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ON A GENERAL CONVERGENCE THEOREM, AND THE THEORY
OF THE REPRESENTATION OF A FUNCTION BY SERIES
OF NORMAL FUNCTIONS

By E. W. Hosson.

[Received April 15th, 1908.—Read April 30th, 1908.]

TrE theory of integral equations, as recently developed by Hilbert and
by Schmidt, has resulted in a certain unification of the theory of the series
of normal functions which represent prescribed functions in an interval.
By this means the validity of such representation has, however, in the
first instance, been established only for the case of a function which,
together .with its first and second differential coefficients, is continuous
in the whole interval of representation, and which satisfies at the ends
of the interval the same conditions that are imposed upon the normal
functions themselves. An extension of the theory to the case of functions
of a less restricted type has recently been given by Kneser.* A method
of development of the theory of series of normal functions, on foundations
laid by Schwarz and Poincaré has been given in detailed investigations by
Stekloff and others, but involves a restriction upon the type of the funec-
tions represented by the series, of a similar character to that in the
theory of integral equations.

It seems desirable to obtain sufficient conditions for the convergence
of the series at a particular point, and for the uniform convergence of
the series in any interval contained in the whole interval of representa-
tion, comparable in generality with the known sufficient conditions
applicable in the case of Fourier’s series. In the present communication
a fundamental convergence theorem is established, which, when applied
to the case of series of Sturm-Liouville functions,t suffices to shew that
the question whether the series corresponding to a given function converges,
or not, at a particular point, depends only upon the nature of the function in
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+ The convergence of the series of Sturm-Liouville functions has been investigated for the
case of a function of limited total fluctuation by Kneser, Math. Annalen, Vols. LviIl., LX.
The case of the series representing analytical functions has been treated by A. C. Dixon, by
the method of residues, Proceedings, Ser. 2, Vol. 3.
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an arbitrarily small neighbourhood of the point, whilst the nature of the
function throughout the whole interval of representation is restricted
only by the postulation that it shall possess a Lebesgue integral in that
interval; the function being therefore not necessarily limited in the
interval. The convergence theorem is further employed to shew that,
subject to the same condition as regards the nature of the function, the
question whether the series converges uniformly, or not, in an interval in
which the function is continuous, and which is contained in the given
interval of representation, depends only on the nature of the function in
an interval which encloses the interval of continuity in its interior, ex-
ceeding. it in length only by an arbitrarily small amount.

It is further shewn that a sufficient restriction upon the nature of
the function in an arbitrarily small neighbourhood of & particular point,
to ensure the convergence of the series, is that the function shall be of
limited total fluctuation (& variation bornée) in that neighbourhood. It
is shewn that a similar restriction is sufficient in the case of uniform
convergence in an interval.

When the end-points of the interval of representation are singular
points of the linear differential equation satisfied by the normal func-
tions, as, for example, in the case of Legendre’s or Bessel’s functions,
the fundamental theorem is not applicable to the whole interval of repre-
sentation. In this case, neighbourhoods of the end-points must be ex-
cluded and the theorem applied to the remainder of the interval; the
parts of the series depending on the excluded neighbourhoods of the end-
points requiring separate consideration. As an instance of such series,
the case of the series of Legendre’s functions is treated in detail.

A few other applications of the fundamental convergence theorem
are given, to the proof of the validity, under very general conditions, of
known modes of representation of functions by means of definite integrals
and by series.

A GeNeraL CoNVERGENCE THEOREM.

1. The following convergence theorem will be first established :—

Let f(z') be a function which has a Lebesque integral in the interval
(a, B) of the variable «', whether the function be limited or unlimited in
that interval. Let F (z', z, n) be a function defined for all values of z'
wn (a, B), and for values of x belonging to a certain set of points G con-
tained in (a, B), and for positive values of n. Let F(x', z, n) satisfy the
following conditions :—(1) that |F(z', z,n)| does mot exceed a definite
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positive number F, for all values of ' and % such that | z'—x | is not less

than a fized positive number u (< b—a), where ' bewongs to (a, B), and
'B1

to G, and for all values of n; (2) that s F(@', x, n)dx' exists as a

Lebesgue integral for all values of a,, B, such that e < a; < B, LB,
for each value of = belonging to G but not interior to the interval
(ay—u, By+wn), and that it is less in absolute value, for. each value of n,
than a positive number A,, independent of a,, B, and z ; (8) that

}li=n}° A, =0.
Then 5 - f@) F@', z,n) de’ converges, as n is indefinitely increased,

ungformly to zero, for all values of = belonging to G, and in the interval
B
(atu, B); also s f&") F@', z,n)dz’ converges uniformly to zero as n

THpu
is indefinitely increased, for all values of x belonging to G and in the

wnterval (a, B—u). The positive number n may be either a variable
capable of having all positive values, or tt may be restricted to have the
values 1 a sequence with no upper limit, as, for example, the sequence of
posttive integers.

In particular, the set G may consist of the whole interval (a, B8), in
which case the integrals converge uniformly to zero as m ts increased
indefinitely for all values of = in the intervals (a+u, B), (a, B—pu) re-
spectively ; or G may consist of the points of an interval (a+X, B—2)
contained in (a, B), tn which case the integrals converge uniformly in the
wmntervals (@+A, B—N), if A >u, or in the intervals (a+u, B), (a, B—wn)
respectively, if A < u.

In proving this theorem, it will be sufficient to consider the first of the
two integrals only. Let it be first assumed that f(z') is limited in the
given interval (a, 8); and let U, L denote its upper and lower limits re-
spectively in that interval.

We may divide the interval (L, U) into portions

(€os €1)s (€3, C9)y «ovy (Cp—1s Cp),
where ¢, = L, ¢, = U, and such that c¢,—c,—; is less than an arbitrarily
chosen positive number 7, for all the values 1, 2, 8, ..., p, of g.

Let that set of points in (a, 8) for which ¢, < f(&") < c,+1 be denoted
by E,; and for any fixed value of z (> u) and belonging to G, let e, be
that part of E, which is in the interval (a, z—p).

Let a function f;(z') be defined by the following rule:—For those
values of 2’ for which ¢, < f(2') < ¢g41, 16t fi (&') = ¢,, for each value of ¢;
and for f(z') = ¢, let f;(z) = c,.
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We have now

< 7F(B—a);

rﬂf(x') F(z',z,n) da:’—rﬂjl (') F (z', z, n)dx'

where z is any point of the set G in the interval (a+u, 8), and for all
values of n. Also we have

f Ffl @) F (', z,n)dz’ = IEZ ¢y L )F(a:’, z, n)dz’.

a u= ¢

Let the set of points E, be enclosed in the interiors of a set of non-
overlapping intervals H,, such that m(H)—m(E) = {; where m (H,),

~ m(E,) denote the measures of H, and of E,, and  is an arbitrarily chosen

positive number sufficiently small. A finite, or infinite, set H, of intervals

can always be so chosen that this condition is satisfied. If %, denote that

part of H, which is in the interval (¢, x—u), it can be seen that

m (hy) —m(ey) < &
For, if possible, let mh)—m(e) = {+v,

where vy is a positive number. Let the set ¢, be enclosed in the-interiors
of non-overlapping intervals of a set I, all in the interval (a, z—u), such
that m (l,) <m(e)+y; and let H, denote that set of non-overlapping
intervals which consists of the set J, together with that part of H, which
is not in the interval (a, z—u).” Observing that m(l) < m(h)—¢, we
have then

m(H) = m(Hy—m (h)+m(l) <mHy—¢<m(E,);
and this is impossible, since E, cannot be enclosed in intervals of a set of

smaller measure than m (E,). Since therefore no such positive number y
can exist, we have m(i)—m(e,) < ¢ We have now

S F(a:’,:c,n)dx’—s F(', z,n)de' | < {F.
e,) (hg)

(e, hq

Let the intervals of the set H, have lengths v, yg, ¥, ... in descending
order of magnitude. We may choose 7, so that
mH) =ty oy <&

Of the intervals v, v,, ..., Vi -+os leb ¥a, Yop --es Yoo --- I8l wholly or
partly in the interval (u, z—u); one of these intervals may be only
partially in («, z—pu). Let s; be the greatest of the numbers s;, s, -..s Sty -
which does not exceed 7,; we have then

73:¢1+731.2+"' < fi and 7"'(110)_('}’81'*“}’32""‘ -~-+‘}’s,) < fy
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as may be seen by applying the same argument that has been employed

above to-shew that m (h)—m(e) < &

Here, in case the point z—u is interior to an interval vy, , we take only
that part of y, which is in the interval (a, —u).

We have now m(h,)—m(D,) < {, where D, is the finite set of intervals
Yer Yaar +--» ¥s; the number ¢ of intervals of this set D, does not exceed

the number 7,, which is independent of z.
We have now

l j F@', z,n) da;’——s F@',z, n)de" | < F.
) (Dp)

q

Also

S Fi'hz,nmde' | < tda < 7¢4n.
0,

Combining the inequalities which have been shewn to hold, we find that

! r_“f (z') F(z', z, n) da’' ] < nF(B—a)+ E: cq @CF+r,A4y).
a ! q=

Now, let ¢ be an arbitrarily fixed positive number ; we can then fix

80 that nF'(8—a) < Le; then the numbers ¢, for ¢ =0, 1, 2, ..., p can be
fixed. We can then choose { so that

_ u=p
oF 'S ¢p < ke.

=0
The numbers 7, depend only on ¢ and g, being independent of z, and thus

=p . .
2 746, 18 fixed ; we can choose 7, 80 that
=0

11:2)

dn Z 10 < 36

=0

provided n = n.

2
We now have j g f@ F@E' z,nde | <e for n>=n,

and for all values of = belonging to G, and in the interval (a4, 8). The
uniform convergence of the integral to zero has accordingly been estab-
lished.

Next, let f(z') be no longer limited in (a, 8). A positive number N
can be so determined that

f1r@) @z <37,

SEB. 3. vOL. 6. NO. 997. 2 a
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when the integral is taken over that set of points Ky in (a, B) for each of
which | f(z') | > N. If ky be that part of Ky which lies in (a, z—u), for
any fixed value of z irx (a4, B3), we have

L | f@@')|de' < }e/F.

Let the function f, (') be defined by the rule that f,(z') = f(z'), when
|f@)| < N, and f3(2') =0, when | f(z")| > N. Thus f;(z) vanishes
at all points of Ky, and it is a limited summable function. We have now
j“ f@) F@', z,n) dz’ = L F@VFE, 5, dz'+j’_" fole) F@', 2, m)de'.

a N a

A value n; of » can be so determined that

r_“fg(z') F&', z, n)dz'

a

< e, for n=mny,

and for all values of z belonging to G, and in the interval (a4-u, 8). Also

j f@ F(, z, n) dz' | < 3,
ky

for all the values of z and of n. Therefore we have

r—“f(a:') F(z', x, n) dz'

a

<e for n>mn,

and for all the values of z. The theorem has now been completely estab-
lished. A special case of this theorem, in a somewhat different form, was
given in my paper* “ On the Uniform Convergence of Fourier’s Series,”
and was there applied to the theory of Dirichlet’s integral.

2. It may be remarked that the above proof is applicable to establish
the following somewhat more general theorem :—

If the functions f(x'), F(z',z,n) satisfy the conditions before stated,

B
j f@) F@', z,n)dx’ converges to zero, as n is indefinitely increased,

uniformly for all values of a, B, and =z, which are such that
a <L ay <Py <B, and such that z belongs to the set G, and is not in-
terior to the interval (a;—u, Bi+wu).

* Proceedings, Ser. 2, Vol. 5, p. 275.



1908.] A GENERAL CONVERGENCE THEOREM. 355

Let us consider the special case in which F(z', z, n) is independent of
z, say F' (', z,n) = ¢(z',n). We then obtain the following theorem :—

If f (x') have a Lebesque integral in the interval (a, B) ; and ¢ (x', 1)
be such that | ¢ (', n) | have a definite upper limit for all values of z' in

By
(a, B), and for all the values of n; and if further j o(z',n) dz exist and

be numerically less than A., for all values of ay, B, such that
a L ap < By LB, where A, 1s independent of a;, B,, and where }333, 4, =0,

B
then j

a,

1
f &) ¢(z’,n)dz’ converges to zero, as n is indefinitely increased,
1

uniformly for all values of a; and B,. The number n may be either”
capable of having all positive values, or may be restricted to have the
values in a sequence, for example, in the sequence of positive integers.

A special case of this theorem is that, if f(z') have a Lebesgue integral

8
in the interval (—ar, ), then j

f(z') cos nz' dx’, r f(x") sin nz' dz’ converge
to zero as 7 is indefinitely increased, and uniformly for all values of « and
B, such that —r<a<B L =

The theorems may be generalized so as to apply to the case of a
function of any number of variables. As is clear from the theory of
Lebesgue integration, the proof of the fundamental theorem is applicable,
without any essential modification, to this more general case. It will be
sufficient to state the main theorem for the case of a function of three

variables, as follows :—

Let f@&',y',2") be a limited, or unlimited, function defined for all
points in the space V bounded by a closed surface S, and having a
Lebesgue integral through V. Let F(z',y', 2", z,y,2,n) be a function
defined for all values of (z', y', 2') in V, and for all values of (z, y,2)
corresponding to the points of a given set G contained tn V ; and for posi-
tive values of n.

Let F(',y', ', =, y, 2, n) satisfy the following conditions :—(1) that
| F@', o, 2', z, y, 2, n) | does not exceed a definite number F, for all pos:-
tions of the points (z', y', 2)(z, y, 2), such that

(@ =2+ @ — P+ ' =2 >
where w s a fized positive number, and (z', y', 2') belong to V, and
z,y,2) to G; (2 5 By, 2, x,y, 2z, n)(dz' dy' dz') exists as a Lebesque
44))
wntegral for every volume V, not exterior to V, and bounded by a surface
S, not exterior to S, and for all values of (z, y, 2) corresponding to points
242
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of G such that a sphere with centre (x, vy, 2) and radius u has no volume
in common with V,, and that the integral is in absolute value less than
A, a number independent of V, and of z; (8) that lim 4, = 0. Then

jy f&@,y,YF@&'y', 2, vy, 2, n)(dz'dy’ dz') converges to zero, as n 1is
")

wndefinitely increased, uniformly for all points (z, v, z) belonging to G and
of which the minimum distance from pownts of Vy is not less than u. The
convergence ts also uniform for all such volumes V,, under the conditions
stated.

In particular, if the integral be taken through the whole volume V
with the exception of a sphere of centre (z, y, 2) and radius u (o7 of the
portion of such sphere which is in V), then the convergence is uniform for
all points (z, y, 2) belonging to G.

It is clear that the statement might be made more general by replacing
the volumes ¥, ¥, by any bounded and measurable sets of points. If H
denote the measurable set of points for which the function f(@', ¢/, 2') is
defined, and in which it has a Lebesgue integral ; the set G for which
F@',vy,7,z,y,2,n) is defined and satisfies the conditions of the
theorem, being contained in H, then the integral of

f@, ¥y, N FE',y, 2,z y, 2, n),
taken through a measurable set H; contained in H, converges to zero as n
is indefinitely increased, subject to the conditions of the theorem, uni-
formly for all points (z, y, 2) belonging to G, and of which the minimum
distance from the points of H; is >> u. The convergence is uniform for
all such sets H,. The original statement of the theorems will be, however,
sufficient for the purpose of the applications to be made below.

8. The theorems of §§1, 2 may be extended to cases in which the
given domain of the function is unbounded, provided an additional con-
vergency condition is satisfied. It will be sufficient to give the extension
of that case of the theorem in which the set ¢+ consists of all the points of
the interval (a, B3).

Let us assume that f(+') has a Lebesgue integral in every finite
interval contained in the unlimited interval (—a, o). Let it be
assumed also that | F(x', z, n) | < F, for all values of z’, =z such that
| #—z | > u, and for all values of n. Further, let it be assumed that,
if K be any arbitrarily chosen positive number, then, if 8—a < K,

8
5 F(z', z, n)ds' | < Aa,
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where 4, depends only on 7 and K ; and for all values of z not interior to
the interval (a—u, B+wu). Let it also be assumed that for each value
of K, }Li_rg 4,=0.

Let z be confined to an arbitrarily chosen interval (a;, B,). If, then,

corresponding to each arbitrarily chosen positive number e, a number
£ << a;—um can be determined, such that

< ¢

{1
S f@)YF', z, n)dx
¥

for all values of £’ < £, and for all values of n; and, if further, a number
n > B+u can be so determined that

<

5"' f@) F@', z, ) dz’

for all values of #' >, the numbers £, » being independent of n and
of z, then the integrals

Y f@) F(', z, n)ds, rf(x’) F', z, n)dx'

3
exist as Eliy_g S f&) F', z,n)dz',

and lim Y f@) F', x,n)dx,
n=w J,

respectively, and neither of them numerically exceeds e. We suppose
these conditions to be satisfied for every interval (a;, B,) of .

We have then

j #f(x’) F(', z, n)dz' = r f&hF@', z,n) d:c’+£ “f(:c') F, x, n)de'.

The variable z being confined to the interval (a;, B;), £ can be so
chosen that, for all such values of z, and for all values of =, the first
integral on the right-hand side is numerically not greater than e. More-
over, the second integral is, for all sufficiently large values of %, and for
all values of z in (a;, B,), numerically less than ¢, in accordance with the
theorem of § 1. It has therefore been shewn that

Y—“f(a:') F', x, n) dz’

converges uniformly to zero for all values of # in the interval (a;, 8,).

The integral S

f(;z:’) F(z', z, n)dz' can be similarly shewn to converge
z+p
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uniformly to zero, for all values of z in (a,, B8,). In particular, if
0 0
L | fz" | dz’, L | f(z") | dz'
0 - A
both exist as }‘im J | f@&) | dz', }lim 5 | f (") | da',
=w J_p =a Jo

the additional convergency conditions are satisfied. For

¢
L'f(:c’) F', z,n)dz’'

— (¢
< F L | F') | da,

and

J’q f@)F', z, n)dz'
n

<FY | f@@") | dz’ ;
n

hence &, n can be so chosen that for all values of & < £, and for all values
of »' > 7, the expressions on the right-hand sides of these inequalities are
each < e. The following theorem has thus been established :—

Let f(z') possess a Lebesgue integral in every finite interval, and let
| F(z,z',n)| have a finite upper limit for all values of z and x' such that
lo—x' | = n, and for all the values of n. Further, let it be assumed
that the integral of F(z, z',n) in any interval (a, B) whatever, such that
B—a K K, when K vs an arbitrarily chosen positive number, is numerically
less than a number 4, dependent only on n and K, for all values of x not
wmterior to the interval (a—u, B+w), and that ql}_rg 4, =0, for each

value of K. Then, of S | f") | dz' have a definite value as the double
limat -

h=w, k=

lim jh . | flz"| dz’

of the Lebesgue integral, the integrals

w0

Y_Ff(z') F(z', z, n)da', j

z+

f&)F(z', z, n)dz’,

both converge to zero as n s indefinitely increased, uniformly for all
values of x i any finite nterval.

It is clear that a similar theorem may be stated for the case of a
function of three variables, or of any number of variables.

It should be observed that for special forms of the function F (z', z, n),
the condition that j | f@') | dz’ exists may be replaced by a less stringent

condition depending on the nature of the function F(a', z, n).
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TaE CONVERGENCE OF A DEFINITE INTEGRAL.

4. Let F(z', z, n) be defined for all values of z' in (a, B), and for all
values of 2 in a set G, which may, in particular, consist of all points in
(a, B), or of all points in an interval (a4A, 8—A), and for positive values
of n. 1Itis also assumed that f(z'), F(z', z, n) satisfy the conditions of
the theorem of § 1, for every sufficiently small positive value of u.

We propose to consider the limiting value of the integral

rf(w')F(a:’, z, n)dz'

as n is indefinitely increased, the integral being assumed to exist for all
points z in G. The integral is equivalent to the sum

8

r"f(x’) F@', z,n) dw’+5 f@) F@', z,n) dx'+s i“f(x’) F@', z,n)da’,

z+ z

where the first integral is omitted if z < a+u, and the second is omitted
if 24+ >B. When z < a+tu, the lower limit in the third integral is
replaced by a; and when z > 8—u, the upper limit in the third integral
is replaced by 8. For any fixed value of u, the first and second integrals
converge uniformly to zero for all values of z in G, as n is indefinitely
increased.

We therefore consider the integral

Z+pm
j f@') F@', z, n)da',
T—p
which is equivalent to
j“f(a:—}—t) F+4t, z, n) dt+5“f(x—t) F(x—t, z, n)dt.
0 0

Let us assume that, at a particular point z, the two limits f(z+0),
f (x—0) have definite finite values; then

j“f(a:-i-t) F+t, z, n)dt
0
= fz+0) S” Fa+t, z,n)di+ j" @+ —f@40)} Flett, z,ndt,
0 0
and S" fa—8 Fle—t, z, n) dt
0

= f(@—0) j:F(z—t, 2, ) dt—i—K {fe——f@—0 | F a—¢,2,m) dt.
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If, for a fixed z, belonging to G, the positive number x can be chosen 8o
small that

j: {fe—t)—f@+0)} Fz+¢, =, n)dt,

énd ‘r {f@—t)—fz—0)} Fz—t, z, n) dt,
0

are, for all values of 7, each numerically less than an arbitrarily chosen
positive number ¢, and if the two limits

lim S" Fle+t z,m)dt, lim r Fle—t, z, %) dt
n=® 0 n=aw

0

have definite values P, @ independent of u, we see that
8
33_33 5 f@@" F (', z, n) dz' = Pf(z+0)+Qf (x—0),

z being a fixed point in the interior of the inferval (a, 8).
It has therefore been shewn that <t is sufficient for the convergence of

(J
j f@) F(z', z,n)dz' for a fired value of x, in the interior of the interval
(a, B), to the value Pf(z+0)+Qf(z—0), that

lim S“F(z-{-t, z,n)dt and lim 'rF(a:—t, z, n) dt
n=w 0 n=

® Jo

should have the values P, Q independent of u, and that

j" {f@+)—f@+O0} Fz+t, 2,7 dt,
0

r {fe—t)—f@—0)} Fl@—t, z, n)dt
0

should both be numerically less than an arbitrarily chosen positive
number e, for a sufficiently small value of u, and for all values of n. It is
assumed that the conditions of the fundamental convergence theorem are
satisfied for a set G to which x belongs.

Let us next assume that the function f(z) is such that, for a particular
point z in G, a neighbourhood can be found such that the function f(z') is
of limited total fluctuation (& variation bornée) in that neighbourhood.

Weé may then replace the function f(z') by f,(z)—f3('), where f(z'),
fa(@') are monotone in the neighbourhood of the point z.

We have then, by applying the second mean value theorem, for a
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sufficiently small value of u,

j" i@+ O—fo@+0)} Fatt, z,m dt
0
= {fiw+w) —fil@+0)} j Fla+t, z,n)dt,

where 0 < u; <u. A similar equation holds for the function f, (z).
Let us now assume that the function F is such that Y Fx4t, z,n)dt
o

is numerically less than & fixed positive number, for all values of x’ such
that 0 < ' < i, and for all values of 2. The number 4« may be so chosen
that f,(z4w) —f1(z+0), f(z+u)—f,(@+0) are each less than an arbi-
trarily chosen positive number. It follows that « can be so chosen that

f {fae+t)—flz+0)} Flz+t, =, n) dt
0

is, for all values of », less than an arbitrarily chosen positive number. It
is clear that u may be so chosen that, subject to a similar condition, a
similar property belongs to

j“ 1f@e—t)—f@—0)} Fz—*, z, n) dt.
0

It has therefore been shewn that, for a point z in G, the conditions
contained in the last theorem that

j“ f@+8)—f@+0))} Fett, z, n)dt,

0

should both be numerically less than an arbitrarily chosen positive number e,

Jfor a sufficiently small value of u, and for all values of n, are satisfied if a
netghbourhood of x exists so small that in that neighbourhood f(x') ts of
linviled total fluctuation, provided also u can be so chosen that the integrals

"
j Fxtt z, m)dt are both numerically less than some fized positive
B

number for all values of uy such that 0 L puy < u, and for all values of n.
When the other conditions of the theorem are also satisfied, the integral
converges to the value Pf(z+-0)+4Qf (z—0).

If z coincides with the end-point a of the interval (a, 8), that point

B
being assumed to belong to G, j f@) F(x', a,n)dx’ converges to the

n
value f(a+0) 1imJ’ F(a+t, a, n)dz’, provided this expression have a
n=w 0
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definite meaning, and provided also that u can be so chosen that
'
L {fatd—fa+0) F@', o, n) dz’

is numerically less than an arbitrarily chosen positive number for all
values of . This last condition is satisfied, in particular, if a neighbour-
hood on the right of the point a exists in which f(z) has limited total

"
fluctuation, and if also u can be so chosen that J' F(a+t, a, n)dt is

1
numerically less than some fixed positive number, for all values of u, in

the interval (0, u), and for all values of #. A similar statement may be
made for the case x = .

5. Having found sufficient conditions for the convergence of the
8
integral 5 f@) F(', z,n)dz’ at any point z of G, at which f(x) has definite

funetional limits, we proceed to find sufficient conditions that the con-
vergence of the integral to its limit may be uniform in an interval (a;, 8,
contained in the interior of (a, 3), and in which the function f(z') is con-
tinuous. It will be assumed that all points of (a;, B;) belong to G.

It s sufficient for such uniform convergence that the two integrals
r {(fext)—f(@)} Fzxt, z, n)dt
0
showld converge to zero, as n s indefinttely diminished, uniformly for all

values of z in (ay, By), ¢t being assumed also that }l@n r F+t, x,n) dt
e A

exists at each point of (ay, By), independently of the value of n, and that

the convergence to the limit is ungform in (a, 5y)-

This clearly follows from the discussion in § 4.

If we assume that (a;, B,) is contained in the interior of an interval
(ag, B2) in which f(z) has limited total fluctuation, the function as before
being supposed continuous in (a,, B;), we see, from the proof of the second
theorem in § 4, that the convergence will be uniform i (ay, By), provided

i
w« can be chosen so small that the integrals S Fz4t, z, n)dt are both
"

numerically less than some fized positive number, for all values of u, such
that 0 << uy < p, and for all values of z in (ay, By), and for all values of n;

3
1t betng assumed that lim s F@+t, x,n)dt exists at each point of (ay, B)),
n=w 0

and so that the convergence to the limit is uniform in that interval.
Since (a,, By) is contained in the interior of an interval (ay, By) in which
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the total fluctuation of the function f(z) is limited, u can be so chosen
that the interval (z—u, z+u) is, for each value of z in (a,, B,), an interval
in which the function has limited total fluctuation.

It has thus been shewn that the uniform convergence of the integral
in an interval (a;, 8,) contained in the interior of (a, 8) depends only on
the nature of the function f(z) in an interval (a;—e, B,+¢€) containing
(@, B,), where € is arbitrarily small, and not on its nature in the remainder
of the interval (a, B); subject, of course, to the condition that the function
has a Lebesgue integral in the whole interval (a, 8). In particular, the
convergence of the integral at & particular point z, depends only on the
nature of the function in an arbitrarily small neighbourhood of z. These
results are known for the particular case of the convergence of Fourier's
geries. The result in the case of convergence at a point is due to
Riemann.

6. In case the function F(z', z, n) is never negative, the criteria for
. :
the convergence of the integral j [ F (&' z,n)dz’ admit of simplification.

At any point z at which f(z+0), f(zx—0) exist and are finite, » can be
chosen so small that | fz+8)—f(x+0)|, | flx—&)—f(x—0)| are both less
than an arbitrarily chosen positive number », for 0 < ¢t < . It follows
that, for a properly chosen value of u,

} j (fatd—f@t0)} Flatt, o, m dt
0

< r;YF(zit, z, n) dt,
0

and the expression on the right-hand side is arbitrarily small if

YF(:ci— t, z, n) dt is less than some fixed finite number for all values of n.
0

We thus obtain the following theorem :—

When F @', z, n) 15 never negative, it s sufficient for the convergence
8
ofj f@) F', z,n)dz', for a fized value of x wn the interior of (a, B),
to the value Pf(x+0)+Qf(x—O0), that

S“F(:v+t, z,n)dt and J"F(x—t, z, n) dt

0 0
should be less than fized positive numbers for all values of n, and for «
suffictently small value of u, and that they should have definite limits P,
Q independent of u, when n is indefinately increased.

If f(z) is continuous in the interval (a;, B,), it follows, from the well
known property of uniform continuity, that a value of 4 can be deter-
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mined such that |f(z+t)—fx+0)| <y for 0 <t < u, and for all
values of .z in (a;, By). If, then,

5“ F(+t¢, z, n)dt and J“ Fx—t, z, n)dt
0 0

are both less than fixed positive numbers for all values of #, and for all
values of z in (a,, B)), provided u be sufficiently small, then the conver-
gence of the integral is uniform in (a;, 8;). We thus obtain the following
theorem :—

When F (', z, n) is never negative, it ts sufficient for the uniform con-
] !
vergence of j f&) F', z, n) da’, to f(z) for all values of = in the interval

(ay, By tnterior to (a, B), where f(z) is continuous in (a,, O), that
j“ Fla+t, 7, n) dt

should be less than a fized positive number for all values of n, and for all
values of  n (ay, B,), and for a sufficiently small value of u ; and also that
1t have a definite limit, independent of u, for all values of z in (ay, By
when n is indefinitely increased, the convergence to the limit being wani-
form in (ay, By). It is assumed that G contains (a;, B3)).

ArpLicaTIONS OF THE THEORY.
7. As a first application of the preceding theory, let

[1 — (2?' — x)zjn

F@', z, n) = <5
j (1—t)™ dt
0

where 0z, and 0L ' K15
n denoting a positive integer. We take G to consist of the interval (0, 1).

If |z'—2| > u, we have

i
(1—)dt
(1_”2)7. < _S_O_—.__ <_l

| Fz', z,n) | << :
Sl 1— dt #S a—-eydae  *
0 0

(B

B
Also S F(z', z, n)dz' =Ll T -
“ s A= de
0

[1 _(xl ___x)‘l]n dz'

’
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and provided z does not lie in the interior of the interval (a;—u, By+w),

n —
this is less than w or than —(—1———“—)——, since
j (1—tdt L (1—l)"
0 v n
1. 1/vn 1 1 n
— — — —
La t)dt>J’0 (1—8) dt>w(1 n),

We may thus take A, = (1—u?)"nt (1"' 717) ”

» 3

and then ' lim 4, = ¢ lim (1—7{1-7\)" ’

where | 1+ = - '
1—u?

Hence }113}’ A, = 0; and therefore the conditions of the theorem of § 1
are satisfied for each positive value of u.
Applying the criteria of § 6, we have

) 5“ (1—8) dt
j Fa+t z,ndt =2 <1;
0

1
j 1—)"dt

0

and the integral may be expressed in the form

F 1—8&ndt

1~
g 11— dt
0

and it has been shewn above that the limit of this is 1, when n is indefi-
nitely increased, as may be seen by putting ay =u, 8, =1, z'—z = u.
Therefore

(FPate, o mae=1.

lim
n=w J

= o

[1—(:::'—-:::)2]" S dz'
2 1—&dt
j’:( )" d

We now see that lim <2

n=w

converges to the limit % {f(z+0)+/(c—0)} at any point z in the interior
of (0, 1), at which f(z4-0), f (x—0) exist, the function f(z) being restricted
only by the postulation that it has a Lebesgue integral in the interval
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(0, 1). At the points 0, 1 the integral converges to the values %f(140),
3f(1—0), provided these limits exist.

Moreover, we see from the second theorem of § 6 that the convergence
to the limif f(z) is uniform in any interval (a, b) in the interior of (0, 1),
provided f(z) be continuous in (a, b).

This last result has been established by Landau* for the case in
which f(z) is continuous in the whole interval (0, 1). He has applied it
to prove Weierstrass’ fundamental theorem, that if f(z) be continuous in
(a, b), a rational integral function G(z) can be determined such that
| f(@—G (2)] is less than a prescribed positive number, for all values of
z in the interval (a, ). The proof of this is immediate; for we have
only to choose a value of n sufficiently large, to make the rational integral
function of z,

L [1—(@'—2)T /(") da
251 (1—)* dt
0

differ from f(z) by less than a prescribed positive number, for all points z
such that e <z < 0.

This method of proving Weierstrass’ theorem may be extended to the
case of a function of any number of variables. It will be sufficient to
consider the case of three variables.

) = [1—(@'—2)— (@' —y)*—('—2)}" .

Let F(',y', 2", z, y, 2,7
WS 11— dt
0

and let the function f(z', ', 2) have a Lebesgue integral in the sphere

xl2+yl2+212 — 1.

As before F(:I;', ?/', 2, z,Y, 2, n) < g};; ’
provided @ — 2+ — )+ (' —2)* > u?

Also s F,y, 7, z,vy,2 n)(dz' dy’ dz') taken through any volume in the

given sphere which has no part in common with the sphere of radius u,

* See his paper ‘‘ Ueber die Approximation einer stetigen Funktion durch eine ganze
rationale Funktion,"’ Rendiconti del circ. mat. di Palermo, Vol. xxv., p. 337.
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(1—u?)"

6F(1—t’)"dt
0

L= (1) 7

n

and centre at (z, y, 2), is less than , or than

which converges: to zero as 7 is indefinitely increased. Therefore the
conditions of the theorem in § 2 are satisfied.

To shew that

j'f @,y ) [1—(@ —2—(y' —y)— (' —2)*]" (dz' dy’ d2')

1
871'5 (1—"dt
0

where the integral in the numerator is taken through the volume
w12+y72+212 —_ 1’ '

converges to f(z, y, z) uniformly in any volume contained in the interior
of the sphere, provided the function is continuous through that volume,
we have only to consider the above integral taken through the sphere

(a:’—:z:)"‘-{-—(y'—y)”-}-(z’—z 2 =”_2.
If 2 =az+4tsinfcos¢, y =y+tsinfsing, 2 =z+4tcosb,

the integral reduces to

r ¢ (@ ¥, 2, H1—O" dt
0

’

2 f (1—8yndt
0

where ¢ (z, y, 2, t) is continuous with respect to (z, ¥, 2) and to ¢. As
before, this integral converges to ¢(z, y, 2, 0) or f(z, y, 2) uniformly in
the given volume through which the function is continuous. Weierstrass’
theorem. is deduced immediately, as in the case of a function of one
variable.

8. Let us consider the limit
lim ___7;5 f(z;) e—(d-z)',-l@ de’,

employed by Weierstrass himself, to prove his fundamental theorem.
We assume that f(z) is & function which has a Lebesgue integral in
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0

every finite interval, and is such that j |f(@')| da’ exists as the double
8
limit for a = —, 8 = o, of the Lebesgue integral J |fa') | da'.

Writing k = 1/n, F(', z, n) = %re-u-@_x),’

we see that, if |2'—z| > u, then

N 1 -
F(x’,x,?t)<77re L <me 3
Also Sbl b gme=aF gy
ay '\/w

in any interval (a;, b,) such that z is not interior to the interval
n
N
bj—a, < K ; and this converges to zero as n is indefinitely increased. It
has thus been shewn that the conditions of the theorem in § 8 are satisfied.

(a;—m, by+w), is less than (by—ay) ™™ or than :7— e""M K, where
m™

Again,
” s 1 had
F+t, z,n) dt = J' et < ——J e tdt<1;
j—n - '\/'” ‘\/'” —®
and lim F“L =" dt = lim —— rw e'dt =13
n=x Jo &/m n=w A/ Jo :

Therefore the conditions of the theorems of § 6 are satisfied.

It has therefore been shewn that, if f(z) have a Lebesque integral in

every finite interval, and if S | f(z") | dz' exists, then

1

B 1y =@ =Pk 3.1
kijﬁnf(z)e dz

converges, for k =0, to the value } {f(z+0)+fz—0)} at any point z
at which f(z+0), f(x—O0) exist. Moreover, the convergence to the value
f(@) is unsform in any finite interval in which f(z) is continuous.

It is easy to extend the theorem to the case of the limit

N n
lim (_1_>p S S ...f(;’c'_, z;, . xl’)) e~ @y —a P +(ay —nP+.. +(z, -2 1k*
-

iz e N
d:z:ld:vg e d:c,,;

and from this Weierstrass’ theorem for continuous functions of p variables
can be immediately deduced.

-0
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[Added May 26th, 1908.]
The condition contained in the statement of the above result, that

5 | f(z’) | dz' should exist, may be replaced by a much less stringent con-

dition.* Referring to § 8, we see that it is only necessary that when z is
confined to an interval (a;, 8,), £ and » can be so determined that

& n 0’ n
") —— e~ "E-P gz’  and S ") —— e~ @ =P gyt
s SO

should both be numerically < ¢, for all values of & < £, and »' > 5, and
for all values of n. We have now

j,ﬂ f(iU’) J_’;r e—n'(a:’-z)ﬂ d&E’ I < Jﬂl |f(zl) l %e—n’ (=B d(l)'
1 Ny
< NV j"’l

Now, let it be assumed that, for all values of z greater than soms fixed
value, the condition | f(z) | < zPe¢®™ is satisfied, where p and ¢ are fixed
positive numbers. Let n be so chosen that f(¢'/n) satisfies this condition
for 2'/n > n; we have then

n

V(&) |eerar.

F S —/71- e~ dapt | < 1 r’ (i\)p g1 o= —nb1¥ gt
" N

7 ) W2
< __1 Jn(ﬂ -A (Bl+ ﬁ.) P g1Pr+quin e—u: du
VT Jag-a) n
1

< :/—j By )P e+ e~ du.
T Jn—p1

0

Since the integral 5 Bi+w)? e du exists, as is well known, 7
n—B1
can be so chosen that

w0

L[ Gbwpamer—au < o
‘\/W =8
Similarly, it can be shewn that if, for sufficiently large negative values
of z, the condition [f(z)| < |z|?¢!!*! is satisfied, then

3
[ i e
$I

* That this is the case was suggested to me by Mr. Bromwich.
8ER. 2. VOL. 6. No. 998. . 2 B
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is numerically < e, for all values of £ < £, and of n, if £ be properly
chosen. We have thus established the following more general theorem :—

If f(x) have a Lebesgue integral in every finite interval, and be
such that for |z|> a, the condition |f(@)| < |z |? e?'®! is satisfied,
when a, p, q are fized positive numbers, then k—\/—j fla" e &= dg!

converges for k= 0 to the value }{f@+0)+fx—0)} at any point z
at which f(z+0), f(x—0) exist. Moreover, the convergence to the value
S @) is uniform in any finite interval in whick f(z) is continuous.

9. Let s,(z) denote the sum
1 r=n-1

j f(.v’)dx-}- P J f(@") cos r (' —z) dz’'

n=1

of the first 2241 terms of Fourier's series. Denoting by S.(z) the
arithmetic mean (s,+s,+...+s,)/n, formed in accordance with Césaro’s
method, it is easily found that

Sﬂ(z)_l_j' @) 1W}der.

2n gin  (z' —2x)

To evaluate }llg’ S, (x), let

F{', z, n) =

1 {sin in(z'—z)) 2
2nw | sin3(x'—z) )

As | z'—z| approaches the extreme value 2w, F(z', z, n) approaches the
value 7/27. Consequently, the conditions of the theorem of § 1 would not
be satisfied if G were taken to include the whole interval (—m, 7). The
conditions are, however, satisfied if-we take the set G of values of z fo
consist of the points of the interval (—wx<-A, w—2X), where A is a fixed
positive number as small as we please. In that case F(z', z, n) is less
21 cosec® $u, and —1—cosec 3\, which

. | .
i8 5 — cosec®iu, if we choose u to be < A. The number F is then

than the greater of the numbers

1 ')
o cosec” 3u.

Also

B 1 a B, 2 1 g

5 F(z', z, n)dz' < — cosec %ps sin® in (z' —z)dz < —cosec® 3u ;
a) 2nw a n

and the limit of this value is zero, when = is indefinitely increased.
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Therefore the conditions of the theorem of § 1 are satisfied for every value
of u, such that 0 < u <\, when G consists of the interval (—7x =\, #—A).
We have also

1 (* /sinnt sin 31t ?
j Flatt s, n)dt 2mr5 (sin%t) 2n7rS (sm%t) @ <4

o 2
1 . — (sm :}nt) —7.
Moo lim [ Fattomdt=lin g [ (2395 = 3,
and therefore the conditions of the theorems in § 6 are satisfied.

It has therefore been shewn that, if f(z') have a Lebesgue integral in
the interval (—w, w), the function 8S,(x), formed in accordance with
Cesaro’s method of arithmetic means, converges to the value

3 {f@+0)+f(z—0)}

at any interior point x at which the functional limits exist. Moreover,*
the convergence of S,(x) to the value f(z) is uniform in any interval (a, b)
wnterior to (—r, m) in which the function is continuous.

To find 71}3 S.(—7), we have

U S A "‘“1 n[(sindn(@'4+m)) 2.,
s =g {7 [ e (S -

-7

1 sin }nt 1 [ sin 3nt\?
%Sof‘ 0 (Gdy %t) d“mrfof‘““’(sm%t) dt

T—u n [ sin dn(z'4)) 2
+%s_"+“f(z) \sini@ =) J dt.

The limit of the third of these integrals has been shewn to be zero. If

* T take the opportunity of correcting an error which occurs in this connection in my
treatise “ On the Theory of Functions of a Real Variable, and on Fourier’s Series.”” It is
erroneously stated,on p. 712, that the convergence of S, (x) to the value llm‘} {flx+h)+f(z—h)}

is uniform in any interval in which f () is limited, and in which the limit everywhere exists.

The source of the error is at the top of p. 711, where the incorrect statement is made, that in

any interval (@, b) in which f (z) is limited, and in which }ilIol {flx+ ) +f(x—h)} has every-
-

where definite values, #» may be so chosen that the upper limit of | F'(2) | in the interval

( 5 ———) is less than e. A sequence of continuous functions {Su (z‘)} which converges

uniformly in any interval must, as is well known, have a continuous limit.

28 2
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the two limits f(—=+0), f(x—0) both exist and are_ﬁnite, we see that
lim Sp(—m) =} {f(—7+0)+f(r—0)}.
Clearly S, () has the same limit.

10. The preceding theory may also be employed to establish the
validity of Fourier’s representation of a function in an unlimited interval
by means of a single integral, under very general conditions.

Let us consider the integral

ij Fa@) sin u(x —2z) ',

™ —X

where u is here written instead of ». It will be assumed that f(z') has &
Lebesgue integral in every finite interval. It is unnecessary to assume

that j |f(z')| dz’ exists as the double limit of the Lebesgue integral

h

j |f')|dz’. 1t will, in fact, be sufficient to make the more general
k

f@) ] J_a f@)
z’ ’ — z'

number, both exist as the limits of Lebesgue integrals. Assuming that z
is confined to a finite interval (a,, 8;), we have

I 1 5 M—smu(z '—p)de' | < — Y

a+oj

dz', where « is a positive

assumption that j

@) (x

(x) ',

where 5 is chosen so great that ,z —5, < 14¢ for 2’ >»n, and ¢ denotes
an arbitrarily chosen positive number.

It now follows that » may be so chosen that, for all values of %, and

provided z is confined to the interval (a;, B)), —i—jﬂ f@@) sLn_JZ:T(i_Z_i)_dx:
n

numerically less than e, for all values of 5 >#. It may similarly be

¢ - r—
shewn that £ may be so chosen that J f(z’)%_xldx' is
¢ -

18

numerically less than e, for all values of £ <§&.
We have now to shew that the conditions of the theorem in § 4 are

satisfied. Writing . , _
F', z,u) = % sin % (@' —z) ,

' —z
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we have IF(w',w,u)|<’%, for |z'—z !> u.

Also we have

(:] Y
j F@', z,u)ds' = j sin w (z' —x)dx' +

1 B H ! . !
~B=2) L sin u (z' —z)dz’,
provided z is exterior to the interval (a, 8), where a <y << 8. It follows
that

4

<—,
MU

w(a—2)

r F', z, wydz'

if z is not interior to the interval (a—u, B+wu); and 4/umu converges to
zero as u i8 indefinitely increased. It now follows that

+ [P wma L jenSRiE=dgy
T e 2 —2 T Jo+n £ —T

converge to zero as w is indefinitely increased, uniformly for all values of
z in any finite interval.
We have now to consider the convergence of

T+ @ 3 r__.
%S f@) S-——m;f(fx 2 a'.
z—p

Let z be confined to an interval (a;, B;), and let the eriteria provided in
§§ 4, 5 be applied. We have then

. v
ij"smut dt:_l_j“ sin tdt;

and this has the limit 4, when « is indefinitely increased.
Also

1 5" sin wt 1 }"‘“ sin ¢ 1 5“" sin ¢ 1 J"'“ sin td

t T T Jo U T

t;
™

" ®1% 0

and both the last integrals are well known to be numerically less than
fixed numbers independent of u, u, and .

The following theorem has now been established :—

If f@&') have a Lebesgue integral in every finite interval, and if

— | dz', where a is posstive, exist as the lLimits of
Lebesgue integrals (this condition being satisfied n particuler if

)dz' converges for

r | x| dz’ em'sts), then —71;5 f(x')-s—l—n—;;j%——
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uw=o, to the value }{f(e+0)+f(x—0)} at a point z for which a
neighbourhood exists in which f(z') is of limited total fluctuation. More-
over, the convergence to the value f(z) is uniform in any finite interval in
which f(z) is continuous, and which ts in the intertor of an nterval in
which f(x) has limited total fluctuation.

From §4, we see that a sufficient condition of convergence of the
integral at a point z is that

J“f(x+t)—tf(z+0) sinutdt, and J'“f(x_t)—tf(x—o)
0

0

sin utdt,

should converge to zero as % is indefinitely increased. This condition is
certainly satisfied if |f(x+8—f(x+0)| << A, for all sufficiently
small values of ¢, when 4, 1—a are fixed positive numbers, and if
| fr—8—f(x—0)| satisfies a similar condition. The conditions are
satisfied at a point of continuity of f(z) at which the four derivatives
are limited, and generally provided any of the known sufficient criteria
for the convergence of Fourier’s series at a point are satisfied.

The preceding theory may also be applied to the case of Poisson’s
integral which occurs in the theory of Fourier’s series.

SeEriEs oF SturM-LiouviLrLe NormarL FuNcTIONSs.

11. The differential equation
d (;. 2V ) DV =
; (k o +@gr—OV=0 (1)

occurs in the theory of the conduction of heat in a heterogeneous bar, and

in connection with other problems of mathematical physics.
Those solutions of this equation for an interval (@, ) of the variable =

which satisfy the boundary conditions

4V _wy=0for s=a, and L4HV =0, for a=0, (2
dx dz

where %, H are positive constants, were studied by Liouville and by
Sturm in a series of memoirs published in the first two volumes of
Liouville's Journal.

Special cases of the boundary equations are obtained by letting one or
both of the constants /&, H have the value zero. Other special cases are
obtained by supposing % or H, or both of them to be infinite, in which
case the corresponding boundary condition is ¥ = 0.

It is assumed that g, %, [ are functions of z which are positive, and do
not vanish in the interval (@, b); 7 is a parameter. It will be further
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assumed that g, ¥ have everywhere finite differential coefficients, and that

! and (gk)~% have limited total fluctuation in (@, b). If we transform the
equation (1) by means of the substitutions

g= S (%)’dz, 0=, V=0U, r=p

the differential equation (1) becomes

BU
S+ —n U =0, ©)
_ 1 ((k\t,_ d@ghrdl_, .d%
where l"‘e(gk)*ll(g>9 dz  dz (gk)aéf}‘

The boundary equations (2) become

%—h@:o, for =0, and %+H'U=O, forz=m, 4

b s N\ &
where it is assumed that J (—%) dz = T,

an equation which is always satisfied if a slight formal change in the
variable = be made. The constants A’, H' are real, but no longer
necessarily positive. We shall suppose that neither .’ nor H' is infinite.

Writing the equation (8) in the form
au
E;ﬁ' +P2U = ll U,
we have, as an equation satisfied by a solution of this equation,

U = 4 cos pz+ B sin pz+ LU
2

1
(&) +o

=ACOSpZ+BSian+i-{ 1 1 }Z,U
2p | d a
TP gt

= 4 cos pz+B sin pz+—%52 LU sin pe—0) dE,
0

where I, U are what /, and U become when ¢ is substituted in them for z.
If this value of U be substituted in the first of the boundary conditions
(4), we find that Bp— A&’ = 0, in order that the condition may be satisfied.
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We have therefore, if we assume that U = 1, when 2z = 0,
4 2
U = cos pz+ %sin pz+ %j LU sinp (z—{)d¢,
0

which was obtained in a different manner by Liouville.*

Let U be the upper limit of | U| in the interval (0, 7); then the
absolute value of the expression on the right-hand side does not exceed

12\ & T (=
(1+%) + L[ 1w
P P Jo
From the continuity of U, we have therefore
— 2\ & IT (7
v<(1+2)+ 2 1n1a
P P Jo
If p is sufficiently large to be not less than S | U] d¢, we see that
0

ff<(1+';f;)*{1—plj:uild§}

It follows that, for all positive values of p, greater than a fixed positive

-1

number, the values of I-], for all such values of p, do not exceed a fixed
positive number. ,

If the value of U be substituted in the second of the boundary equa-
tions (4), we obtain an equation for the determination of the values of p.
We find, on substitution, that p must satisfy the equation

P
t =
an rp P_P,,

where P = h’+H’+'rl{ U (cos pé— 7
0

- sin pg) df,
p=HW +s" LU (Iﬂ‘ﬂﬂf +-sin p) d¢.
P 0 P

Since | U’ | cannot exceed some fixed number, independent of { and p, we
see that | P|, | P'| cannot exceed fixed numbers independent of p.

The roots of the equation for p have been discussed by Liouville, who
shewed that they are of the form n+a./n, where |a,| is less than some
number independent of 7. It is necessary, however, for our purpose to
obtain a somewhat more exact expression for these roots.

¢ Liouville’s Journal, Vol. 11., p. 24.
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12. In the following investigation of the forms of U, and of the roots
of the equation P

tan ™ = ;)-:F

the notation a(z, n) will be used to denote a function of 2 and n which for
all values of these variables does not exceed in absolute magnitude some
fixed positive number independent of 2z and 2. The notation will be used
for a variety of such functions, in order to render unnecessary the intro-
duction of a number of fresh symbols. In the same manner a(n) will be
used for a function of » which is such that | a(n)| does not exceed some
number independent of 7.

The equation

U = cos pz+ %— sin pz+ % r LU sin p (z—{) d¢
[
is of the form U = cos pz+ ‘3—(';’—2) .

Substituting the corresponding value of U’ under the integral, we have

U= COSpZ[ 1— % J'z {l sin p¢ { cos pl+ P(PT’Q} df]
0
+sin pz [%+ % f} lj cos p¢ 1[ cos pl+ L8 (pl; O } dg‘].

Now rl'lsinpfcospfd{, or -}j lisin 2p¢ d¢ is of the form a_(%_z_); it
0 0

being assumed that /] is of limited total fluctuation. Again, r li cos? p¢d¢
) 0

18 of the form a(z)-i-ﬂp;’—z—; and hence we have, as the form of U,

, . ) 4 alp, 2))
U = cos z{1+ﬂ)—z)}+sm z[ﬁ-l- . ;
P o Pz P —'—3—'p f
where | a(p, 2) |, | @ (2)] are less than fixed numbers independent of p and
z, and of z respectively.

The numbers P, P’ are of the forms %'+ H'+ 1"+ a/p, a/p respectively,
where the numbers a are in each case less in absolute magnitude than fixed

numbers independent of p; and %" denotes ‘}5 Lid¢. Consequently, the
1]
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equation for the determination of p is of the form

W4+H 4R+ —

= L.
tan rp ) ;
P
therefore, for sufficiently large values of p,
1rp=n1r+£—ig——ﬂ"-+%, or p=fn+h_-|ﬁ'-+_h”+_a_2.
P P nw n

It then follows that, for all values of n, which represents one of the posi-
tive integers,

c a
=n4+ —+ —
Pu + n + n?’

. N+ H' + L
where ¢ is the constant iiﬂ_i, and a denotes some number of

which the absolute value is less than a fixed number independent of .
All the positive roots of the equation for the determination of p are given
in this form; it is clear that the notation employed enables us to use
what is primarily an asymptotic expression, available for large values of =,
to represent all the roots.

We shall now employ the expression for p, to express the function U,,
which corresponds to the value p, of p, in terms of » and 2. 'We have

afz, 71)] . (cz | afz, n)}

COS pp2 = COS N2 {1+ j —sin nz = +

sin paz = sin nz 11+ “(Zl Y b teosns {fnz + a(qzz,zn) } ‘

Substituting these values in the expression

conpa {1 G2} o s {0 4202},

or in the equivalent expression

n?
we find that

Un(z) = cos nz {1+ a (Z ”) 1 +51n nz {aff) + a(z,ﬂn) }

n

which is the required expression for Us,(2).
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It is easily seen that Sﬂ {Ua(2)}%dz 1s of the form — + a(")

0

r a(?)sin 2nzdz = 1 [—-a (2) cos 2nz i + ir o' (2) cos 2nzdz,
° n b M

0
and o' (2) 18 a limited funection, and thus J a(?2) sin 2nzdz 1s of the
L]
form 3(—n)

We take now, as the normal funection ¢, (2),

bu(2) = Unl2) [j LACIEEA

and thus 5" {pu(2)}2dz =1, Sﬂ () Ppr(2)dz =0, for nzEn'.
0 0

It follows, from the above forms for U, (2), ¢ (2), that

Pal2) = \/——cosnz {l—i—a(z ”)} +sin nz _{Efli)_i_a(z, 11«)}

It is necessary for our purposes to find a corresponding expression for
¢, (2). We have

ddg“ = — p,sin p,2+ ' cos p,.z+j. LU eos p, (z—¢) d¢
0

= ——[n+ a——(j; n)] [sin nz { 142270 (fz;n) } +cosnz { % + a___(z,g'n) J,]

n

+[h'+a—(':; n)] [cos nz { 1+ a—(fI:z’L) } —sinnz { + a(zﬁn) !

)

= — {n-{- a_(i;_”)} sin nz+4- { h'—cz-{-g(i?’x—b)} cos nz.

" -3
On multiplying dd—g" by U {U.)}? dz:l , or a(’zl) )’ , we find
‘ 0
that
dgnla) _ _ |2 | a(z, n) | \/ alz, n) |
g \/ - 111, i sin nz+ —cz+ | cos nz,

the required form for ¢, (2).

12. If we write A, = p2, the positive numbers A;, A, ... are the
characteristic values of p® (Eigenwerthe) for the equation (8), with the
given boundary conditions, in accordance with the nomenclature of
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the theory of integral equations. We may assume that the smallest
characteristic number A, is > 0; for if A, were equal to zero, by changing
the value of I so that p®—1I remained unaltered, we should make X,
greater than zero.

Let f,(2), f,(2) be solutions of the equation
d’u
Zz_f _Zlu = 0,

which, together with their first two differential coefficients, are continuous
in the interval (0, v); and such that f) (z)—A'f;(2) =0, for z = 0, and
f;2)+ H'fy(2) = 0, for z=m. The two functions satisfy the relation

£, B —HHkE) =—1,

if the arbitrary constant factors in f;(2), f(2) are properly chosen. A
function* K (2, 2') is defined for the whole interval, by the conditions

Kz, #) = (") y(2), for 27,
and K(z, 2') = £1(2) f4(2), for 2z >2'.
This function is continuous in the interval (0, =) of 2, and symmetrical

with respect to z and-z'; it 1s the ‘“nucleus” (Kern) for the system of
normal functions. Writing

LK, o) = K@, 2),
daz

we have K'(Z—0, 2) = ,(2') fi(z'), and K'(z'+0,7) = §;(¢) £2(2);
and therefore K'(/40,/)—K'(/—0,7) =—1.

The function K'(z, #) is continuous for all values of z not equal to 2.
The function K(z, ) clearly satisfies the differential equation

Kz, 2 '
-T(;Q—llK(z, d)=0,

for every value of z except z = 2.
It is known from the theory of integral equations that if the series
5 $al

'
—Z);M is uniformly convergent in the interval (0, «); then if

n=1

represents the function K (z, 2).

* See Kneser's * Integralgleichungen und Darstellung willkiirlicher Functionen,’’ Math.
Annalen, Vol. xm., p. 488.
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18. Let the sum ¢, (2) ¢;(2')+a(2) g (2')+... + Pa(2) Pu(2”) be denoted
by F(z', 2,m). In order to apply the theorem of § 1 to the case of this
function, we suppose the set G to consist of all the points of the interval
(0, ) of the variable z.

We have first to verify that | F'(z',z, n) | is less than a fixed number,
for all values of %, and for all the values of z, 2z’ such that | z—z'| > u.

We have, employing the expression for ¢,(2) found in § 11,

F(,z2,n) = [\/——cos rz I1+ a(z’ T)l +sin {a?(_z) + —g—a(f’ ) }]

[\/%cosrz 1+a(z 7)} +sinrz {a(z')+a_(’zé_r)}].

We have to consider the sums of the various terms in this product. The
series

= i cos 7z cos 72’ % i leos r(z—2")+cos r(z+2")} I
r=1 r=1
1 sin (2n+1)z+z ) l
N 2r sin 22 * sin 2tz —
2 2 '
1
< -— (2 cosec 3u—2),
27
provided |z2—2 | > n

The expression

n K 3 o (! 3 o (o] —0
\/E als) = cos 7z sin 72’ or 1_ ald) 3 sin 7 (2' +2)4-8in 7 (2' — 2)
r=1 ~/2W r=1 r

can be shewn to be numerically less than a fixed number, for all values of
2, 2’ such that | z—z'| > u, and for all values of n. For it iz known*

that the sum = 2272 jg given by
1
+8% gin 2 64
sa(x) = S(z)+5 — dz+ e
2 sin rz

when s(xz) is the sum of the convergent series 2 , 4 is a positive
1

* See Theory of Functions of a Real Variable, p. 649
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number independent of z and », and 6 is such that —1 <8 < 1; pro-

vided z is in an interval (0, b), where b << 2w. It thus appears that

| sn(2) | is less than some fixed positive number, provided z is in an interval

(—b, b), where b < 2w. The point z = 0 is a point of non-uniform con-
Z sin rz

vergence. of the series , but the measure of non-uniform con-

1
vergence is finite, the peaks of the approximation curves representing
sn (z) being all of limited height. It follows that

=0 o3 ! r=n o1 o (!

5 sin r(2'+2) ’ sin 7(2' —2) £ )

B i

are both less than fixed numbers independent of z, 2’, and n. Remember-

ing that | a(2) | is limited, the required result at once follows. :

n el o1

2 C08 72 8In 7z

r=1

number independent of a, z and 2, for | z—z'| > u
The other terms such as

Similarly \/% a(2) is numerically less than a fixed

il sin rz sin 7z’ 2 "S"cosrz sinrz a(z, 7
> a(Z)a(z')—'-7——, > 3 (2 7)
r=1 T =1

are absolutely and uniformly convergent, as n is indefinitely increased.
It therefore follows that | F'(2', 2, %) | is less than a fixed number, for all
values of %, and for all values of z, z' such that |z2—2'| > u, and in the
interval (0, ).

We have next to consider

‘ﬂ

j ¢r(2) ¢, (2')d2', or jﬁ F (2, z, n)dz'.

r=]1

This may be written in the form

< (z S f ll ¢1 (Z’) d;l(ﬂz ) } dZ,,

by substituting for ¢, (') its value as expressed by the differential equation
given in § 12, which it satisfies. This is equivalent to

Sﬁ‘ § Qr(z) Qf(z E Qr(z)g B + g‘ ¢r(2) Qr(a)

a r=1 1‘

. 1 _
Since ~ =
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we see that ¢ (z) (2) takes the form

r—l

é %{ a(?’)}[\/2 cosrz{l-l-a(z r)} +sin 2 {a(z)_l_a(z »)

! 9 ' "y . ) M)
[\/;cosrz {1+°‘(j.2 ")} +sin 1z (#-f- a(,zzi))_ .

cos 7z cos 72’

2" . .
The various terms — > o , .<. converge uniformly, as n is

T r=1
n !
indefinitely increased ; therefore the series X "(Z)A () converges uni-
r=1 r

formly for all values of z and 2’ in (0, ), and the limit of the sum is con-
sequently K (z, z').
r=n ! !’
The series X ,(z)}\ (&) is, on substituting the forms obtained in
r=1

T

§ 11, for ¢.(2), ¢-(2) and A, of the form
rél% { a(r)}[ \/_cosrz{l'i'a(z"r)] +sin 7z ja(z)_{.a(z”) ':I

[— \/—72—r sin rz'{ r4 22 (z; ) } —“+cos 7z { a(z)+ L2 (i’ " ;] .

n

M !
The portion —(%—) z wz?_ﬂl—& converges uniformly for all values
r=1

of z, 2, such that | z—2z' | > u, and the remainder of the series converges

uniformly for all values of z, 2’. Consequently, the series E M
r=n r=1 r

and the series 2 M)_ﬁ__ converge uniformly for all values of z not

r=1
interior to the interval (a—#, B+w). By a known theorem, the limiting

sums of these series are therefore dK;g,’ ’8), aK d(:, a) respectively.

It has now been shewn that, when z is not interior to the interval
(a—u, B+np), the sum

f) r ¢-(2) pp(2)d2"  or jBF(z', z, ) dz’
r=1Ja a

converges uniformly to the value
dK (z, B) + dK (z, a)
ag

c o &K@, 2) ,, dEK(z ) , di(z a)
which is equal to L ——d—~—d B + Ta

B
j LUK (2,2 d2' —
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B
and is therefore zero. It thus appears that j F(', z,n)dz' | is less

a

than some fixed number independent of a and B3, for all values of z in
(0, 7) which are not interior to the interval (a—ux, 8+u). For, corre-
sponding to an assigned ¢, a value 7, of % can be determined such that

< (B—a)et+2 < (v+2)e, for n>=mn,.

B
j F(, 2, n)d2'

Therefore the conditions of the theorem in § 1 are satisfied for every
value of u such that 0 <u <m; the set G consisting of the whole
interval (0, ).
It follows that, for each value of u,
jz—"f(z’) F', z, n)dx’ and j
0

i f&) F', =, n)de’

z+

converge to zero, as n is indefinitely increased, uniformly for all values of
z in the interval (0, ).

14. It will now be shewn that the function
Fi, o, W= 2 ¢) ¢(&)
r=1

satisfies the conditions for the validity of the theorems in §§ 4, 5.
‘We have, as in § 18,

j £ 9.(0) iz a2
S [ 3 @

z r=1

i ¢r(z) ?;(Z+M)+ % 2,—(2) 2;('?).
= A'r r=1 A1‘

r=1

The series = ¢ (2) $:(2) (z; - (2) -consists of parts which converge uniformly
=1 r n :
for all values of z and 2’, together with the part = (__2_) cos rzrsm 1z

n . r=1
which is equivalent to — 1 pX % , and this converges uniformly for

’
s

r=1
all values of z in the interval (¢, #—¢) of z, where ¢ is an arbitrarily small
positive number. The function to which this sum converges in the

interval (e, 7—e¢) is consequently 3 ‘ZI%___Z’_E). Also

lim Sﬁu L 5 ,(z))\ (&) dz'  or SH“ @ K(z, 2')d
r=1 T

n=w J. z dz’2

is equal to K'(z, z24+u)—K' (2, 2+0),
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the convergence to this value being uniform, since s Lz_L con-
verges uniformly to K (z, 2'). = A
We have therefore
lim Y dK (z, 2)

n=w

F(, 2z, n)ds' = 3 —7— —K'(z, 240),

provided z is in the interval (e, ¥—e¢), and the convergence is uniform in
this interval. Referring to the notation of § 12, we have

%K(Z, 2 = 5@ L)+ () = K' (2, 2+0)+K' (2, 2—0);

also it has been shewn that
K'(z, 24-0)—K' (2, 2—0) = —

2+

n
Therefore g F(', 2, n)d2’ converges to the limit 3, as n is indefinitely
2

increased, uniformly in the interval (e, —¢).

In a precisely similar manner it may be shewn that j F', 2z, n)dz'
converges to }, uniformly in the interval (e, 7—e¢). -
At the point z = 0, we have

11}_12 Y F(',0,n)dz

=Lxow-[Lrow]| -5 eOQeW, ;2060

The series 2 ’(O) ”(z converges uniformly in the interval (u;, up)
r=1
ool
of z', where 0 < u; < u << uy, since the series E sz

r=1

is uniformly con-

vergent in that interval; therefore the series X ’(0;\ ) converges

r=1

to the value EdﬁK (0, »). Again,

3 £0#0 _ 5 $080_ ko,

r=1 r

Therefore }‘ im j F(', 0, n)dz' = — £,(0) £2(0)+2'K (0, 0)
= — £,(0) £5(0)+ 2'f, (0) £,(0)
= — £,(0) £(0)+£(0) £, (0)
= 1.

o
Q

SER. 2. VOL. 6. No. 999.
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It may be shewn, in a similar manner, that

lim J" F(', =, n)ds = 1.

Nn=ow r—p

We have next to shew that J“ F(z+t, 2, n)dt are numerically less

43

than a fixed positive number, for all values of u,, such that 0 < u; < &,
and for all values of #; z being any point in the interval (0, ).

The value of the integral is
[\/— cos VZ-}-sm rz 32 a(z) + 2, ?‘)] I:J 2 sm rz' a(z 7-):’2'—“-#

L =2+py

for, as before, [ a(z) sinrz dz may be integrated by parts, and the result
has the factor 1/r. Of this, the part

2 5 €08 72 sin r (z+u,) or 1 > sin ru, 4 sin (2z4-u,)

ki r ™ r

is numerically less than a fixed positive number, for all values of z and all
values of 1,. The remainder consists of series which are uniformly con-
vergent, and therefore the required result holds.

It has now been verified that the conditions of validity of the theorems

of §§ 4, 5 are satisfied.

15. We are now in a position to state the following general theorem,
which has been established by the foregoing investigation.

Let f(2) be a function, limited or unlimited, which has a Lebesgue
integral in the interval (0, w). If the normal functions which satisfy the

differential equation
T+~ U=0,

where 1, has limited total fluctuation in the interval (0, w), and where p
has values such that the boundary conditions

@—h’U 0, for z=0, and %g+H’U =0, for 2=,

are satisfied, be denoted by ¢n(2), then the series

§¢wf¢wvww'
r=1 0
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converges to the value 3 {f(z4+0)+f(z—0)} at any interior point z of the
wnterval (0, w), at which f(z+40), f(z—0) exist and are finite, if a neigh-
bourhood of the point z exists in which the function f(2) is of limited total
Suctuation. In any interval in which f(z) is continuous, and which is
contained in the interior of an interval in which the function has limited
total fluctuation, the convergence of the series to the value f(2) is uniform.
At the points 2 =0, z =, the series converges to the values f(040),
fx—0), if the function is of limited total fluctuation in neighbowurhoods
of these points.

In order to pass back to the functions which satisfy the equation:

2 (x %—L-’) +gr—D ¥V =0, M

with the boundary conditions

ﬂ—h,V=0, for x =a, -@Z+HV =40, for z =219, (2)

dz dz
we write $u(2) = (gh) Vo (@) ;

. _ (9 L]
then, since dz = ( k) dr,
b
we have j gVa(@) Vu(x) dz = 0, for nE= 2,
b

and J g{Vu@) }?dz =1.

Writing x (z) for f(2), the series becomes

b ’
S 3 ' _n X&) '
2 (gl V@ J 9Vl Mo d.

If we now write F(z) for x(z)(g%k)~% and remember the assumption that
g and k are such that (g%) % has limited total fluctuation, and is. con-
tinuous in {(a, b), we obtain the following theorem :—

Let F(z) be a limited or unlimited function which has a Lebesgue
integral in (@, b). Let Va(z) be the function which satisfies the equa-
tion (1), and s such that

]
j g1 Va@}2de =1,
2c¢2
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and corresponds to the value r, of v, found so that the boundary conds-
tions (2) are satisfied. Then, it being assumed that (gk)=* has limited
total fluctuation in (a, b), the series

1
V() S g' V') F(z') dz'

converges to the value 3 {F (z+0)+F(z—0)} at any interior point of (a, b)
at which the functional limits have definite finite values, and which s
such that the function has limited total fluctuation n some netghbowurhood
of the point. In any tnterval in which F(z) vs continuous, and which s
contained i the tntertor of another interval tn which it has limited total
Suctuation, the convergence of the series to the value F(x) is uniform.
The series converges to the values F(a+0), F(b—0) at the points z = a,
r = b, if there exist neighbourhoods of these points in which the function
has limited total fluctuation.

We have not considered the cases in which 2 or H is infinite, or in
which both ave infinite. The investigation in that case is of a precisely
similar character, the details being slightly different on account of the
somewhat different form of the functions ¢, (2).

Tre SEeERIES OF LEGENDRE’'S COEFFICIENTS.

16. In the preceding investigation, the differential equation (1) has no
singular points in the interval (a, b). As an example of a case in which
there are singular points at the ends of the interval, the case of the series

2n+41

==

Py, (x) Sl f&") Py(z') dz’
-1

2”;' ! p.(x) satisty

will be here considered. The normal functions \/
Legendre’s equation

%[(1—952) i%’;@] +n (1) Po(@) = 0.

Let FE' z,n) = E 27;-1
r=0

P, (x) P (') ;

then, by a well known formula of summation, we have the expression

n+41 Ppia () P, (m’)—Pn(x) Pot-i—l(x,) .
2

F', z, n) =
(', z, n) 7 —2'
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We shall now verify that the conditions of the theorem of § 1 are satisfied
for the interval (—14¢, 1—e¢) of z, where € is an arbitrarily chosen
positive number. We cannot, in this case, apply the theorem to the
interval (—1, 41).

It is known. that in the interval (—1+e¢, 1—¢), the value of P,(z) is

given by
(ke o oo | 4229

for every value of n (>0); where z = cos0, and «(n, 6) repre-
gents a function which is in absolute value less than some fixed num-
ber, for all values of n (> 0), and for all values of z in the interval

(—14e 1— ).

This value of P, () is clearly of the form

an, x)
If |z—a' | > n, we have

n+1 1

| P, 2, m) | <= Vi 1)

|a(n,:l: z‘)|<—|a("n1’, )Ir

provided z, z' are in the interval (—1+4¢, 1—e¢). Hence, in this
interval, | F'(z', z, n)| is less than a fixed number, for all values of =, z',
and z.

Again,

By n+1 ( Pn(iIJ ) Poa@), |
F@,ande =" (P [ 2D 0y —p, [ Lnlly,
Ll (z', z, ) dz 9 1 10z —z [

B1
n+1[Pm(£)l j Pu(&)da' 4= BIL Py(&)ds'!

Zz—

ky B
—P,(z) { ’ ja 5 Po (') do'+ I__l_z.}_; S,\_ P, +1(‘-E')d.l:'}|~],

{J: 1 Jag

where %, and %, are numbers such that o) <k <8y, oy <
x i8 not interior to the interval (a; —u, ,31+;;)

k, < B,; and

2

If we employ the known formula

dPu.{..l(x’) _ dPn—l(x')
dz' dz'

2nrn+1) P.(x'") =

’
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we then find that

81

5 F(z', z, n) dx’

7l+1 Pn+l(1‘) f 1
p) ont+1 lz—

+ FIB_IEP’H‘I(BI) u+1(k n 1(,81)+Pu 1(k1)]}

[Pn-ﬂ(kl)_-Pn+1(al)_Pn—l (k1)+Pu-l(al)]

_ Pu@) ¢
2n+8 (1:

[Pu+'(k2)— n+'(¢11)_ n k2)+Pn a ]

+ ‘z:__ﬁl [P.,H‘ ’ (Bl) —P',H‘.z (kz) —P"' (131) +Pu (k2)] } ].

Hence we have, by using the form a(:b_ ) or P, (z),

81
; F', z, n) dx'
aq

1
<IE ’a(n)ls

where (a;, 8)) is any interval in the interval (—1+e¢, 1—¢), and is not

B1 !
interior to the interval (a;—u, B;+w). Thus j F{', =z, n)da:’i is less

than a fixed number independent of «;, B;; and this number converges to
zero as 7 18 indefinitely increased. It has therefore been shewn that the
conditions of validity of the general convergence theorem of §1 are
satisfied for every value of u > 0.

—l+e

17. The limit of 5 f&) F@', x, n)dz’ will now be investigated.
1

It will be assumed that z is such that £+1—e > u. We have then

j_lﬂf(w') F{', z, n)ds'
-1

. S f@) [Prsr(@) Pa(e)=Pa@) Pasr@"] da’

:C+1 -1
=1l+e
+2 [ @) [Pas @) Pale) = Pale) Pan (2],

where ¢, is a number such that 0 < ¢ <.
Let us now assume that f(z') is monotone and limited in the interval
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(—1, —1+¢); we have then

~14e
| @) Pusta) Pu) — Pa @) Praa] a0
~1+eg
= 140 | [Puat@) Pa@)—Py@) Poun @] da’

—1+4e¢

+f(—1+€1"'0)5 ) [P'u+l(m) Pﬂ ('-E')_-Pn(x) Pn+l(z')] dx'v

-lde

where ¢ i8 such that 0 < ¢ < ¢;. Now

(+1) S:T”P.;,,l(z) P.(@)dz
= 2"::-'_ 11 Pop1 @ [Popr(—14e)—Pouy(—14€)],

and the expression on the right-hand side is numerically less than
2 | Pay1(x) |, which converges to zero as » is indefinitely increased,
uniformly for all values of = in the interval (—1+4e+4u, 1—e—u). It
may similarly be shewn that
—1l+4eg
ot [ P Panten a

has the same property. A precisely similar proof establishes also that

-1

" [P,,,+1($) Pp(z") =P, (z) Pn+1 ((I)')] dz'

—1+4e,

m+nj

has the same property; therefore

n+1
z+41

converges to zero, uniformly for all values of z in the interval (—1+e+u,
1—e—u).
Similarly also, it may be shewn that the other part of the expression for

—14e;
j _1+ F@) [Pas1 @) Pu(@) =Py (@) Pass (') ]da’

—1+e
5 f(z") F(', z, n)dz' converges uniformly to zero. Since a function

with limited total fluctuation is the difference of two monotone functions,

it can now be seen that, if f(z') is of limited total fluctuation in the
—~l+e

interval (—1, —14¢), then j X f@)F@', z, n)dz’ converges to zero,

as 7 is indefinitely increased, uniformly for all values of z in the interval
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 (—14e+p, 1—e—u). Also, if f(2') is of limited total fluctuation in the
interval (1—e, 1), a precisely similar proof establishes that

jl f@&)F@', z, n)ds'

1

converges uniformly to zero, for all values of z in the same interval as
before.

18. To prove that the conditions of the theorems in §§ 4, 5 are
satisfied, we have

jl i 2r+1

z r=0 2

P,(z) P,(z")dz' = } é P, (2) [Pro1(@) = Prsr(2)] +3H1—2)

= % [1 -Pn (.E) Pﬂ+l (I)]-
Therefore

T+ p

j F(', z, n)ydzr'
—e 1

=‘%[1—-Pn(sc)Pﬂ+1(al:)]—51 F@', z, n)dx'— F(z', z, n) dz'.

T+p 1-e

1

It has been shewn in § 17 that j F(z', z, n) dx' converges uniformly to
1~e

zero, a8 7 is indefinitely increased, for all values of z in the interval

1—¢

(—1+4+e+up, 1—e—wn). It has been shewn in § 16, that j F', z, n)dz'

THp
converges uniformly to zero, for all values of z in the interval
(—1+e¢, 1—¢), the conditions of the fundamental convergence theorem
being satisfied. Also P,(x) Pn41(z) converges uniformly to zero, for all
values of z in the interval (—1-4e 1—e). It therefore follows that

rﬂ F(z', z, n)dz' converges to the value %, uniformly for all values of z
i:] the interval (—14e+u, 1—e—u) of z. Similarly it can be shewn
that r F(z', z, n) dz' converges to the value 4, uniformly for all values
of z u: —t;le same interval. We have next to shew that

T+
j F(', z, n)dx'

T4 pr

18 less than some fixed finite number for all values of u; such that



1908.] A GENERAL CONVERGENCE THEOREM. 398

0 <<y < m, for all values of 7, and for all values of z in the interval
(—1+e¢, 1—¢), the number u being taken to be <e.
The integral

2+

T+ p n
j F', z,n)de’ or Z

T+py r=0 2

P,(z) j * p.(&) dz’

LAY

is equivalent to A
3 éPr(w)[P¢+1(w+#)—Pr-1($+u)—Pru('z+u1)+Pr-x(x+u1)]+%(#—/ul)-

Writing z == cos 0, z4+u = cos §', r+pu; = cos§”, and substituting for
P.(z) the value

(7'7:- sin 4 )

with the corresponding values of P,;1(cos @), P,_i(cos®’), Py,1(cos ")
and P,_,(cos 8”), we obtain an aggregate of terms of which the first is

Z3 (1'7r 32in 9)& <(7'+1)Er sin 9’)&[‘303 1 (r+3)6— —Z' ; + ﬂ)},_@l]

J. . 3 I_l ' Cl()', 9)
x[eos {+po— | +20 2]

. . . . 1 1
This consists partly of series with ey or G factors of the

general term, and which converge uniformly, and partly of the series

1 ? . T ) _( | ’ ol
z (r(’r+1) 72 sm 0 sin 0'> gos {(7+%)9 TS Re——,

and this is expressible as the sum of four series which, apart from factors
independent of » which are less than fixed numbers, are of the forms

% cos r(0+0") % sin 7 (6+6") % cosr(0—0) § sin 7 (0—9")

I Wre+1) 1 e+l T Are+D T Are$D

It is known* that these series all converge uniformly, for all values of
6 and 6’ such that 04+6 and | 6—6' | are in an interval interior to the
interval (0, 27), and this condition is satisfied if x is in the interval
(—14e 1—¢), and if u <e.

¥ See Theory of Functions of a Real Variable, p. 729,
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The part of the expression which depends on u, is of the form

2 . | g T\ a6
2P [\/ r—1) 7 sin 0 | O ((? ne T) +1—-}
—_ ___2—_ r . w__ T a(r, 6" l
\/(r—{-l)-rrsin 6" (cos(1+§)6 4 + r J]

2 e x| , alr, 6"
zP, \/___[ rsin {(43) 67— T __]
or P, (x) e @ L5 6" sin 1(7 +30 gl + "
When the value of P,(z) is substituted, we obtain an aggregate of terms,
of which the only one which requires special examination is

» COS { r+3) 60— TI«} sin f 4P 6”——1—}

& —————3in g’ bX l
T 4/sin @ sin 6" 1 r
or 1 \/sin 9" 2 sin (r+3)(0"—8)—cos (r+3 (6" +6)
x Y sinf T r ’

Now & 8in(+3@ =6
1 r

neighbourhood of 6"—@ =0, can easily be shewn to have & value which
is numerically less than a fixed number, for all values of =, 6, 6". The

n

series Z —}_—cos (r+3) (0"+6) converges uniformly in an interval of 6”46,
<

, although it does not converge uniformly in the

which is interior to the interval (0, 27), and is therefore numerically less
than a fixed number.

&+

»
It has now been shewn that 5 F(z', z, n) dz' is numerically less

Z+m
than a fixed number independent of =, z, x, and u,;, provided
0 <y << if z is in the interior of the interval (—14¢, 1—¢).
That Y-” F(z', x, n) dz’ has the same property, can be proved in the
T—p
same manner. It has now been shewn that the theorems of §§ 4, 5 are
applicable to an interval enclosed in the interior of the interval (—1, 1).

19. The investigations in §§ 16-18, are sufficient to establish the
following theorem :—

Let f(z) be a function which, whether Limaited or unlimited, has a
Lebesgue integral in the interval (—1, 1), and s such that in sufficiently
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small neighbourhoods of the points —1, 1, the function is of limited total
Ructuation (& variation bornée).

The series 2n+ 1

P, (J:)S S &) Py (') dx’

converges at any point & interior to the interval (—1, 1) to the value
3 {f@+0)+fc—0)}, if a neighbourhood of the point z exists in which
the function s of limited total fluctuation.

In any interval in which f(x) is continuous, and which is contained
in the interior of another interval in which the function has limited total
fluctuation, the convergence of the series to the value f(x) is wniform.

The condition that the function should be of limited total fluctuation
in neighbourhoods of the points —1, 1, although sufficient, is not necessary.
I propose, in a later communication, to replace this condition by a much
less stringent one.



