1900.]  On a Canonical Reduction of Bilinear Forms. 321

On « Cunonicul Deduction of Bilinear Forms (Part IL), with
special consideration of Congruent Reductions. DBy'l'J.T’A.
BromwicH. Communicated June 14th, 1900. Received, iu
revised form, October 3rd, 1900.

The following paper is concerned mainly with reductions in which
the coefficients of the substitutions on the two sets of varinbles are
either the same (congruent substitutions) or are conjugate imagin-
nries.  Passing to the details of the paper; I give first o brief résumé
of the general reduction-process, and add a slight extension of n
theorem due to Frobenius. This is then used to reduce a single
alternute form by a congruent substitution.

The next und longest division of the paper deals with the simul-
taneous reduction (by congruent substitutions) of a symmetric and
an alternate form. So far us [ know, this reduction has only been
carried out by Kronecker (in the paper subsequently quoted by the
letters Ar.); and Kronecker’s direct object is the reduction of o single
bilinear form by a congruent subgtitution. Thns Kronecker's vrednced
forms are not always the simplest from the present puint of view.
Frobenins (Berliner Sitzungsberichte, 1896, p. 7) hag shown that, if
wny substitutions 1’, () (independent of A) can be found, such that

POA=1B) Q=AC—1D),

and if, further, 4, C be both symmetric or both alternate (the same
holding for B, D), then I¢ can be dervived from £, () so that
R A=B) R =\(—D.

Thas, if the invarviant-factors of | A4 -8B | and | AC—D | are the
sume, n congruent substitution can be fonnd to transform (Ad - 1)) into
(\C--D).  But, appavently, this method cannot be extended so as to
cover the analogous theory for conjugate imaginury substitutions,
which would be applicd to a pair of Hermite's forms. 1 have,
accordingly, discussed a diveet process for tinding I in o way that
can be applied in both cases.

The reduced forms so obtained have been applied to prove certain
theorems of llerr Alfred Loewy’s on antomorphic substitutions, both
of real quadratic forms and of Hermito’s forms.

VOL, XXXUL,—N0. 730, Y



322 Mr. T. J. I'A. Bromwich on a [June 14,

1. General Account of the Reduction of two Bilinear Forms.
Let A, B be the two forms, and let the form reciprocal to
(AAd—D)* be ’

(MM=B)" = 3 P )+ il QA+3 3 6, —0)",

€ ¥rw

where (A —c) is a typical factor of the determinant | Ad—B |, and.
a, B, v are the indices of the first invariant-factors (Elementarthesler)
of | Ad—DB| corresponding to A =00, A =0, A =c respectively.
In this expression for (AA—B)~'all the terms P will disappear if
| 4| #0,and all the Qs if | B | £ 0.

Multiply up by (A4 —B), and we have, in general,
AP, —BP,,,=0=A4Q,.,—BQ, = A0, ,,+(c4A-B) C,,
but E = A4Q, —BP°+§AC,.
T'he same equations hold if the order of the products is reversed, thus
P A-P,.B=0, &ec
¥rom these it follows that
A= (AQ,—BP)A4A+ % 40,4
= AQ,A-—L‘P,B+§AC,A,
and B=(AQ=Br)B+ ?‘I ]
= AQA—BP,B+3 (AC,A+cAC, ).

If, now, we consider the form A (AAd—B)'d, and expand in
powers of (A—c), it is clear that the cocflicients of 1/(A—¢) and
1/(A—c¢)? will be respectively AC, 4 and AC, A. DBut Weierstiass +
and Stickelberger} have shown how to arrange A(AA—DB)"'A in u
form which can be readily expanded in powers of any factor of

* For the definitions of the product of two forma and of the form reciprocal to n
given form, see IFrobenius (Crefle, Vol. Lxxxrv., p. 1); or Muth, Elementartheiler
(Leipzig, 1899). Short accounts will be found iu previous papers by the author
{Proc. Lond. Math. Soc., pp. 78, 158, ubove). E is the unit form (= Zx,y.).

+ Berliner Monatsberichte, 1868, p. 310 ; Gesammelte Werke, Vol. 11, p. 19.

+ (relle, Vol. Lxxxvr., 1878, p. 20 ; this paper will be denoted in future by 4.,
for brevity, ns we shall frequently have vccasion to quote it.
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| NMA—B| (see also p. 326 below) ; and so from each expansion we
obtain a group of terms in A and B, viz., AC; 4 and AC; A 4cd(' A.

The same method still holds if ¢ =0, for, if 4(AAd—DB)"'A he ex-
panded in powers of A, the coeflicients of (1/A), (1/A)® are respectively
AQ A, AQ, A; which have been proved to form parts of A, /} re-
spectively. DBut the case is rather different for ¢ = ; to deal with
this we may first consider — B(A4 —DB) 'B and expand in powers of
(1/A) ; then the coefficient of A and the term independent of A arc
—BP; A and —RP,; B respectively, which form parts of our ex-
pressions for A and B.

Another method of dealing with this case depends on expanding
B(uB—A)"'B in powers of p and picking out the coefficients of
(1/p*), (L/u). To sce this wo note that

-y (4-0)°

—1-["2'1’,.,""+§ Qi +3 2! C. (l—p.c)"].

M Lr=0 ral cral

So, on expanding in powers of p, we find —1,, —I’) as the co-
efficients of (1/u)%, (1/p) in the expansion of (uB3—A4)-'; hence the
coeflicients of (1/pn)?, (/1) in the expansion of B(ul8—A)' 13 in powers
of p ave — BP, B, — B1I’,B respectively, which are parts of 4 and B.

Thus, on the whole, we can find the values of A4, B by expanding
AAA—DB)'A in powers of the factors (A—¢) of | AA—B | and pick-
ing out the coeflicients of 1/(A—c¢), 1/(A—c)* for ench ¢; und, in case

| 4| =0, we have also to expand B(pB—4) 'B in powers of u, and
pick out the coellicients of (1/u)?, (1/p).

This modification of Weierstrass's solution of the problem was
given in part in a short note (I’roc. Lond. Math. Soc., p. 158,
above), where more details will be found on the determination
of the indices of those invariant-factors of | AA—1 | which corre-
spond to the infinite roots if | A | = 0; it will be suflicient to state
here that they are the same as the indices of the invarviant-factors of

| uB—A | to base p.

In the foreguing it is, of cowrse, assumed that the determinant
| AMd—B | does not vanish identically, or the reciprocal form
(AM—B)"" would not cxist. The cxamination of the so-called
“singular” case, when | A =13 | = 0, will bedeferred to § 2.

1 proceed to an account of Stickelberger’s transformation of
Y 2
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A(NA-DB)"'A, and I shall give an extension of it, suggested by a
theorem for quadratic forms due to Frobenius.

Notation.—I employ the following general scheme of symbols—

k-1

’,
Wici =| @y ooy @y Dy ceey ¥ 5 T

k-1

’
Aty ooy Ayyy Uy eeey Uy y M
’ ’
Why very Uy 0..0, 0
k-1 k-1
Wy oy eeny 2y, 0,..., 0, 0

fh seey by O, ey 0, (_)

If 9, ..., n, be replaced by v:", . vﬁ, the value so obtained is called
Us; if &, ..., & be replaced by «f, ..., ul, the value is V,; and, if

)
both sets be replaced in this way, the result is A, (¢f. St., §1).

In these symbols, the «'s and ¢’s are arbitvary constants whose
indices do not refer to powers, but are to be considercd as additional
suflixes ; the &s and n's are linear functions of the variables ay, ..., 2,
Yo .-y Yu respectively, whose exact form will appear later.

Then, as proved by Stickelberger (St., § 1),
Wb = Wi A—=U, YV,

for Wiy, 84 Uy Fi ave fivst minors of W, corresponding to the four
zeros which are complementary to A,_,. Thus

_‘_1./.":! = ]V‘ + ._ULVI_
By A AN,

Woo g Ui,

and so J0=3 LA
AU kel Akﬁkq

for clearly W, = 0. This result is a generalization of Darbonx’s*
for the case of quadratic forms. Its importance in the present in-
vestigation is due to the fact that (—W,/4,) is the form reciprocnl to
A=3a,&n, oris A~

Frobenins + has shown that two consecutive terms of the series

¢ Liouville's Journal, Vol. x1x. (2me sér.), 1874, p. 347 [p. 354, formula (17)].

t Bervliner Sitzungsherichte, 1894, pp. 241, 407 ; reprinted in Crelle, Vol. exiv.,
1895, p. 187. Tho theorem in question is (7) on p. 249 (SB.), p. 196 (¢r).
TFrobeuius alxo verifies that the sum (Ux Fifar8i-1) + (Ur o1 Viy1/Br4184) can Lo ex-
pressed in this form,
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(UxVi/A\AL)) can be combined if so desired ; this is done by find-
ing an expression for the difference (Wi.1/Avoi— Wia/Ara).
Frobenius’s investigation relates to quadratic forms; and I shall
now extend his method to bilinear forms, making a slight general-
ization by using bordered determinants in the place of minors.

Applying Sylvester’s theorem * (on determinants of minors) in the
form given by Frobenius,t we have

Windia=| k), —(kk+1), Vi |,
—~(k+1, k), (k+1,k+1), -V,
Uky _U;) I/Vl-l

where (7, s) denotes the value of W,_, when §, ..., £, are replaced by
Wy ooy 2y 80d 9y, vy 10 BY T, ..y w5 S0 that (E, k) = Ay; also Uj, v
are analogous to Uy, V,, but with ', et in place of uf, . s
and a similar change in the v’s. To see the correctness of this equa-
tion we have only to notice that the elements of the determinant so
written ave all second minors of W,,,, corresponding to the last nine
zeros of W,,; aud these zeros are complementary to 4A,.,. We

have also
BBy = (k, k), —(k E+1)

—(k+1,k), (k+1,k+1)

for (k, k), —(k, :+1), ... are fivst minors of Apa

Thus, expanding the determinants, we tind

Windio = Wie A Bea— (541, k+1) UpVi—(k, k) UV
+(k+1, k) UVi+ (&, k+1) U Vi;

or, dividing by A}_,A,.,,

%..Tl "%T' = .A:_}Ah; [(k+1, k+1) UuVi+ (k, k) UiV

—(k+1, k) GiVi—(k, k+1) UV3],

which is the extension of Frobenius’s theorem.

We may accordingly replace the two consecutive terms
(UiVi/deAi) + (Uryi Vi /Bk1Ar) in our expression for Wi/A, by
the quantity on the right of the last equation.

* Phil. Mug., April, 1851.
+ In § 1 of the paper just quoted ; or Crelle, Vol. Lxxxvi., 1878, p. 44, §3.
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Special cases of this theorem have heen given also by Kronecker* .
and Gundelfingert for quadratic forms.

For our future investigations we shall employ these results in
ieneral when a, is replaced by (Aa,,~b,,); and Uy, Vi, Ay, W, will
generally be used to mean their values when this change is
made in them also, and (¢, ..., &), (n, ..., 7.) are replaced by

o4 04 (0_4 04
(ayl’ o o T e,
stitutions are made we have

AAA=B) A = = WA, = — J(UV)/(AAr),

), respectively. For when these sub-

and in this form we can expand A(AA—B)'A as explained.
[t will also be necessary to use the corresponding symbols with

(gfl, . g—g—.), (g—{f, ey g{%) in place of (¢, ..., &), (my ...y ) iD
order to evaluate the expansion of I3 (u3—A)"' I} in powers of u; but
the two investigations are distinct and no confusion need arise.

It will be seen from Stickelberger’s paper (St., §§ 1, 2, 5) that in
this method the w’s and v’s cannot be chosen entirely arbitrarily ;
but that in gencral the u’s and v's may be symmetrical (n} = v}) with
one special case of exception, when it may happen that for a special
value of £ we may not have u} = +* in 4, ; we then avoid A, by using
our extension of l'robenins’s theorem. Ior Stickelberger proves
that A,., aud A,,, are not altered by this exception.

2. Agplication of Weterstrass’s Methods to the * Singular™ Case.

Kronecker (Berliner Monatsberichte, March, 1874, p. 156 ; Gesammelte
Werke, Bd. 1., p. 381) has remarked that the reduction of a
“gingular” family of bilinear forms could be effected by applying
Weierstrass’s method to a family obtained by suitably modifying one
of the original forms. Kronecker gives the necessary modification,
but docs not complete the reduction; and, so far as I know, no
account of the whole investigation has yet been published.

We have seen in a previous paper (Froc. Tond. Math. Soc.,
p. 88, above) that, if | AA—B | and all its minors up to the

* Nerliner Monatsberichte, 1874, p. 59, §1I.; or Gesammelte Werke, Vol. 1.,
p. 349. Itis given moro completely in § 1 of his paper on p. 397 of the Monats-
berichte (Werke, Vol. 1., p. 423): the latter paper will be quoted as Ay,

t Crelle, Vol. xar., 1881, p. 221, Lemma 2.
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(k—1)th be identically zero, some of the Ath minors not vanish-
ing, then A, (formed by bordering | AA—B | with «’s and «’s as
above explained) will break up into the product of three determin-
ants. Let the two sets of «’s and v's be determined so that for

w=p; (=12 ..., k;6=12,..,2)
we have the one determinant* taking the form
A, 0, 0, .., O,
0, A, 0 .. O
0, 0O A~ ..., O

0, 0, 0, .. A%

while for «f = »{ the determinant takes a similar form with a
diagonal of unities.t

In the same way, for v; = ¢i or «}, we are to have another de-
terminant in the shape

A0, ..., O] or |1, O, ..,
0, Aa», .., O 0, 1,

0, 0, .., A% 10, 0, .., 1
Kronecker’s modification of A consists in adding terms; in fact we take
k
C=A4A+ cElt. (p::’h'l" e +P7.!/u)(‘l§m|+ “ee +q,'.m.. '

and apply Weierstrass’s process to the family (\C—B). The first
step is to form the series of determinants A,, A, ..., A; obtained
from | AC—B | by bordering it with #’s and «’s. We proceed to
examine their invariant-factors. To do this we note that

n n 1
3 Qeu=ba)fi= X [(Aan=b)+ I Mepiat] f.

= ’VI’I:- (A=),

* This ia the determinant in which all the »’s appear, when 4. is split up into
fnctors ; and the sceond determinant contains all the »'s.

+ It may bo well to remark explicitly that it has been found convenient to alter
the notation used in my previous paper (thus, the present p’s are the former «’s, &e.).
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where f, has the same meaning as in the paperalready quoted,so that

S (\an—b,) f, = 0.
awl

Similarly, 3 (ew—b) g = Myp (V)

and analogous results hold for each set of f's and g's.

Using these facts and bordering with the ='s, x’s in order, we sec
that
A, ()8, (A) = — {Ameme,

Al (’\)/Ag (A) = - fgx-:»!,rl’
&e.,

for it must be remembered that in none of these determinants can
squares or higher powers of any ¢ appear.* Now, in order that these
powers of A may be the invariant-factors, it is necessary and suffi-
cient that the a’s and 8’s should be arranged in descending order of
magnitude.

The next step is to consider the linear functions of @ and y which
appear in the process of reduction; the function U is found from

o U(f- in the last row

Ay, " Oy,

in place of uj, ..., %,. Itis then easy to sce that

A,(A) by putting the linear functions

oc
0y,

+ terms with #,A* as a factor.

U/A, () =ﬂg 2

Now, owing to the definition of the f's, we see that the expression

;04

+...t ]
Jlayl f

ay,.

® For t: would be multiplied by a determinant, such as

Prdyy P2 o
Pr qny Psa

which vanishes identically.
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is only of degree (a,—1) in A, not of degree a,,* so that we may write
U/a,(A) = X+ XA+ ...+ X, A7 +terms with £,A° as a factor

(a =a).
Similarly, we shall have

Vi/A, (A) = Y, 4+ YA +... + Y,A° !+ terms with ¢,A° as a factor
(B =By

Thus we shall have, say

U/a, () = X+ XA+ o+ XA 4 40 (X + XA +.00),

VA, () = Y4+ Yoh oo+ YoM 6N (Yo 4 Yaoah +.2.),
and then, according to the usual process given by Weierstrass and
Stickelberger, we have to pick out the coefficients of 1/A, 1/A in the
expansion of — U,V,/A,4,; or the coefficients of A**%, A°*#-! in the
product
71: [ Xyt XA 40 (Kot Kaeah +.00) ]

X[Vt + YA 408 (Yt ..0) -

Hence we find the two sets of terms
(in C)
XiYaron+ X Yoipt . + X Y0+ 4 X Yo 1 + Xoba Yo + o+ X000 Y,
(in B) X\ Y0+ XY o+ .+ XY, + X, Y, +...+ X,,, Y,

It is easy to sce that we find similar sets of terms for each pair
of indices @ and 8; we can now remove the terms in 0 which nre
maltiplied by #, 4, ..., f, and so obtain the reduced form of A. The
comparison of these terms shows that

Xon =g+ +qe, Yea=pin+...+p. Y
with similar results for each group of p's and ¢'s.

Finally, it is to be noted that (as proved by Kronecker) the
numbers a, § in addition to the ordinary invariant-factors form
complele set of invariants.

o4 OB y ad B
¢ For A I i g '( __,___) = 0
K ( oY) ‘).'/l) Yot (X 0n  OYn !

80 that A [f; g; +o.+f ?—‘iJ is only of degree g, in A.
1

" Y
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~ As a consequence of the results that

A8, N)/a (A) = =t A=? !,

&e.,
it should be observed that the ='s, «’s do not give values of a,(\),
A,(A), ..., which are regular for the other invariant-factors of

| A\C—B|. These must be treated independently (as is usually the

case in dealing with invariant-factors to different bases), and each of
them will give a group of terms of the ordinary type found by
Weierstrass and Stickelberger.

This general method of dealing with bilinear forms requires very
little change for the problem of quadratic forms or symmetrical
bilinears. In this respect it differs from Kronecker's last method,*
which requires special modifications in dealing with a family of
quadratics. Here we have only to note thata, =p,(r =1,2,..., k).
and that each q is equal to its corresponding p, and each « to . Then,
clearly,each Y is the same function of the y's that the corresponding
Y is of the z’s: and so, in the symmetrical bilinear family, we have
scts of terms

X Yoot + X Yo+ X Yo+ + X X,
X\ Yo+ .. .+ XY, ,+ XY+ ..+ XY,
or, in the quadratic forms,
2(X X + X, X+ .. +X. X)),
2(Xi X+ X Xo + .+ XL XL ).

3. Reduction of a Single Alternate Form to a Canonical Shupe
by Congruent Substitutions.

Here the number % of @'s and of y’s is even; otherwise 4, would
vanish. We make the assumption that ‘= —, so that all A’s are
skew-symmetrical determinants, and hence A, =0=4A; =4, =
while A, 4,, A, ... are all perfect squares.t

ceey

* Berliner Sitzungsberichte, 1890, p. 1225, for bilinear forms ; p. 1375, and 1891
pp- 9, 33, for quadratics ; from which it will be seen that Kronecker’s discussion of
the quadratic case is much longer than that of the bilinear.

+ Note, the A's, &c., are here as originally defined, f.c., without any A ; e.g.,
Ay=|an]|.
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Suppose then that k is odd; we can apply the preliminary lemma,
and we shall have )
(k&) =0= (k+1, k+1),

for these are both skew-symmetrical determinants of odd order.
Also, changing rows into columns and then changing the sign of
every row, we see that

(k+1, k) = — (k, k+1) = E; say,

and we have ApiByg = 0, (L+1, k)
(k, k+1), 0
Hence Wer _Wan 1 _ iy —w,v)).

A VO Axn Ak nEl.

Again, taking U,, changing rows into columns, and changing the
signs of every column but the last, we see that U, and ¥V, are con-
gruent functions of the £'s and %'s respectively. If, now, we write

04 _ 04,

8":@_. r = 61'

we shall have that U7, and V) are congruent functions of the 2's and
y's ; and the same holds for Uy, Vi.

Making this substitution for the §'s and n's, we have that

W, = 3,4,
and so we have 4 = L‘G = Z’} K" NUAS AN
LD WP
A UAADY

Hence A is the sum of 3n terms of the type just written, or

A_A—E—(U,V U+ 1 (U’V UV + ..

1 ’
*r‘rwv UsarVie)s
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which is the canonical type for an alternate form.* Just as a quad-
ratio form can be reduced to a sum of squares in an infinity of ways,
8o this can be reduced in an infinity of ways.
Jordant has given a special case of this, which is obtained by
writing
w=1 w=0 (r=12 ..,a=1,a+l ..., %)

Jordan takes (virtually) the substitution
X=—a—A-, Y=+.a_{1’ X’=—-a£, Y'=+-a~4,
3, o, En N
then (if a,y 5% 0) it is easy to show that the form

4- L xr—x7)

g

is independent of the four variables =, y,, #,, y,; and, starting afresh
from this form, we can remove four more variables, and so on until
the whole form is reduced. It is not diffieult to prove by induction
that the coefficients of the substitution arve all Pfaffians. Thus I find

X, = (12) 2,4+ (13) 2, + ... + (In) @,
X, = (20) 2, + (23) 2, + ... + (2n) 2.,

1

X, = a5 [(1234) 2+ ...+ (123n) 2. ],
L .

X, = RO [ (1243) 2+ ... + (124n) 2, ],

1 ;
X, = 38 [(123456) 4+ ... + (12345n) 2, |,
1

Xo= (1236

[ (123465) wy+ ... + (12346n) ),
&e.,

® If n should be odd, it can be readily proved that
W, = a,d,
and then we find 4 (n—1) terms of the type just given.,
+ Liouville’s Journal, Vol. x1x. (2me sér.), 1874, p. 35.
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and then the reduced form of 4 will be

g Eh-XT)+ G (- X,y
+ Haagssy KoY X FD + .

where the numbers in brackets denote Pfaffians in the ordinary
way; for example,

(12) = ay,, (1234) = ayay+aya+ay 0, &c.

Frobenius* has given a neat proof of Jordan’s transformations ; and
E. von Webert obtains a form equivalent to Jordan’s. Muth} has
published a short investigation showing how to modify a method
of Kronecker's§ so as to obtain the reduced form of an alternate
bilinear form by means of congruent substitutions; this investigation
(like Frobenius's) is, in the first place, concerned only with forms
whose coeflicients are integers (in any assigned region of rationality).

K. von Weber also applies his results to reduce a family of alter-
nate forms ; I had worked out this reduction independently (using the
transformation above), but shall omit the algebra here.

4. Simultaneous Reduction of a Symmetric and an Alternate Form
by Congruent Substitutions.

Let 4, B be respectively symmetric and alternate; then we must
find first the invaviant-factors of the determinant | AA—B|. By
definition of 4, B, we have

A'=A4, B=-1D,

where accents refer to the conjugate bilinear forms. Hence
Ad—B = A+ B,

w0 that | AM—B | = | A'+B' | = | A4+ B,

for the determinaut of a bilinear form is equal to that of its con-
jugate.

* Crelle (1879), Vol. Lxxxvi., p. 146 : the speocial consideration of alternate
formu is in § 7 (p. 166). -

t Minchener Sitzungsberichte (1893), p. 369.

1 Crelle (1900), Vol. oxxi1., p. 89.

§ Crelic (1891), Vol. cvir., p. 135.
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Thus for every factor (A— ¢) of | AA—B | there will be another
(A o).

Further, if ¢ be complex (and if the coefficients of 4 and B are
real), there will be two corresponding conjugate complex roots ¢,, —¢,
(where ¢, is the complex quantity conjugate to ¢); but,if ¢y = —¢, or
if ¢ be & pure imaginary, these two (¢, —c,) are the same as the other
two (—ec, +¢). We shall prove now that the invariant-factors of

| AMd—DB | occur (in general) in pairs.

Consider the value of 3, when the sign of A is changed ; first mtez-
change rows and columns and then change the signs of the firstn
rows and the last & columns. Remembering that a,, = a,, b,, = —b,,
we see that the new determinant only differs from A, by having the
»’s and ¢'s interchanged; but Stickelberger has proved (S8t § 5)
that we may in general take #; = v}; and, making this assump-
tion, we see that changing the sign of A in A, will only maltiply A,
by (—1)*-

So, writing 8= A=e)f(N) [f () #0],
we have (=) EA = (—A—c)' f (—A).

Thus A, has factors of the type (A—c)', (X+c)' in pairs; and the in-
variant-factors (which ave obtained from the quotients 4,_,/a,) will
occur in pairs of the type (A—¢)°, (A+¢)".

This theorem is due to Kronecker [Kr., p. 440 (p. 477)]. We
shall now combine the terms in the reduced forms of A4, It which
correspond to the pair of invariant-factors (A —c)°, (\+c¢)*. We have
to split A (A4 - B)"' A into partial fractions; thus we consider only
the special fraction —(U,V.)/(A;.,3.), and evaluate the fractions in
1/(A—¢), 1/(A+c¢) which can be obtained from this. As explained
before (p. 322), we only require the coetlicients of 1/(A—c), 1/(A—c)?,
1/(\+¢), 1/(A+¢)'. To find them we write A = c+¢, A = — ¢+, and
expand first in powers of ¢, then in powers of ¢’

We shall take for the present Uy to denote the value of U, with
A =c+¢t; and U its value with A = —c¢+¢t. The same notation
will be used for A,, V,, and then we have

Ui=|(—c+)u,—=b,, u u” ('r,s=1,2, ey B )
3 0, 0| ‘e=hz. k10"

a4 0

, , 0
.
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writing the determinant in the shortened form suggested by
Frobenius and Nanson.

Change the signs of the first » 1rows and then of the last & columns
in Ui; finally, change rows into columns, then (remembering
Q= Gy b,, = —0,)

Up=(—-1)"* l (¢c—t) a,,—b,, u, QA | .
Y,
e, 0, O
| nk, o, 0

Hence, if we change the 2’s to 3's and write ¢’ = —¢ in U, we shounld
have Ul= (=1)-T,
and, with a similar change,
Vi=(=1""*U.
By the same process we find
TAb=(=1)"tA, AL = (=T)ry,
where t' = — ¢

1f, then, we write

___,_Ika ___l_ __
Ardiny - t (‘\l+X2t+ "‘)(Yul+ Yuut'*'...)o

we shall have

Vi _

-1 ‘ ) .
- =- (Y=Yt 4+ Yt = WX, =X at ...
ALAL (—t')'( Rl 15 2 € WX =Xt +.4),

where Y, is the same function of the #'s that X, is of the a's. Now
the terms we requive will come from the coeflicients of 1/, 1/6%, 1/¢°,
1/t", which will be

(X, Yo+ X, Yoo i+ + X, 1,0,
(XY  + oY+ + X, 1000),
(XoY 4 Xoe Yyt ..+ X, D),
= (X Y+ N LY+ L+ X0 Y0,
vespectively. These will be parts of the coeflicients of 1/(A—¢),

1/(A=c¢)*, 1/(A+¢), 1/(A+¢)* in the expansions of A (Ad—B)='. in
powers of (A—c), (A+c).
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Finally, combining these terms as explained (p. 323), we find the
corresponding parts of 4, B in the forms

(A) X|Y7n+X201’1+-n+‘\’¢Yul'*' ‘\’a-l)-r--’
(B) (XY= XuY))+ ...+ (XY, — X, T)
+(X|Y21—1—X'."-1Yl)+ (X} +(‘\'n llrrpl—XeH.-Ye-l)y
where the substitutions are congruent.
It may be observed that the substitutions will all be real; and,
further, that by means of a similar process, interchanging the parts
played by A4, B, we cun obtain

(A) }' (‘\TI.-Y.'.'(+ XMYI) +...+ (1;-(;\'!1’I+|+Xt'-|l,r)

+-X11’:_’g-] +X'_'a.1)'|+ X + Xr-l)rcol + -\’f>l )’e-h
(“) Xllf'.'a-X‘_’nIr1+---+-\‘r r“l___\"nlr"
as typical terms in the reduced forms.

In case ¢ is a complex qnantity, we shall have an exactly similar
pair of terms from using ¢, instead of ¢; if it is desived to vestrict
onselves to real transformations, we can combine the corvesponding
terms after first dividing them into real and imaginavy parts. If e
he & pure imaginary, X, and X,,, will be conjugate imaginaries.

If ¢ be zevo and ¢ be odd, we may still write «2 =} (St, §5), aud
in this case there will be no invariant-factor paived oft with this one.
But we shall have

U= ra,—0b,, %, utf,
e, 0, 0
o
o o
o,
and, treating this as before, we find
Go= (=174 =2a=b., w, &),
(,!‘(/,.
ny, 0, 0
ut, 0, 0

or Ue=(=1)"*17,

where in V; we replace A by (—A) and the y's by &’s.
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Thus, if ¢ =2p+1, we have to pick out the coefficients of A™,
A= in the product

(N + XA+ XA+ ) (T =Y, A+ A=),

where Y, is the same function of the y's that X, is of the z's. So
we have typical torms

(.“) .Xlep,l'—XQYz"*'..._Xngs"'X'_’po]Y]!
(l',) (lelYl—XlY2p)+"-:h(xpollrp—xp.y.pol)'

Now return to the case of exception previously alluded to (p. 326),
which occurs when ¢ =0 and the index of an invariant-factor is
even ; then (as shown by Stickelberger) it is not permissible to write
u; = v}, and, to avoid this difficulty, we use the preliminary lemma
given above. In the first place, one of the consecutive invariant-factors
is the same (St., § 5). Suppose that the invariant-factors (to buse A)
given by A, /A, and A/A,,, ave the same; let their common index be
¢, where ¢ is even. By our lemma we have a part of A(AA—1)"'4,

= b [ kL) UV (5, b UiV

Ak—l Ak+l

— (k+1, k) UiVi—(k, k+1) UuVi ],

where in all the determinants we write (Aa,—b,,) instead of «,,, We
may assume now that «f =o;; this will make (k, k) and (k+1, k+1)
divisible by a higher power of A than appears in every kth minor of
| Ad—B | (St., § 5); let that which appears in every kth minor be
A, so0 that X+¢ divides every (k—1)th minor and N-* every (k+ 1)th.

Fhus, if Ary = AN (O + A+ 8N+ ...),
wo have, by changing the sign of A as above (p. 335),
(=N (348 (=) +3,(=2)+...]
- (__l)n-kolAk_l
—_ (__1)..-“:1\1.‘. [5‘_,_5*;\_*_38)(.',*_ ]
But 8, £ 0, or A,.; would be divisible by a higher power of A than
A and so (v—k+1) is odd (as e is even). Also, from the last equa-
tion, ¢, = 0, 6, = 0, &c.; so we may write
Apoy = A (48, A+ G A0 .).
VoL, XXX11L.—No0. 73], A
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In the same way we have
Ay =X (g + A+ AN L).

Again, if we change the sign of A in (k, k+1), we get (k+1,

multiplied by (—1)"-*% and so we write
(% E41) =N (v, + v A+ 7.0+ ...)
(k+1, k) = (—1)"*'N (ry—ysh + 75N =)
= =Ny =7 A + 727 —=..),
and, applying the same process to (, k), we see that, if
(%, k) = N (a, +a;hA+a,A%+...),
then also (ky k) ==X (qy—ah+a,\— ).
Hence q, =0, ¢y =0, ..., and s0
(k, k) = XY (a+a AP+ agh +...).
Bimilarly, (k+1, A+1) =N (3,4 BA 4+ B:A 4+ ...).
Using the same arguments, we readily see that, if we write
T =N (G+6A+..), Db =M +EA+.),
then Fa=—=N0m—mAr+...), Vi=—N(g-mr+...),
where 7,, n, are the same functions of the y's as §, ¢, of the z's.
For brevity write
(«) = ag+aAt+ ..., &c.,
&) = &+&A +..., &,
() =mn—m +..., &,
M =ntrr+., D=n—nr+.;

then we have our typical term in the expression for 4 (A4 —B)-' A

- ¥ G [PO@O-AEO@+HOE@ =)@ ]
Nowput (&) =® [7t5]" @ = [57o5]"
o 7 n_ ol () P
(= (5)[( )ZUJ (“)—(77)[(5)7( 1
() = O = (!

O A G

k)
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then (H), (II') are derived from (&), (Z’) respectively, by changing’
A to —A, and the a's to y's ; further, (p), () are even functions of A.
With these abbreviations we see that our typical term becomes

i [(@)(H)— (@) (H)+A (p)(Z)(H) +A (9) (&) (H) ].

It is now possible to determine (g), (h), (g"), (") power-series in A*
go that the expression in square brackets is equal to

[@)EY+X (@) &) ] [()H) = (&) (W) ]
—[ @y @) +x ®)(E)[(9)E) = (9)(AT) ] *
or to (X)(Y)—(X)(Y),

where (Y) and (Y’) are obtained from (X) and (X') respectively by
changing the «'s to s, and A to —A.

Now, if we write
(X) = X, + ;A + XA+, (Y)=Y,—-Y,A+..,
(X)= Xoni =X, A+ X M=, (Y)=Y,a+Y, A+,

it is clear that Y, is the same function of the y's as X, of the 2's, and
we find that the coeflicients of 1/A, 1/A* in -)]\'; [(X)(Y')-—(X')(Y)]
are respectively

X Y+ Xy Yo+ + X0 Y+ X Y,

(Xl Y:a-l_‘xge-l Y]) + (X, qu-g—x‘:e-':qu) + see +(Xu-l Yul_XtH Yc- I)1

and these will he the reduced parts of A, B corresponding to the
pair of invarinnt-factors X!, A* (¢ even).

In considering the infinite voots of | AA—B | =0, it is easier to
treat them as zero roots of | pB—dA | =0. We use the samec
notation as before, but with (ub,—a,) in place of (Aa,—b,,), and

¢ We have to consider an oxpression of the type a'y—zy +ary +bx'y’, which ix
equal to [(e + Be)(y - ay') — (+ + &)/ = B)}/(1 +aB),
provided that 2B8ju = —2afn = (1 + af).

These equations will determine a, B8 by wolving a single quadratie equation. In
the specinl ease requirved «, 8, «, b will he power-series containing only odd powers
of A.

7 2
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04 0A

a—’—‘, OB in place of ==, ==, and we are concerned with the in-
Ox, 0y, Oz, ",
variant-factors to basc p only.

Such invariant-factors may occur singly with an even index
(5t.,§ 5); butin pairs if the index be odd.* We shall consider first
the case when the index is even, then we can treat one invariant-
factor by itself ; in this case (St.,§ 5) we may still put u; =},

We readily sce that changing the sign of u in A, only interchanges
the rows and columns, and so does not affect the valuc of A, ; but the
corresponding change in U; gives (—V}), with the #’s changed into
%—B =— SB if the #'s are changed into a’s (as B is alternate).

-, Y,
Thus we have (if i: 2p) to pick out the coeflicients of p¥-% p*!in
the product

—( X, +Xop+ X+ )Y = Yop+ YVpl— L)),

x's, for

where Y, is the same function of the 3’s that X, is of the #’s. Hence
we find the typical terms

(4) =X, Y+ X, Yps— . + Xy Y= X, Y,
(1) (Xl Yg,,—Xz,,Y,)—(XSY-_,,,-,-.—XQ,,_IY.J)-!-...:}:(X,, ",,”—X,,,,Y,,).

We have now to consider the case of a pair of invariant-factors of
the type p° (e odd). The investigation of the corvesponding reduced
parts of A, B offers little difficulty after the reduction for the pair
A, X (e even) ; we give the similar resnlts without full explanations.

Changing the sign of s in A;_y, 8,1 will not affect their values,and

so we have
B =p (G + &t H o'+,

A =p"" " (et egp’ +egpt+ ..,

where ¢ is odd and 7 is odd [instead of (n—k+1) being odd, as hefore].
Thus we may write

(b le+1) = p' (- vapt v+

then (k+1, k) = — p' (1= o + 741’ —...)

® This theorem (and the corresponding one relating to the invariant-factors of
| Ad - B | to baso A) are due in the first place to Kvouecker [ Ay, p. 441 (p. 4i7)].
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by changing the sign of n.  Also
(fy By = gV (gt a4 ...),
(B+1, k4+1) = @ (By+ Py’ +...).
We shall have also U, = i/ (§,+&p + &850 +.00),
Vi = —(=p'(m—mp +ayp’—...)
= p (m=mp s’ =)

where », is the same function of the y's as & of the @'s.  Similar
results hold for U;, V;.

Just as before, we can reduce the expression for
(= W/ By 4 Wi/ Ben)
to the form L@ —(x)).
I’
where (X)=X,+N,n4+ Xl +..., (VN =Y,—Y,p+Ypul—...,
(XA)V=X, 0=XN e+ N —.., (V=Y u+Yupn+ Y, 0pi+ ...,

Y, being the samefunctionof the »'s that X, isof the «’s.  Hence we
tind the typical parts

A) X\ Yoor+ X Vaat oo+ NV + Xoo 0 Y5,

(D) (X, Y~ Xu V) .. + (XY, = X, X)),

If | AA—B | =0, we may apply the method explained above (§ 2,
p. 326). Here we have 8. = a,, for, hy interchanging the p’s and ¢'s
and changing the sign of A, we do not alter the value of 3, (A) (exeept
possibly in sign) ; hence the invarinnt-factors belonging to these terms
will be of the type A™*', aud so (as before, p. 336) we may take
each g equal to the corresponding p. Then, by the same investigation
ag given for the ease of invaviant-factors to base A, we find the
typical groups of terms

0) X\ Yuur— XY+ . . +(—1)X, Yoo +... — X, Yo + X Y
XY, — X, Yo+ ...+ X, Y, - XY

n-
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Thus we have in the original forms
4) (XY + Xoon¥)— (XY, + X0 Y ) +...
et (1) (X Y.+ XY,
(B) (XY —XoY)) = (X Yo = Xoa 'y V) + ...
et (=D (XY 0~ XY,
and there are similar scts of terms for each «. These o's are
Kronecker's Minimalgradzahlen, and may be found as described in
my former paper (Proc. Lond. Math. Soc., pp. 87-92 and p. 111
above) ; the invariants used by Kronecker are the nmmnbers 2a+1,
which are the numbers of variables in the sets of reduced terms.

We have now six types of reduced forms, corresponding to five
types of invariant-factors and the singulav case, when | AMA—B | = 0.
These will be found to be in agreement with Kronccker's results,*
except in the arrangement of suffixes; there is also a superficial
difference in the first and second classes (following Kronecker's order
of arrangement, the sixth and first in the foregoing), dne to the fnct
that Kronecker has reduced his results so as to give the neatest type
for the bilinear form (A4 13). To indicate the real agreement it will
be sufficient to consider two special cases—

(@) Corresponding to the case | AA—B | =0, with a AMinimal-
gradzall 2, Kronecker gives the type
A4+ DB = 2yt a,ys + 25y + 2 Y,
and so A—=B = A+ DB = xyy, +agys+ 3,95+ 2y
Making the substitutions
a4+ 240, = 2X,, a2, = 2X,,
2, —ay, = 2X;, —a,+2,=2X,
2, — 2242y = 2X,
with the congruent substitutions for the #’s, we find
4= XY, +X,Y,— (X, Y, +X,Y,),
B = - X,Y,+X,Y,+X,Y,— X,Y,,

agreeing with our general result.

* Sco the paper Kr.. p. 440 (Woerke, Bd, 1., p. 475) ¢ the list is reproduced on
p- 146 of Dr. Muth’s Theorie der Elementartheiler, Leipzig, 1899.
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(b) Again, Kronecker gives a form
A+B = a,y,+ azyy, +a, Yy + axsyy + @Y+ ax,ys,
and so A—DB = oy, +az, Yy, + 2y, + axyys + 2y + azy
1f we put ¢ = (1+¢)/(1—¢) and then make the substitution

n=—(X+2X), 7=17X,

n=-"7X, w=Q+)X

with the congruent substitutions for the y's, we have
4 =XY+XY,+X,Y,+ X,Y,,
B=c(X,Y,—X,Y}) +¢c(X,Y,~ X,Y,) + (X,Y,— X,Y)),

ngreeing with what has been found before, corresponding to the
invarviant-factors (A—c)’, (A+¢)? of | AA—B | .

5. Application of the Reductivm t» Properties of Automorphic
Substitutions.

Herr Alfred Loewy * has proved certain propositions relating to
automorphic substitutions of a real symmetric bilinear form (or of a
quadratic form) of non-zero determinant. These are deduced (in
§ 9, p. 424, of the paper quoted in the footnote) from similar
properties proved for conjugate imaginary substitutions which are
automorphic for Hermite’s forms (see below, p. 350). The following
investigation is complete in itself.

Suppose that S is a réal symmetric bilinear form and I’ a real sub-
stitution automorphic for S; then, in Frobenius’s symbolical form,

PSP =S.

Frobenius has proved + that we can find Py similar (ihnlicl)] to P
and S, congruent with S, so that P;S,P, = 8,. Further, I’, S, will be
ench separable (zerlegbar) into two parts such that P,=P + P,
Se=5,+38,, where the variables in P,, S, are the same and do not

* Nova Acta Leop.-Carol. Akad., 1898, Vol. 1xxr., p 379; an abstract appeared
in Math. Annalen, Vol. 1., p. 657.

+ Crelle, 1878, Vol, rxxxrv p. 1; this proposition is given in g 10.

t Two forma P P, are called @hnlich by Frobenius, if a third form Q can be
found such that ) = QPQ-!.
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appear in Py, 8,, and vice versa ; finally, Py S, P, =8, P;S,P, = &8,.
"The invaviant-factors of | P,—AH, | areall thoseof | P,—AF | (or of
[ P=AE | ) which have the base (A\+1); and the other invariant-
factors of | P—AE | appear as those of | P,—AL; | . Here the unit-
form E (Einheitsform) has been separated into B, I; in the same way
a8 Py, 8,. The process followed in finding P,, S,, P, S; from P, S
shows that these are all real and obtained by real transformations.
Then we have ‘

Py=—(8,+1)"(8,—=1), Py=+(8;+Ty) " (8,—1),

where T, 7, are real alternate forms, each containing only the
appropriate set of variables.

It follows that | P,—AJ, | has the same invariant-factors ns
| 1S, =T, | [y =(1+A)/(1-A)], and | P,—AE,| the same as
| #gSe=Ty | [ng = (1=A)/(14+A)].

Now, by hypothesis, | P,—AE, | has only invariant-factors of the
type (14+A)¢; so that | p,8,—T, | has only those of the type pui.
"Thus, if ¢ be even, we have a pair of equal invariant-factors, and
the corresponding part of S, is (p. 339)

Ty gt g Yoo+ o F 22 Yy

and the signature® of this is zero; while, if e be odd, we have n single
invariant-factor giving (see p. 337)

Y/ r+zg?/l -l+ ser +a:e:'/l’
and the absolute value of the signature is unity. It follows that the
signature of S, is not greater {in absolute value) than the number of
old indices of invariant-factors (1+X)* of | Py—AL | .
Now take S;; we have here five cases—

(i.) The pair of invaviant-factors (py—c)%, (s +¢)* (¢ # 0 and real),
corresponding to (A—Db)?, (A—1/b) (b* # 1, and b real).
The corresponding part of 8, will be

Ty Y2e + XgYpear F oo F 207,

which has signature zero.

* Frobenins defines the siynature a8 the number of positive squares, less the
number of negative squares, when the form is reduced to squares by real trans-
formations.
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(ii.) p3, p; (e even) corresponding to (A—1)", (A—1)". Here the
veduced part of 5, is the same as in (i.).
(iii.) p (e odd) corresponding to (A—1). Here the reduced

part of S, is By fat Tgomrt o+t

with the nbsolute value of the signature equal to unity.

Gv.) (a—c), (ugtce), (ra—cy), (g+6,)° (¢ imaginary, with ¢, for
its conjugnte, c+ ¢y 7 0) corresponding to (A—=Db), (A\—=1/b), (A—1,)*
(A=1/b)Y. We find for S, the part

(@1 %30+ ... + 23 7,) + the conjugate imaginary,

and we ean readily reduce this to a reel form, whose signatunre is
seen to be zero.

(v.) (pa—c)y (g4 ¢) (¢ pure imaginary), corresponding to (A—10)".
(A=1/b) (mod b =1). "This gives for S,

Yo+ Vg Yrem1F oo+ X0y

and, from the method used in making the reduction in the last section,
Payy Ml @, arve conjugate imaginavies. It is now easy to sce that
the signutnre of this pavt of S, is zero if e be even, or 2 if e be odd.
1t follows that the absolute value of the signature of S, is not greater
than the mumber of odd indices of invariant-factors of | Py—AJ7 | of
the type (A—D)® (mod b= 1).

Hence, finally, as the absolute value of the signature of S, =S,+ S,
is not greater than the sum of the absolute values of the signatures
of S, and N, it follows that the absolute value for S, is not greater
than the number of odd indices of invaviant-factors of | Pp—AW | of
the type (A—Db)* (mod b =1, inclnding b = £1). But, since S, is
dervived from N by a real substitution, theirsignatures ave equal; sk
since I’, P, ave similar, the invavinnt-factors of | P—AIY |, | P,—Al |
are the snme.  Hence the theorem follows:

If P be a real substitution which <s automorphic for the real
quadratie form S, the siynatnre of S 7s uot greater in absolute valne
than the wnwmber of odid dudices of invariant-factors of | P—AL |,
anly those of the type (A—1b)° (inod b = 1) being counted.

This theorem is equivalent to the inequality in § 9 of Herr Loewy's
paper.  Herr Loewy asks me to state that this form of the theorem
was familine to him when his paper was published ; but that, for the
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applications he had in view (§§ 10-12), the form of the theorem given
in his paper was found more suitable; this form of the theorem can
be deduced immediately from the above by introducing the character-
istic (as defined by Loewy)* of S. A similar remark applies to
the theorem stated on p. 163 above.

6. Simultaneons Reduction of two Hermite's Forms to o Canonical
Shape.

A Hermite’s form is a bilinear form in which the coefficients
a,, a, are conjugate imaginaries; and the variables a,, y, are also
conjugate imaginaries, but, for purposes of symbolical calculation, it
is often convenient to leave this out of reckoning, just as we fre-
quently use symmetrical bilinear forms instead of quadratic forms,

Symbolically, a Hermite's form (4) is defined by the condition

A=A,
where the suftix O indicates that we should take the conjugate
imaginary of each coefficient (the effcct of the suffix is not to be ex-
tended to the variables). '

If 4, B are Hermite's forms to be veduced to canonical shapes,
we are restricted to conjugate imaginary substitutions on the z's
and the y's; we have thus, in Frobenius's notation, to determine a
form S which will give

S:AS, 8BS
as reduced forms.

We shall see that we can modily Stickelberger’s results (St., § 1)
so as to reduce 4, B by snbstitutions of the type considered. We
show, first, that the invariant-factors of | AA—B | occur in pairs of
the form (A—c)*, (A—¢,)", where ¢, ¢, are conjugate imaginaries.

For, according to Stickelberger (5¢., § 5), we may always choose our
w's and t's so that 3, 27 are conjugate complex quantities; in fact,
they may be real and equal except in two special cases. With this
assumption, take the conjugate imaginary of A, (without changingX)
and change rows into columns ; we then have A, once more. Hence

A= (Bx)e
Thas, if Ay = (A—c) f(A) [f(c)# 0],
we have A= (A—c)fo(A)  [fo(e)#0].

* The characteristic of a quadratic form ix the number of positive or negative
squares in the reduced form ; the smallor of these numbers being taken.
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It follows that factors of A, of the type (A—c), (A—c,) always
appear in pairs, and thus, since the invariant-factors are given by the
series of quotients A;_,/A,, the invariant-factors also appear in pairs
of the type (A—~c)’, (A—¢,)*. 1If ¢ is real, or ¢ = ¢, this result will no
longer hold.

Next we combine the parts of the fraction —(U.Vi)/(a8:8:-1)
which are obtained from the invariant-factors (A—c)°, (A—c,)’. Let
us write U, for its value when A = c+¢, Ui for its value when
A = ¢, + ¢ ; then, taking the conjugate imaginary of U; (without
altering the 2's or ¢'), we find, changing rows into columns,

(U;)o = (G+t’) a’n-"brn 7,

04, (1‘,s= 1,2, ...,n )

a‘p' a.b= 1| 2, ooy L—’l
"2, 0, 0
uk, 0, o
o4, . . . o4, ,
Now ¢ is the same function of the a’s as . — is of the y's, by

A
3y, 3,
definition of A. Hence, if # be changed to ¢ in (U}),, we obtain the
same function of the 2’s as V, is of the y’s. Similar results hold for
(Vi) and U,. Hence we may write

~ UV L xy Xt ) (Yot Yot
Agﬁi,l t
lll'ld — —U—;—-V;— = '1 (y.]+Ygt,"—-")(X04|+Xa0-2t'+---)1

AjaL, T

where the X’s are derived from the 2’s and the Y’s from the y's by
conjugate imaginary substitutions, by virtue of what has been
proved connecting U, and Vj, U; and V}, A, and A

"Combining the coeflicients of 1/¢, 1/¢%, 1/¢, 1/t* (as explained
previously), we find the reduced parts

(4) XY+ X Yuort... + XY,
(B) C(X1Y24+.--+XUY19I)+00 (XI$IYQ+ ---+X2¢YI)
+ X|Y24-1 + X.Y:'o—a"' “es + X’h- IY|~

If ¢ = ¢,, we do not have a pair of invariant-factors in general ; but,
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writing A = ¢+t = ¢;+¢, we find that

(Uk)o=i(c+t)a,,—-b,.,, o, @L"oi (1',s=1,2. " )

[ Y, i a=1, 2, ...,k—-l
i u°, 0, O

1

| ut, 0, O

which 18 the same function of the 2's as V is of the

o4 8A) .

(by virtue of the relation between ;-2 and

dy, O,
Uk = t‘ (£|+£gt+---),

we have Vi="t(n+nt+...),

’
Y

Hence, if we write

where the {'s are derived from the 2's and the »'s from the #'s hy
conjugate imnaginary substitntions. If we write

Ay =1 (8 +8t+38+...),
we shall have (8, +8,4+48,8+...), = 8,+8,t+5:,t’+...,
7.e., 8, 8, &, ... are all real.
So write A, = £ (0, + @yt + ... )5
and then a,, a,, ... will be all real.* -Thus

Ve L1 (B ().
A48, 1 Vaytagt+./ Ny Fagt

If we write now
X+ Xt ... =G+ &6+ ) (g +agt+.0),
Y+ Yl 4. = Ot mt+.) ) (ay +agt+...),

the substitutions for the Y's und X's are still conjugate imaginavies.
Accordingly the rednced parts ave

(d) XY +X)Y,.,+..+ XY,
(B) ¢(X, Y, +X,Y, ,+..+ X))+ XY+ XY, .+...+ XY,

* They might be pure imaginarvies, but we cun avoid this by changing the sigm
of the resulting terms in o, B this change is equivalent to removing the factor
from each a.
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The case ¢ =0 offers no special feature; and the-case of infinite
roots is treated, as usual, by taking them as zero roots of
| uB—A4 | = 0. Wae shall thus find reduced parts (for ¢ =)

(A) X1Y0-1+X5Y -3+--.+X,-l 1
B) X\ Y, +XY..+..+X.Y,

1t follows that the problem of reducing two Hermite’s forms by con-
jugate imaginary substitutions has been completely solved, except in
the singular case when | Ad—B | = 0.

In the singular case, following out the method given above (§ 2,
1 326), it is easy to see that reduced forms of the types

(‘4) X1Y2¢01+X21r'-’¢+ oo +X0Ya92+ Xu§2Y-+X-1(;Yu-~l+ see +X2¢,|Y,,
B) X\ Yot.. .+ XY, 0+ X oY, +...+X.7,
will appear, where a is & Minimnlgradzald.

Collecting all our results, we have the following theorem :—

If A, B are two Hermite's forms, and o is the absolute value of the
seynature of B, then

o < the number of odd h's + the number of even l's,

where b is the index of any fnvariant factor of | AA—B | correspond-
tiny to @ reul oot (not zero) and l is the index of an invariant-fuctor
tobuse \. .If | A ] =0, we are to <nclude in the h's the indices of
tnvariant-factors corresponding to infinite roots of | AA—B |, such
tndices being determined as those corresponding to zero roots of
| A—pB | =0 (¢f. Proc. Lond. Math. Soc., pp. 1568-163 above).

This vesult holds still if | AA—B | =0. In this case, if the k-th
minois of | NA—B | are the first which do not all vanish identically,
the number of tnvariant-factors to base N vs (d'—k); and the number
corvesponding to A = w is (d—k), where d,d ure the defects of A, B
respectively (v.e., n—d, n—d’ are the ranks of A, D).

This theorem is slightly extended from one given by Loewy
(Crelle, Vol. cxxir., 1900, p. 69) ; the changes are due to the inclusion
of the possibilities (i.) | 4 | =0, (ii.) | A\d—B | =0. Loewy’s proof
depends on reducing the Hermite's forms to two real quadratics ; but
it is intevesting to see the connexion with our former reductious.
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7. Stmultancous Reduction of a Hermate's Form and an ussociated
Hermile's Form; with an Application.

We first define an associated Hermite's form (beigeordnete Hermate'sche
Form) ; B will be such a form if B'= —B,. Bilinear forms of this
type have been introduced by Herr A. Loewy in investigating
automorphic substitutions for Hermite's forms.*

If A be a Hermite's form, and it is desired to reduce 4, B by
conjugate imaginary substitutions, we have only to observe that, if
B =1C, we have B,= —i(),, and so ¢’ =C,. Hence C is a Hermite's:
form, and the problem is solved at once by means of the investigation
in the last section. We can, of course, give an independent investi-
gation (which was the method I followed originally), but this is rather
longer, and the results do not reduce to so neat a form without extra
labour.

The problem of § 4 ought to be deducible as a case of the above;
for & real symmetric form is a special case of a Hermite's form,
and a real alternate form of an associated Hermite's form. If sucha
connexion could be pointed ont, it would shorten the investigation of
§ 4 considerably, ' :

The application is to find an alternative proof of the fundamental
inequality of §  in Loewy’s paper. Loewy shows (§ 4) that, if & be
an automorphic substitution of w Hermite's form (4), so that

S, A8 = A4,
then S can be reduced to.the form
S = c* (44 B)" (A—B),

where B, = — B (or B is an associated Hermite's form), and ¢ is some
real angle.

In order to examine the characteristic equation of S we consider
the form (rIf —S) ; now

rE—S = (A+B)™" | r(A+B)—d* (4—1)]
= (A+:C)™" [r (A +i0) —e? (4—iC) ] (B=1C)

=1 (r+e®)(A+it) " (0—s4),

* Nova Acta Leop.-Carel. ilkai,, Vol. Lxxr., 1898, p. 379, §4; and Math.
Aunnalen, Vol. L., p. 557.
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where s =1 (r—e®)/(r+e?).

Hence, to investigate the invariant-factors of | 7E—S |, we have
.only to find those of |sA—C |, where C is another (arbitrary)
Hermite's form; corresponding to an invariant-factor (s—c) there
will be one (»r—bY, where b, ¢ ave connected by

c=1t(b—e®)/(b+e")

or b =e*(1—ie)/(1+7¢).
1t follows that, if b* corresponds to ¢,, we have

V = e (1—1ic,)/ (1 +ic,).
Hence, taking the conjugate imaginary,

b = e~ (1+4c)/(1—ic)
or bb, =1,
i.e., bo=1/b or b = 1b,
Bat, if ¢ be réal, b’ = b, since ¢, = ¢, and thus bb, = 1 or mod b = I.

We conclude that invariant-factors of the type (r—b),, (r—1/b)"

oceur in pairs, unless mod b=1. Corresponding to the pair of
invariant-factors (s—¢)7, (s—¢,)*, we found o part of A of tho type

By Ysot C Yoot F eee F B0 Y0
Taking the pair of terms &, y,,+2,,%,, we can write them in the form

¥ [(‘”1 +2) (1 +32) — (@ —22) (1 = Y20) ] ,

and similarly for every other pair.

It follows that the characteristic* of this part of A is e; and the
stynature® is sero.
Next, if ¢ be real, we have a part of A, corvesponding to (r—107,
when mod b =1,
Yot OyYert ... + 2,

* Loewy (§5) defines the characteristic (4') of n Hermite's form G as tho smaller
of the two numbers 4, (# —¢), when ¢ is put in the furm
q " ’
G=3 2.0~ I .l
a-l amg+l .
(the variables being conjugate imaginnries).  IFrobenius defines the signatine (o) of
(a8 (2qg—=n); wo that 2¢° = n—mod ¢.
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for which ¢’ =3e or $(e—1) aund mod ¢ = 0 or 1, according as ¢ is
ceven or odd. Now the charvacteristics of a sum of sets' of terms is
not less than the sum of the characteristics of the sets separately;
while the absolute value of the signature is not greater than the sum
of the absolute values of the signatures of the separate sets. Hence,
combining owr resulls, we have that

q z s+ 317 (31),

I“’i zp,

where s i the swm of the vudices of all the Twvariant-fuctors of
| rIi—8 | which vanish for values of » whose absolute values are not
wwily ;* I vepresents the dwdea of any 'L'mva'riﬁnt-fuctm' which vanishes
Jor u value of » whose absolute value is wuity, E(3h) 1s the greatest
inteyer contaiied in k. Purther, p is the number of the odd I's.

The above is Loewy's fundamental inequality (§ 5) ; it is, of course,
assuimed that (A4), the determinant of A, does not vanish; or we
should have to consider some fuvther possibilities (as on p. 349).
"T'his proof was originally sketched out in a Jetter from me to Herr
Lioewy (April, 1900) ; but the proof of the reduced form of A which
I gave there was insuflicient. Herr Loewy is publishing a short
wote + in which he proves his inequality by combining my suggestion
with the vesults of o veceut paper of his own (¢!relle, Vol. cxxu., 1900,
p. 53). -

'The theorem in § 7 of Loewy’s paper becomes anlmost intuitive by
this method of investigation. This theorem is to the effect that, if
we are given a set of invarvinmt-factors satisfying the above in-
cinality and o Hermite’s form A, then we cun find a substitution
which (with its conjugate imagiuary) is automorphic for 4, and
whose characteristic equation possesses the assigned invaviant-factors.

* These invariaut-factors occur in pairs with equal indices ; so that the sum of
their indices is an even number 2s.
t Gottinger Nachrickten, Juno 30th, 1900.





