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On Pure Ternary Reciprocants, and Functions allied to them.
By Mr. E. B. Eruiorr.

[Read Nov. 10th, 1887.]

1. In the present paper reference will from time to time be made
to the two here mentioned. They will be quoted for shortness as
Paper L. and Paper IL,, respectively,—

L. On Ternary and n-ary Reciprocants (Proceedings, Vol. xvir.,
pp. 172—196).

1I. On the Linear Partial Differential Iiquations satisfied by Pure
Ternary Reciprocants (Proceedings, Vol. xviir., pp. 142—164).

The notation nsed will be that of Paper II. Thus, for instancs, z,,
L dr +az
rls! da'dy
II. was, it will be remembered, that pure ternary reciprocants are
those homogeneous and doubly isobaric functions of derivatives, such
as %,, which have four annihilators called Q,, Q,, 7, V,. Of these
the first two are

will throughout denote The main conclusion of Paper

Q= z{(m+1)z.,.+,,,,-‘g} bondl mtng 2.,
Q=23 { (m+1)2m_1,n41 Ej—}’ m L1, m+n g 2......... (2),

while the two others [¢f. Paper IL., §9 (v.)] may be most compactly
written
d
V=3 {E ("ZvsZms1=r, n-1) m} creriereneeenne (3)y
the inner summation in which is limited by r+s <4 2, »r $ m+1, s 3 #,
r+s$» m+n—1, and the outer by m+n § 3, and

Vy=3 {3 (stntuerinrd) Cg— | JE— “),

limited by r+s42, rbm, shbnu+l, r+8Pbm+n—1, m+n43.
Within limits as stated in each case, the summations are all supposed
to be taken over all the range of positive integral (including zero)
values of m, n, 7, s.

It s proposed to base most of what follows on the consideration of
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functions, homogeneous and isobaric both in first and second suffixes,
which, though subject to annihilation by both ¥, and ¥, are not
annihilated also both by @, and Q,, and consequently, not being full

. . 3 .
invariants of the emanants (zy, 71, 2, (%, v)’, &c., are not recipro-
cants. '

2. It will be well to have hefore us the matrix

Z3m %20

Zg1y %11y %

%19y %099 %1

Zo3 ZM

Z40y Z30 Z9

2310 Za1y %300 2115 %20

Zagy 219y %1y Zogs 21y Ppo

%18y Zony %19 %09 211
Zo4s Zay %
Z50r 40 Z300 Z9

241y Zs19 T409 Zo1s 2309 211y 2y

Z3gs B35 Z315 Z1py Za1y Zs0s Zopr 2115 g0

293y 213y Zggy Zogs 219y Zany 2 F11y 2o

2145 %oy 213 %03y 2195 Zogy %1

Zo5r Zo4y Zo3, Zog

Zg0y %50 Z40 Z3 Zgo

Z519 %41 %50y F310 P40y Za1y Zs0s 211y 2y

242y %33 Za1y Tagy P31y Zam %1y Fany Zay Zon 211y %y

Zg3y %93y %9y %189 apy a1y Zosy Z1gy Zg1y %0y Zg9; %11y 29
Zygy 2140 Zagy Y04y Y18y oy Zo3y 219y g1 %02y 2115 %30
2151 Zop Zpas Zo4y %19 %3y 21 Zop %1

Zom Zosy %o Z3, %y

oo ee vee ver “ee vee “ee

see “ie e oee e oee,
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From this we can immediately extract any number of determinants
which are functions obeying the laws stated at the end of the last
article. In fact, we have the

Theorem.—A determinant of any order n, obtained by selecting from
the matriz a row which extends to the n* column and no further, and
any n—1 preceding rois, is a homogeneous and doubly isobaric function
of the derivatives, and is annihilated by both Vy and Vi  Call this
Proe. 1.

For instance, any one of the first three rows is such & determinant
of one term, any three of the rows 4 to 7 give such & determinant of
the third order, the five rows 8 to 12 with any previous row give one
of the fifth order, &c., &c.

That such determinants are all homogeneous needs no proof; that
they are separately isobaric in first and second suffixes follows from
the fact that the differences of the two partial weights of the con-
stitnents in two chosen columns and any the same row are both inde-
pendent of the particular row; and that they are annihilated by ¥,
and ¥, is made clear as follows.

Adopt for the moment the notation c,, to denote the constituent in
the " row and s column of the matrix. It is easy to see that, the
summations extending to all values of the number 7,

Vi=3 I: {2% Ca+213CrsF 32504+ 225 €5+ 21300
+ 42407+ 32y, Ca+ 2259 CroF 21y C0 .- } I ]
7]

and V, =3 [{ 2116+ 220963+ 25, €y + 219 ¢5 + 3205 Cg
+ 25101+ 229968+ 3215 Cro + 2o+ .. } ]

whence it follows that V), operating on the first column, produces
from it a sum of multiples of succeeding columns; and similarly for
V;. Moreover, if any other column than the first be chosen, subse-
quent columns can be selected in which its constituents are followed
by other constituents exactly in the same arrangement as are the
same constituents where they appear in the first column., Thus, the
operation of V) on any column produces a colamn which is & sum of
multiples of following columns ; and similarly for ¥;. V7, and V, then
both annihilate all determinants which can be obtained by associating
complete rows of the matrix.

3. It is of great importance to remark that, whatever be the
function operated on, the following four surprisingly simple equiva-
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lences of operators hold :—

V=T, = 0o e vereee e (B),
Q V=V, 2 =0..oorvrcrreriecrernnenans (6),

V=V =V, oviiiinvnneviinnnnnne(7),
QVi~V, =T coreiieecencirennienann (8)0

To prove the first of these, use the expressions of § 1 for £, and ¥,
4 in QV,—V,Q, we find that if

mn

Selecting the terms which give

d
dz mn

E{T (T+1) Zrate-l, Zmaler, ””} +2 v ('m+2_"') Zrafmaea-r, n~l-l}
- (m+ 1) z {Tznznua_f, ,._]_,} y

n > 0 the coefficient of is

the first range of summation being limited by

rdPm+l, s 1P n

the second by rd m+l, sPpa—1,
the third by rd m+2, sPpa—1,
and all three by r+s £ 2 P m+n—1.

Now the ranges of the second and third summations, though
apparently different, are really the same, since the value m+2 of 7,
which belongs to the third though not to the second, adds to the second
only a zero term in virtue of the coefficient m+2—+ Thus the
coefficient is equal to

b {'r (’I‘+1) zrﬂ,;—lzmtl-r,n—a} over the range r } m+1’ s { 1 } n
-3 {7' (7""1) Zry zm-ri!—r, ﬂ-l-l} over the ra.nge r } m+2’ § } n_l’

the ranges being further limited by r+s ¢ 2 » m+u—1. But, if in
the latter summation, and the conditions determining its limits, we put
741 for r and s—1 for 5, we produce exactly the former summation
and the conditions by which it is limited. Thus the difference of the

summations, i.e., the coefficient of 4 in @, V;—V,Q,, vanishes.

The case of n =0 has here been omitted. No such symbol as

-‘:—, however, occurs in ,, whilein V, the coefficients of such symbols
o
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contain only such derivatives as z,,, and are consequently annihilated

by Q.. It follows that the coefficient of d:,i in Q,V,—V,9, vanishes.
m

The proof is therefore complete, that
V=V =0.eevriniiiiiininnnnnnnne (5)

In precisely the same way, or merely by interchange of first and
second suffixes throughout,

Q V=V =0.0veviiininninnniiiennnn.. (6).

In reducing Q, ¥V, — V,Q, we must consider separately the coefficients

of symbols like E‘-i— and those of the more general symbols ;i_d_’ where

Zon Zmn

m i8 not zero. We have, firstly,

Co.

in Q,V,— 7,

Zon

=8, Co. -2 in ¥,

Zon
= ﬂ!z (zllzo,ﬂ-l)
= 2{(6’-‘-1) zO,ulzo,"-l}) 8 4: 1 } n—2;

and, secondly, for values of m exceeding zero,

Co. EZSL in ©,V,— 7,0,

=3 {" G+1) 2,01,001 Zuaros, u-c} +3 {1' (n—s+1) 2, 2., ,,_,,,}
—(2+1) 3 {20 20 r, noser}
all three summations being limited by
r+s €2 $ m4gn—1,
the first also by 'rvtt 1% m+1, s3n,
the second by rPm, sPa,
and the third by rdm, s§Patl.

The value n 41 of s, which belongs to the range of the third but not
to that of the second summation, gives rise only to a zero term if
added to that range, in virtue of the coefficient n—s+1. Thus the
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difference of the second and third parts of Co. is

zmu
-2 {'rs 2y zm-r,n-nl}’
over the range limited by
r+s42p mtn=1, rdm sPatl

‘Now in the first summation put r+1 for 7, and s—1 for s, thus
making the limits of that summation identical with these limits. We
obtain the result

Co. E‘L in @, V,—V, Q=2 [ {(*+1) s—75} 2 201,001 ]

mn

=3 {Sz" 2;,,,..,, n-lol}’

limited by 7+s € 2 $ m+n~—1,7 } m, s $ n+1, a form with which

the previously found coefficient of a—‘:— is strictly in accord.
on

Thus 03 K— V]Qg =23 { 3 (SZ" Zin—r, n-l*l) } ’

over the inner range limited as above, and the outer limited by
m+n § 3, '
= V’.ut.............-.--.....-....nu-n.(?)-

Hence also, lastly, by interchange of first and second suffixes
‘throughout, )
‘ Q,V,—V,Q,= | N ¢ )

4. The conclusions which can be drawn from the four symbolical
identities (5) to (8) are numerous and important. - Attention is in the
first place called to ome which affects primarily the theory of in-
variants and seminvariants of a system of quantics, but which will be
-geen later (§ 12) to have'also an important bearing on the theory of
reciprocants.

Proe. IL.—From any seminvariant I of the system of quantics

(5201 211, zo:ji "l, ”)’: (zam %31 %13 %3 j[u; ,v).'.’ &e.,

another seminvariant of the system may be generated by operating with V,
upon 1.

For, if 0,T =0, V,Q, I =0, and therefore, by (5), @, V,I =0, i.e.,
V11 is annihilated by ©,, and is a seminvariant.
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The proposition is of course a purely algebraical one with regard to
the quantics, whatever be their coefficients, being quite independent of
any notion as to those coefficients being derivatives of a function z
with regard to z and y.

*If the seminvariant I be of degree ¢, the seminvariant V,I thus
generated is of degree 1+1. The first partial weight of VI, .., the
sum of first suffixes in each of its terms, exceeds that of I by unity,
and the second partial weight, sum of second suffixcs, is the same in
Iand V,I. This second partial weight is the weight in the ordinary
language of binary quantics. Thus, adopting that ordinary language,
the weight of V,I is the same as that of I, while its degree exceeds
the degree of I by unity.

One example of this use of the operator ¥, will suffice for the pre-
gent. Choose for I the seminvariant ac—b® of the #n-ic,

n
(znoa zu-l,] (L] zO)a‘Iu, ‘U) ]

. —o. 3
1.e., take I = 2n2,%ym0,3— (n—1) Zhi

We deduce from this the seminvariant

VI = ey, (Co.% in V,) g (co.
no

d
dzu-ﬁ,i

in V,)

"‘(n—l) Zy-1,1 (Co.d d

zu-l,l

in Vl)
rd»n-l

=NZ,.9,2 3 (TZ;ozuu-r,o)
re¢?

r»n-1 rP® nel .
+ N2, { 2 (Tzlozu—l-r,ﬂ) + 2 (TZ,’] zn—l-r, l)
re2 r ¢l .

rP} he-

3
+ 3 (rz,az..-n-r,:o)}

r<40

ryu~ ‘ T¥nu-3 .
._(11—1) Zu-1,1 { '32 ('I'Zyozn—r,l) + rgzl (’I'Zrlzu—r,o)} ...(9).

In particular, taking » = 3, from the seminvariant
2 (333{]212-2:1)7
we obtain in this manner
6"12"':0 +32g (2220502 + z,al) —62q 252,
a seminvariant from which, upon subtraetion of

32y, (zf; — 42y 2y),
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which is another of the same degree and weights, and division by 6,
we obtain another of three terms only, viz.,

Z19%9 — Za 2% + 325020 %03
or, again, by adding 23y (23, — 4250%3),
the seminvariant 232} —25 2520+ 250 (4], —220%) vrevvereerennennn(10),

i.e Zgny %30

Zy Zny By

%19y %oy %
of which V, and V, ave annihilators. This we shall meet with again
presently.

From any seminvariant formed by the method of this article,
repeated operation with Q, will, of course, enable us to write down
all the coefficients of a corresponding covariant.

It is almost unnecessary to add that, in virtue of Q,V,—V,Q, =0,
V, 18 in like manner a generator of seminvariants of the swme quantics

read from right to left, from other such seminvariants. This may be
quoted as Pror. ITL

5. Of other results of the equivalences (5) to (8), the following
will be useful for present purposes.

Pror. 1V.—If a function B of the derivatives is annthilated by V, so
dlso is Q R. -

For, by (5), Vi E=Q,V,E = 0. In like manner, by (6)
Prop. V.—If a function R is annihilated by V,, so also is Q, R.

Pror. VI.—If a function B is annihilated by both V, and V,, so also
are both Q, B and Q, R, ‘

That ©, E is annihilated by V;, and Q, B by V,, is told us by the two
last propositions. That Q, B is annihilated by V, is true since, by (8),

V. OQRER=QV;E~V,R=0;
and, similarly, that Q, R is annihilated by V, is seen to be necessary.

Pror. VIL—If V, and Q, both annihkilate a Sfunction, so too does V,.
This is an immediate consequence -f (8). Similarly by (7).

Pror. VIIL—If V, and Q, both annihilate a function, so too does V.

6. We are now in a position to construct an important class of co-
. | ) 3
variants of the emanants (z,o, 211y Z0 1 % v) ) &,
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Take P, a pure function of the derivatives, which is annihilated
both by V, and V;, but not by both @, and Q,. If homogeneous and
doubly isobaric—and to such functions it will be well to confine
attention— it is exceedingly likely to be a coefliciént of a covariant of
the emanants ; but, even if it be not such a coefficient, a covariant,
all whose coefficients have the same property as itself, may be ob-
tained from it as follows.

By repeated operation with Q, form the series of pure functions
QP QP QfP, ... . These, like P, will by Prop. VI. be annihilated
by V, and V;. Now, each of these functions is of second partial
weight one lower than the immediately preceding. One of them, Q; P,
must therefore be presently arrived at, which and all its successors
vanish. The last non-vanishing one, ;™' P, is then annihilated by ©,,
that is to say, is a seminvariant of the emanants. Call it P,

Operate on P, repeatedly by @, till a vanishing result Q)'"'P, is
obtained. Then, writing, in accordance with this fact,

P, =mP, P, =(m-1) PR, ... 4, P,,=P,, O,P, =0,
we obtain & covariant of the emanants,
(P, Py, P, ... P,) (2, 0)" oriveeerininnnnn, 1n,
all whose coefficients are annihilated by V¥, and by V.

If the degree and partial weights of P, are 1, w;, w,,

those of P, ave 7, w,—1, w,+1,

those of P, are i, w,—2, wy+2,
&e.,

and finally, those of P, are 7, w,—m, wy+m.

Thus, we have w,—m = w; and w,+m = w,,

each of which is identical with
m = w, — ;.

(In particular, if w, =w, m =0; and the covariant reduces to a
single term—an invariant of the emanants, and consequently a re-
ciprocant.)

An instance of such covariants is the cubic

Ay * +34, 9% 0+ 3400 + A;0® Lo, 12),

where 4, is the seminvariant (10)—where 4,, 4,, 4,, 4, are, in fact,
the determinants obtained by omitting the fourth, third, second, first
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rows, respectively, from the matrix

2y Zyo oo (13).
2211 21 ZQU i
Z19y %03 Zn

%03, Zn

It may be here remarked that the conditions 4,=0, 4, =0, 4,=0,
Ay = 0, two only of which can be independent, are the differential
equations of the third order obtained by eliminating the constants
from the general equation of a quadric surface.*

7. It is convenient to have a name for covariants of the class in-
troduced in the last article. Let us speak of them as Reciprocantive
Covariants, and of their leading coefficients, such as Py, as Reciprocan-
tive Seminvariants, of the emanants. The names are justified by
the immediately following proposition, as well as by other facts to be
adduced later.

Pror. IX.—Any invariant of a Reciprocantive Covariant of the
emanants is a Pure Ternary Reciprocant.

For, being a function only of P, P,, ... P,, all of which are
annihilated by ¥, and by V,, it is itsclf annihilated by each of those
operators ; and, being a covariant of a covariant of the emanants, it
is a covariant of the emanants themselves. :

An example immediately to be considered leads us to supplement
this theorem by aunother which might at first sight appear un-
necessary to state, though clearly true; viz.,

Pror. X.—If any function of seminvariants of the same or different
Rectprocantive Covariants be annihilated by Q,, it <s a Pure Ternary
Reciprocant.

8. In exemplification of this method of constructing pure ternary
reciprocants, let us consider two simple cases.

# In fact the four results of differentiating three times partially the equation
a+ 20z + 20y + d2? + 2exy + fy? + 292 + 2haz + 2kyz + I3 = O
may bo written
(94 52 + ky + 1) 29+ (B + I2y) 89 =0,
9+ ha + ky + 1) 231 + (b + Inyg) 21y + (B + I2g)) 29 = 0,
(9+Az+ky +12) 519+ (b + Izy0) 309 + (K + Uzgy) £, = @,
(94 bz + ky + &) 55 + (K + leg) 29y = 0.
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(a) The quadratic emanant
Zoqud + 21 UV + 29 0°
is itself a reciprocantive covariant. Its one invariant,
mtn—17, = H, BAY eoreerreesriensesrennennns (141,

is the one reciprocant involving second derivatives only (¢f. Paper.I,
§ 12, or Paper II, § 11).

(B) Take the cubic reciprocantive covariant
A+ 84, uM + 8A;uv* + Ay vvevvvviinn i e (12),
where 4,, 4,, 4,, 4; have the values given in (13) above. A
Its coefficients are connected by the linear relations
2y Ay~ 2y Ayt 234, — 2554, = 0,
ey dy—2y 4+ 200 4, =0,
o ds—2y 4y +7u4, = 0,
of which the second and third tell us that
A A=Ay _ A A —A Ay, _ A A—A; L, sy oo ).
% 2y 2y

The fivst of these identical forms of B shows that it is annihilated by
Q,, and the third that it is annihilated by Q,. Thus, by Prop. X, B
is a reciprocant. It is of order 5 and of partial weights 6, 6, and is,
in fact, the resultant of the quadratic and cubic emanants (¢f. Paper
IL, §11).

The one invariant of (12), its diseriminant
A= (AoAa—‘-A.:)(AlAa—A:)"';‘ (do 43— 4, 4,)
= B (292 —17,), by (15),

gives no new reciprocant.

9. Facts with regard to the transformation of functions such as we
are considering by cyclical changes of dependent and independent
variables will now be investigated. In the first place, it is easy to
see that—

Prop. XI.—If Q be any homogeneous isobaric pure function of the
derivatives of %, whose degree is t und first partial weight w,, and which is
annihilated by V, (not necessarily also by V), the transformed ex-



1887.] Pure Ternary Reciprocants. 17

pression for Qari~ in terms of the derivatives of » is homogeneous and of
no dimensions in the first derivatives z,y, oy,

For, by Paper II,, (11) and (13), we have, under the conditions
stated,

d (i) = = 0 Qs vrennse e (17

d%x 10
d Q 1
d -_—] = ———Q R R R Y Y 18
an .dwm( .l;w‘) z:gw. |Q ( )v
d 4 Q\ _
whenco (zm dz,, dmm) (zj;”l) =0,
1.6, sinco (Paper I, § 5),
2 =t (19),

(‘”mdd +an d;l,m) (%) =0.

10

In like manner, by Paper II, (18) and (21), it is proved that—

Prop. XIL—If @ be a homogencous isobaric pure function, of degree
1 and second partial weight w,, of the dertvatives of z, whick is annihilated
by V, (not necessa.uly by V), the y-transform of Q'z: " is homo Geneous
and of no dimenstons in the first derivatives Yo, Yo, -

Now, take for @ a function annililated by @, and having othor
properties ag in Prop. XI. Lquations (17) and (18) have in this
cage vanishing right-hand members, and tell us that tho z-transform
of Qz; /7~ is pure.

Again, take for ' a function having propor tics as in Prop. L[I
and besides annihilated by @, We see, in liko mannor, that tho
y-transform of Qz,'~* is pure.

These conclusions are, in consequence of tho absence of roquirement

that @ bo aunihilated by ¥, or @ by V,, somewhat moro general than
their important cases :—

Proe. XIIL.—The a-transform of Pyz,'~*, where P, is a reciprocantive
seminvariant of degree ¢ and first partml weight w,, is a pure function.

Pror. XIV.—The y-transform of Py 25", where P, s the vesult of
interchanging first and second suffizes in a reciprocantive seminvariant
Py, and 7, w; are the degree and sccond partiul weight of Iy, is « pure
function. (N.B.—The second partial weight w, of P, is, of course,
the first partial weight of P,.)

VOL. XI1X.—No. 806. o
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These two propositions are really identical, as will become clear
later when we determine the actual expressions of the pure trans-
forms.

10. Let us next employ (17) and (18) to aid in discussing the
transformation of coefficients other than the first and last in & re-
ciprocantive covariant

(P07 Pl’ Pﬂ, s Pﬂi) (11'7 v)’”'
If w, be the first partial weight of P,, w,—r is that of P,. Hence,

by (17), I
( : )='— n_q P,

i+10; - S 410 =1
da,m " EN

= 2@ TP e .(20
1001 ?

by (19) and the law of eduction of one coefficient of a covariant from

the preceding. Again, by (18),

d [ P ) 1
L) = — - QP,
d.vm (z;o* oy e !
= —m";l"“'" P, i (81D,
Now “w —— (P, P,, Py, ... P,)(u, 0)",

may be written

(B o o B0 2

i+10, ) g+t -17  iee, =27 0 dew,
2y z B 2 %10

w, and w, meaning the first and second partial weights of P, and
having their difference equal to 7 ; and, by (19), this may be also

written
(P 9.:'“”‘ P mlﬂq 1 P a’nw,—} - me:);w,) (u’ ’me)m '''' (22)

It suggests itself, in connection with Props. XIII. and XIV., and re-
sults (20) and (21) above, to seek values of 4 and v that ¢his may be

annihilated by — 2 and -i, i.e., that its z-transform may be a pure
day, dmy
function.

Now, by (20), which is best made use of in the form

(P nw.-r) — rxlo (P’_lwz;w.-n))’
01
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the result of differentiating (22) partially with regard to z,, is

d
{ (um) +m %{o um-l (’Uﬂfm) } Pom;lﬂm
day z

0l

+ { m E?;— (™ vz ) +m (m—1) g;—" u™=? (vary,)? } Py

"01 ‘01

R L Ly

m ('m’_'l)(m'_z) (l‘m m-3 5} f410,03
Foens + 1.2 " (v20)® ¢ Pyay)

and, using (21) in the form

(P 2eT) = = = (P,
0

the result of partially differentiating (22) with regard to @, is

{ ;ijc:o (W) ~m lo um-t (vmm) } Pyaire

+ { ™ (um ) —m (m—l) w™* (vay)? } P, “’;{w'-

dayg Tor

m (m—1) d 2 N
T [ @]

m(m'—‘l m_z) 1 "m- " $ 410y -
___—i_—l ‘)2 au “(mm)“}Pgwm 2

+venee}

and in both these results of differentiation, it is readily seen that the
coefficients of Pyafi, P,air~!, P, a,""’"z, ... are all made to vanish
upon putting

i.6., U= —2zy V=24

Hence the conclusion—

Pror. XV.—If (P,, Py, ... P)(n, v)" be a rectprocantive covariant,
the a-transform of
z'+wn (Pos Py oov Puu) (=201, 210)™

10

is @ pure function, ¢ being the degree and w, the first partial weight of P,
c 2
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Also we have, in like manner,—

Pror. XVI.—Under exactly the same circumstances the y-transform of

1 m
;';To', (Po’ Py, .. P,,,)(—L‘m, zlo)

ol

is a pure function.

11. Required now the pure function of the derivatives of @ to
which, by Prop. XV.,

_"'1 "m
P (PO’ P, . P.,.)(—zm, 510)
10

is equal. This may, ns above, be written

(l’_n_ P L) (ﬁg, 1)”‘.,................(23).

(410, v, -1 ' i+,
%y T %9 Yot

Now, in Paper II., § 10, it was seen that

e — @, +terms with ~1-'ns 8 factor.

Loy =
10 Ty

Consequently, if P bo & homogeneous isobaric function of the suffixed
2's, whose degree and first partial weight are ¢ and w,, and if P’ (z)

denote the same function of the suffixed @’s with suffixes roversed in
order (w,  for z,,, &c.),

L
1 4 10,
zlo !

= (—1)* P (x) + terms with ‘—1-11— as o factor.
ot

Now, I, is P,,.,. Thus (23) becomes
(=1 [Pa @+ 1y Pact @+ e Po@) 4. (22,1)
<ot

"
’

each +... in which indicates that terms with 1 as factor are
omitted where it occurs, Tor

But it has been proved (Prop. XV.) that this form is independent
of z,, and @, Thus wo may give these first derivatives any values
wo please. Make =z, then infinitely great compared with other
magnitudes occurring in the expression. The form taken is

(=1)' P, ().
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This, consequently, is the transform of

1
zl(om, (Po Py oo Pp)(—205 210)"
required.

In exactly the same way, the y-transform of

1 m
ey (Po, Pl) vee Pm)("'zou Zlo) 4

zOI

already proved to be pure, is
(=)™ P, ().
The two results together are most compactly stated

(B Py Pa) (= )™ = (1) Lo = (=1 Tl (20,
01 10

by use of (19), and the analogous qualities

.'-'_/19_—?/01___—_1_

-1 ;1—(; ‘— %o
In (24) is also contained information as to the pure functions to
which Props. XIII. and XIV. have told us that Pyz =" and P,z "

01
are equal. The first, by putting 2, =, y for x, y, 7, is seen to be

(—1)!*= P, (x) ; and the second, by putting ¥, 2, = for =, y, 2, to be
(—=1)"* Py ().

In words, the results (24) may be stated as follows :—

Pror. XVIL.—A first cyclical transformation of dependent and inde-
pendent variables in a reciprocantive covariant with —z,, %, inserted for
its variables, produces from it, but for a sign factor and a power of a
first derivative, the.reciprocantive seminvariant which is its leading co-
efficient ; and a second cyclical transformation produces, but for factors as
before, the same reciprocantive seminvariant with first and second suffizes
interchanged throughout. Or, of course, the facts may be stated be-
ginning from the seminvariant P, or from the reversed semin-
variant P,,. '

One of many conclusions from (24) with regard to mixed ternary re-
ciprocants seems worth mentioning. Taking the product of the three
membersof (24), all written with z as the dependent variable, we see that

PyPy (Pyy Py ... Po)(—2g, 2,0)"

(Zior Z01) ™

is an abgolute mixed ternary reciprocant, or its numerator a mixed
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ternary reciprocant of index ¢+w, For instance,

2 2
239 %3 (290201 =211 201 210+ 203 210)

ig a ternary reciprocant of index 3; and, referring to (12) and (13),

4,4, ('AOZgl'—3Al 231 20+ 34,2, zfo “Asz?o)’

. 3
e Zg Zgg X | %, %1y 2| X l 2100 Zg 2y )
2
Zay Zay Ry %1y Zon Znn 821020, Za1 %11y %o
Zin Zop Ay 203, %03

3 2
210701y %199 %oy

3
. . . Zo1y Zo3y Zo3
is one of index 8.

12. Let us return from this discussion of the extent to which what
the present paper has defined as reciprocantive seminvariants and
covariants possess the fundamental property of ternary reciprocants,
to the consideration of methods afforded by the propositions of § 5
for the determination of pure ternary reciprocants.

The method of §§ 6—8 is a powerful one ; but it is based upon the
knowledge of homogeneous isobaric functions annihilated by V; and
V., and though in § 2 we have before us an infinite number of such
functions, we have no indication that the system is a complete
one. The method in question is not then yet rendered thoroughly
systematic for the determination of all pure ternary reciprocants.

Another process to be now briefly explained follows closely one of
known power for the systematic calculation of invariants of ternary
quantics, and has the advantage of theoretical completoness. I
exemplified it, without full confidence in or any statement of its
generality, in Paper I, § 12, by obtaining the pure ternary recipro-
cant of type 3, 4, 4,

6 (zgz 2+ zzozm) — 32y (221 + 20 215) + 2 (z?l +2z2y)
-3 {2202 (B2 219~ Zgl) —2n (9220 —2132n) + 2229 (320325 — Z?e) } .

(I would remark that V in the article referred to is -mis-written
for V,.)

Required the pure ternary reciprocants of degree © and (equal) partial
wetghts w;, w;.

Let I be such a reciprocant. It is (Paper I.) an invariant of the
emanants

(zm 211 zmj{“a 'U)’: (zsos Zy15 %1y ZMI"’ "’)3: &e..
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If, then, I,, I,, I, ... be a complete system of linearly independent
invariants of the given type of the system, it is necessary that

R=aL+aLtai+... covniiiiiininnn.n. (25)
for some values or other of the numerical multipliers a,, a; as, ...

Now (Prop. I1.), V, operating on any seminveriant I prodnces
another seminvariant, of degree and first partial weight exceeding
those of I by unity, and of second partial weight equal to that of I.
If, then, J;, Jy, J;, ... be a complete system of linearly independent
seminvariants of the emanants whose degrec and partial weights are
141, w,+1, w,, we must have

Nk =Motmatrast..) S+ (ay+ st vya+.0) J,
+ (ot psas+rsast..) it

for some known, vanishing or non-vanishing, values of the multipliers
A, i, v.  For R to be annihilated by ¥, we have then the conditions

Nyt pmas+vag+ ... =0
Ao+t veag+ ... =0
Ay, +pgastviagt ... =0

If these be satisfied, not only will ¥, but also ¥, be an annihilator
of R. For (Prop. VIIL), since Q8 =0 and V\R=0, V;RE=0.
The linear conditions (26) are consequently all those which
a,, Gy, @3, ... bave to satisfy in order that R may be a reciprocant. If
the number of these conditions be less by one or any greater deficiency
than the number of a’s, 7.e., than the number of invariants I in (25),
a pure ternary reciprocant R, or a number having that deficiency for
a superior limit of linearly independent pure ternary veciprocants, is
determined. Hence

Proe. XVIIL—If the number of linearly independent invariants of
degree © and partial weights w,, w, of the quadratic cubic, §c. emanants
exceed the number of seminvariants of degree i+1 and partial weights
w,+1, w, the excess is equal to, or at any rate a superior limit to, the
number of linearly independent pure ternary reciprocants of type i, wy, w,.



