∂2f

∂x∂z
+ 2g23 ∂2f

∂y∂z

∇c · ∇⊥f =

(
g11 ∂c

∂x
+ g12 ∂c

∂y
+ g13 ∂c

∂z

)
∂f
∂x

+

(
g12 ∂c

∂x
+

(
g22 −

1
g22

)
∂c
∂y

+ g23 ∂c
∂z

)
∂f
∂y

+

(
g13 ∂c

∂x
+ g23 ∂c

∂y
+ g33 ∂c

∂z

)
∂f
∂z
.

∗ poloidal fileds are perpendicular with toroidal field→ In red can be neglected for 2D-1D

formulation
K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 8 / 27

2D-1D approach vs. 3D solver

• 2D-1D approach: Fit when g12,g23 are small

• Limitations
− Cannot implement parallel boundary conditions
→ The sheath boundary conditions on the potential (critical to the
correct description of the SOL) cannot be applied

− The integrability conditions restrict the perpendicular boundary
conditions that can be applied
→ Do not allow all-Neumann boundary conditions

− Impose spurious constraints on the parallel variation of the solution
→ Fail to be s good approximation to the solution of the 3D problem,
introducing unphysical behaviour.

∗ So we need the 3D solver
⇐ Need to handle boundary conditions

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 9 / 27

Discretization
V = dhx*dhy*dhz,
gt11 = g11, gt12 = g12,
gt13 = g13, gt22 = g22 - 1.0/g22
gt23 = g23, gt33 = g33
ddJ = (J/g22 - J/g22)/2./dhy/J
ddx_C = (C2(i2+1)-C2(i2-1))/2./dhx/C1
ddy_C = (C2(k2+1)-C2(k2-1))/2./dhy/C1
ddz_C = (C2(j2+1)-C2(j2-1))/2./dhz/C1
ddx = D*gt11/dhx/dhx,
ddy = D*gt22/dhy/dhy,
ddz = D*gt33/dhz/dhz
dxdy = 2.0*D*gt12/dhx/dhy
dxdz = 2.0*D*gt13/dhx/dhz
dydz = 2.0*D*gt23/dhy/dhz

dxd = (D*G1+gt11*ddx_C + gt12*ddy_C + gt13*ddz_C)/dhx
dyd = (D*(G2-ddJ)+gt12*ddx_C + gt22*ddy_C + gt23*ddz_C)/dhy
dzd = (D*G3+gt33*ddz_C +gt13*ddx_C + gt23*ddy_C)/dhz

M0 = dydz*V/4.0, M1 = dxdy*V/4.0, M2 = (ddy + dyd/2.0)*V,
M3 = -dxdy*V/4.0, M4 = -dydz*V/4.0
M5 = dxdz*V/4.0, M6 = (ddx - dxd/2.0)*V, M7 = -dxdz*V/4.0,
M8 = (ddz - dzd/2.0)*V, M9 = (A - 2.0*(ddx+ddy+ddz))*V, M10 = (ddz + dzd/2.0)*V
M11 = -dxdz*V/4.0, M12 = (ddx+dxd/2.0)*V, M13 = dxdz*V/4.0
M14 = -dydz*V/4.0, M15 = -dxdy*V/4.0, M16 = (ddy+dyd/2.0)*V,
M17 = dxdy*V/4.0, M18 = dydz*V/4.0

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 10 / 27

Parallelization and boundary conditions

– Divide Rectangular shape with Guarde cell
- x and y directional parallelization
→ Easily extentable for z directional parallelization

– Use Index set: Standard in PETSc.
- Can define a differnt shape fo domain by imposing the connectivity
- Don’t need guad cell for periodic boundary condition

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 11 / 27

Overview of the PETSc

∗ The Portable, Extensible Toolkit for Scientific Computation (PETSc)

− Easy the development of large-scale scientific application codes in
Fortran, C, C++, and Python

− A powerful set of tools for the numerical solution of partial
differential equations and related problems on high performance
computers

− Provides clean and effective codes for the various phases of
solving PDEs, with a uniform approach for each class of problem.
→ Enables easy comparison and use of different algorithms

− Provides a rich environment for modeling scientific applications as
well as for rapid algorithm design and prototyping.

− Enable easy customization and extension of both algorithms and
implementations.
→ Promotes code reuse and flexibility, and separates the issues
of parallelism from the choice of algorithms

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 12 / 27

PETSc modules

• index sets (IS), including permutations, for indexing into vectors,
renumbering, etc;
• vectors (Vec);
• matrices (Mat) (generally sparse);
• over thirty Krylov subspace methods (KSP);
• dozens of preconditioners, including multigrid, block solvers, and

sparse direct solvers (PC);
• managing interactions between mesh data structures and vectors

and matrices (DM);
• nonlinear solvers (SNES);
• time steppers for solving time-dependent (nonlinear) PDEs,

including support for differential algebraic equations, and the
computation of adjoints (sensitivities/gradients of the solutions)
(TS)

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 13 / 27

Solvers for linear system

∗ Krylov Subspace Methods (KSP)
- Need the operators (Mat), vectors (Vec), and preconditioners (PC)
- Support various iterative solvers including direct solver

∗ Algebraic multigrid preconditioner for GMRES
- GAMG: PETSc’s native AMG framework
→ GAMG: parallel sparce matrices with the AIJ format

- Two 3rd party solvers: hypre(BoomerAMG) and Trililos(ML)
← Need configure before compilation PETSc
• Add -download-hyper for hypre and -download-ml for ML

- Framework for multigrid method (MG) for AMG and GMG

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 14 / 27

Configures and selecting solver

- Configure option: $./configure -with-petsc
- Include header files: <petscksp.h>
→ call <petscpc.h>, <petscmat.h>, <petscvec.h>
– For direct solver: ksptype = preonly pctype = pclu
KSPSetType(ksp,KSPREONLY) PCSetType(pc,PCLU)

– For GMRES with BJacobi: ksptype = kspgmres pctype = bjacobi
KSPSetType(ksp,KSPGMRES) PCSetType(pc,PCBJACOBI)

– For GAMG: PCSetType(pc,PCGAMG)
∗ Use Aggregation options with PCGAMGSetType(pc,PCGAMGAGG)
- Set the number of Smooth Aggregation: 1 (default)

or PCGAMGSetNSmooths(pc,2(or 4))

– ML in Trillios: PCSetType(pc,PCML)
– BoomerAMG in HYPRE: PCSetType(pc,PCHYPRE)

and PCHYPRESetType(pc,"boomeramg")

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 15 / 27

Setting options in BOUT++ in BOUT.inp

myg = 1
mxg = 1
s o l u t i o n = f (x , y , z) ; i npu t = f (x , y , z)
[mesh]
symmetricGlobalX = t rue
nx = 34 ; ny = 4; nz = nx−2∗mxg
dx = 0.0036363636363636364/(nx−2∗mxg)
dy = 2.∗ p i / ny
dz = 2.∗ p i / nz /600
g11 = ; g22 = ; g33 = ; g12 = ; g13 = ; g23 = ; g_11 = ; g_22 = ;
g_33 = ; g_12 = ; g_13 = ; g_23 = ; J = ; Bxy = ; G1_11 = ; G1_22 = ;
G1_33 = ; G1_12 = ; G1_13 = ; G1_23 = ; G2_11 = ; G2_22 = ; G2_33 = ;
G2_12 = ; G2_13 = ; G2_23 = ; G3_11 = ; G3_22 = ; G3_33 = ; G3_12 = ;
G3_13 = ; G3_23 = ; G1 = ; G2 = ; G3 = ;
Lx = 0.0036363636363636364
Lz = 0.0209439510239320
[lap lace]
type = petscamg
f l a g s = 0
[petscamg]
so l ve r t ype = hypre
m u l t i g r i d l e v e l = 6

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 16 / 27

Test problems and verification

– Using test cases: prepared by J. Omotani (CCFE)
– nx = nz, ny = 16 according to given nx = 2k for k = 5,6, . . . ,15
– Numerical error in l2 and l∞ for k = 5,6, . . . ,10

→ Error convergent factor is 2: typical for centered finite diff. method
→ Verified matrix generation and data conversion

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 17 / 27

Solution time on single core

– Tested several preconditioners:
- Some with default options fail: GAMG with Classical and Geometric
- Some options also fail. Might need more implementation
– GAMG : 1 aggregation smoothed GAMG (default options)
– GAMG2(4): 2 (4) aggregation smoother GAMG

– BoomerAMG (Hypre) has the best performance on 1 core from 642

DoF and the ratio
K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 18 / 27

Figure of solution time on single core

—– : Direct
��� : GMRES
+++ : GAMG
◦ ◦ ◦ : GAMG2
� � � : GAMG4
××× : ML
• • • : Hypre

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 19 / 27

Required number of iteration on single core

– Required number of iterations of GMRES from 10242 are over the
limit
– Other preconditioners have a typical required number of iterations

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 20 / 27

Comparison preconditioners (Strong scaling 1)

- GAMG4(solid line), ML (+++), BoomerAMG in Hypre (• • •)
- 10242 DoF in black and 20482 DoF in red. - - - for Ideal

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 21 / 27

Comparison preconditioners (Strong scaling 2)

—– : GAMG4
+++ : ML
• • • : Hypre
- - - : Ideal
40962 DoF in black
81922 DoF in red

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 22 / 27

Comparison preconditioners (Weak scaling 1)

—– : GAMG4
+++ : ML
• • • : Hypre

2562 DoF (in black)
per core

5122 DoF (in red)
per core

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 23 / 27

Comparison preconditioners (Weak scaling 2)

—– : GAMG4
+++ : ML
• • • : Hypre

5122/2 DoF (in black)
per core

10242/2 DoF (in red)
per core

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 24 / 27

Strong scaling of BoomerAMG

5122(–), 10242(�), 20482(+), 40962(◦), 81922(�), 81922(×), ideal (- -)
K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 25 / 27

Weak scaling of BoomerAMG

214(–), 215(+), 216(�), 217(?), 218(◦), 219(�), 220(∗), 221(•) per MPI task
K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 26 / 27

Current status and future work

* Set an algebraic multigrid branch in github of BOUT++
* Installed on the Marconi machine with PETSc with Hypre and ML
* Made verification of data conversion with discretization error for

the test problems
* Investigate convergence behavior of several solvers:

- Direct solver on single core, PGMRES with Block Jacobi, GAMG,
ML, and BoomerAMG precoditioners

* BoomerAMG in Hypre is the best solvers and acceptable

* Developing 3D solvers including generating matrix

K. S. Kang (HLST, IPP) 2018 HLST HLST meeting 27 / 27

	BOUT++
	Laplace Solvers
	PETSc Library
	Using PETSc libraries in BOUT++
	Numerical results
	Summary

