
Docs » Home

o2r web API documentation

Current version of the API: v1

About

The o2r web API acts as the interface between the o2r microservices and the web interface.

The API provides services around the executable research compendium (ERC), or "compendium" for short,

which is documented in the ERC spec.

General notes

The API is implemented as a RESTful API. The entrypoint for the current version is /api/v1 .

Unless specified otherwise, responses are always in JSON format. Body parameters in POST requests are

expected in multipart/form-data format. Requests to the API should always be made with a secure

connection using HTTPS . Some requests require authentication with a specific user level.

License

The o2r Executable Research Compendium specification is licensed under Creative Commons CC0 1.0

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
https://o2r.info
https://o2r.info
https://o2r.info/architecture/
https://github.com/o2r-project/o2r-platform
https://o2r.info/erc-spec
https://en.wikipedia.org/wiki/Representational_state_transfer
file:///doc/site/user/#authentication
file:///doc/site/user/#user-levels
https://creativecommons.org/publicdomain/zero/1.0/

Next

Universal License, see file LICENSE . To the extent possible under law, the people who associated CC0 with

this work have waived all copyright and related or neighboring rights to this work. This work is published

from: Germany.

Built with MkDocs using a theme provided by Read the Docs.

file:///doc/site/compendium/upload/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Compendium » View

View compendium

List compendia

Returns up to 100 results by default.

curl https://…/api/v1/compendium?limit=100&start=2

GET /api/v1/compendium?limit=100&start=2

200 OK

{
 "results": [
 "nkm4b",
 "asdis",
 "nb2sm",
 …
]
}

You can also filter the results.

Filter by user :

curl https://…/api/v1/compendium?user=0000-0002-1825-0097

GET /api/v1/compendium?user=0000-0002-1825-0097

Filter by doi :

curl https://…/api/v1/compendium?doi=10.9999%2Ftest

GET /api/v1/compendium?doi=10.9999%2Ftest

200 OK

{
 "results": [
 "nkm4b",
 "nb2sm"
]
}

If there is no compendium found, the service returns an empty list.

GET /api/v1/compendium?doi=not_a_doi

200 OK

{
 "results": []
}

URL parameters for compendium lists

job_id - Comma-separated list of related job ids to filter by.

user - Public user identifier to filter by.

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/

Next

doi - A DOI to filter by.

start - Starting point of the result list. start - 1 results are skipped. Defaults to 1 .

limit - Limits the number of results in the response. Defaults to 100 .

View single compendium

This includes the complete metadata set, related job ids and a tree representation of the included files. The

created timestamp refers to the upload of the compendium. It is formated as ISO8601.

curl https://…/api/v1/$ID

GET /api/v1/compendium/:id

200 OK

{
 "id":"comid",
 "metadata": … ,
 "created": "2016-08-01T13:57:40.760Z",
 "files": …
 }

URL parameters for single compendium view

:id - the compendiums id

Error responses for single compendium view

404 Not Found

{"error":"no compendium with this id"}

List related execution jobs

curl https://…/api/v1/compendium/$ID/jobs

GET /api/v1/compendium/:id/jobs

200 OK
{
 "results": [
 "nkm4L",
 "asdi5",
 "nb2sg",
 …
]
}

If a compendium does not have any jobs yet, the returned list is empty.

200 OK
{
 "results": []
}

URL parameters for related execution jobs

:id - compendium id that the results should be related to

 Previous

https://doi.org
file:///doc/site/compendium/view/compendium/files.md
file:///doc/site/compendium/delete/
file:///doc/site/compendium/candidate/

Built with MkDocs using a theme provided by Read the Docs.

http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Create new compendium » Compendium » Candidates

Candidate process

After uploading a compendium is not instantly publicly available. It is merely a candidate, because metadata

still must be completed for the compendium to be valid.

The following process models this intermediate state of a compendium.

Creation and view

Candidates can be identified by the property candidate . It is set to true after creating a new compendium by

upload or public share submission and the authoring user having reviewed the metadata.

 Note

It is not possible to circumvent the metadata review. Only a successful metadata update can set

candidate: true .

Example:

{
 "id":"12345",
 "metadata": … ,
 "created": "2016-08-01T13:57:40.760Z",
 "files": …,
 "candidate": true
}

Only the creating user and users with required level can view a candidate and see the candidate property

while it is true .

When accessing a list of compendia for a specific user as that user, then this list is extended by available

candidates. The candidates may be added to the response independently from any pagination settings, i.e. if a

client requests the first 10 compendia for a user having two candidates, the client should be prepared to

handle 12 items in the response.

Metadata review and saving

After the user has reviewed and potentially updated the metadata as required and saved them successfully,

then the candidate status is changed (candidate: false) and the compendium is publicly available.

The candidate property is not exposed any more if it is false .

It is not possible to save invalid metadata or to manually change the candidate property, therefore a

compendium cannot become a candidate again after successful completion of the creation.

Deletion

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/metadata/#update-metadata
file:///doc/site/user/#user-levels
file:///doc/site/compendium/view/#list-compendia
file:///doc/site/compendium/metadata/#update-metadata

Next

Unlike published compendia, a candidate can be deleted by a the authoring user, see delete compendium.

 Previous

Built with MkDocs using a theme provided by Read the Docs.

file:///doc/site/compendium/delete/
file:///doc/site/compendium/view/
file:///doc/site/compendium/public_share/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Compendium » Files in a compendium

Compendium file listing

The file listing is returned in the single view of a job or compendium. It includes the complete content of the

bagtainer in its current state. If a job has been run and the programme outputs new data, this new data is

included as well.

File listings are represented as a Object. The file structure for a synthetic job nj141 is as follows.

nj141
├── bagit.txt
└── data
 ├── paper.Rmd
 └── Dockerfile

is be represented as

{
 "path": "/api/v1/job/nj141/data",
 "name": "nj141",
 "children": [
 {
 "path": "/api/v1/job/nj141/data/bagit.txt",
 "name": "bagit.xt",
 "type": "text/plain",
 "size": 55
 },
 {
 "path": "/api/v1/job/nj141/data/data",
 "name": "data",
 "children": [
 {
 "path": "/api/v1/job/nj141/data/data/paper.Rmd",
 "name": "paper.Rmd",
 "type": "text/plain",
 "size": 346512
 }
 {
 "path": "/api/v1/job/nj141/data/data/Dockerfile",
 "name": "Dockerfile",
 "type": "text/plain",
 "size": 1729
 }
]
 }
]
}

path property

The path property for each file in the listing is a link to the raw file. Additionally the GET parameter ?size=…

can be appended to retrieve previews of the files. In the case of Images (png , jpg , gif , tiff), the value

defines the maximum width/height. For text files (txt , csv , scripts), the value defines the amount of lines

returned.

type property

The type property is a best guess for the MIME type of the file content. It is a result of the files extension.

Look at the list of extension to type mapping below.

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/

File extension to MIME type mappings

This list contains the custom mapping of file extensions to MIME types used in the server.

Extension MIME type

.R , .r script/x-R

File inspection: RData

.RData files are a binary format for usage with R to save any kind of object (data, functions) using an internal

serialisation. The format is not suitable for archival or data exchange, but might be included in a compendium

out of negligence by or convenience for the author.

Since the file format is binary and not readable by non-R client applications, the API provides the endpoint

/api/v1/inspection to retrieve a JSON representation of the objects in an RData file.

Values of objects are provided as JSON arrays following the specifications by the R package jsonlite .

Simple data types

GET /api/v1/inspection/<compendium id>?file=simple.Rdata

200 OK

{
 "aChar":[
 "a"
],
 "aDouble":[
 2.3
],
 "anInteger":[
 1
],
 "aString":[
 "The force is great in o2r."
]
}

Complex data types

Lists are be nested objects, and vectors are JSON arrays (see jsonlite docs for details, defaults are used):

GET /api/v1/inspection/<compendium id>?file=complex.Rdata

https://stat.ethz.ch/R-manual/R-devel/library/base/html/save.html
https://www.loc.gov/preservation/digital/formats/fdd/fdd000470.shtml
https://cran.r-project.org/package=jsonlite
https://rdrr.io/cran/jsonlite/man/fromJSON.html

200 OK

{
 "characterVector":[
 "one",
 "two",
 "3"
],
 "logicalVector":[
 true,
 true,
 false
],
 "numericVector":[
 1,
 2,
 -7,
 0.8
],
 "orderedList":{
 "name":[
 "Fred"
],
 "mynumbers":[
 1,
 2
],
 "age":[
 5.3
]
 }
}

Data frames and matrices are mapped to JSON arrays of complex objects (see jsonlite docs for details,

defaults are used):

GET /api/v1/inspection/<compendium id>?file=matrices.Rdata

200 OK

{
 "dataFrame":[
 {
 "ID":1,
 "Passed":true,
 "Colour":"red"
 },
 {
 "ID":2,
 "Passed":true,
 "Colour":"white"
 },
 {
 "ID":3,
 "Passed":true,
 "Colour":"red"
 },
 {
 "ID":4,
 "Passed":false
 }
],
 "namedMatrix":[
 [
 1,
 26
],
 [
 24,
 68
]
]
}

Path parameters

compendium_id mandatory - the compendium identifier to inspect the file from

Query parameters

https://rdrr.io/cran/jsonlite/man/fromJSON.html

Next

file mandatory - the name of the file to inspect, or a relative path to a file within the compendium

objects optional - the name of objects in the file

If selected objects are not loadable from the file, an errors property in the response is given for each

problematic object:

GET /api/v1/inspection/<compendium id>?file=simple.RData&objects=bar,anInteger,foo

200 OK

{
 "anInteger":[
 1
],
 "errors":[
 "Error: Object 'bar' does not exist in the file simple.RData",
 "Error: Object 'foo' does not exist in the file simple.RData"
]
}

Errors

400 Bad Request

{"error": "Query parameter 'file' missing"}

400 Bad Request

{"error": "file 'not_available.Rdata' does not exist in compendium kOSMO"}

400 Bad Request

{"error": "compendium '12345' does not exist"}

500 Internal Server Error

{"error": "Error loading objects"}

 Previous

Built with MkDocs using a theme provided by Read the Docs.

file:///doc/site/compendium/substitute/
file:///doc/site/compendium/metadata/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Next

Docs » Compendium » Delete

Delete compendium

To delete a compendium candidate, an HTTP DELETE request can be send to the compendium endpoint.

 Important

Once a compendium is not a candidate anymore, it cannot be deleted via the API.

 Required user level

The user deleting a candidate must be the author or have the required user level.

Request

The following request deletes the compendium with the identifier 12345 , including metadata and files.

curl -X DELETE https://…/api/v1/compendium/12345 \
 --cookie "connect.sid=<code string here>"

Response

The response has an HTTP status of 204 and an empty body for successful deletion.

204 OK

Error responses for compendium delete

401 Unauthorized

{"error":"not authorized"}

403 Forbidden

{"error":"user level not sufficient to delete compendium"}

404 Not Found

{"error":"compendium not found"}

 Previous

Built with MkDocs using a theme provided by Read the Docs.

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
file:///doc/site/user/#user-levels
file:///doc/site/compendium/download/
file:///doc/site/compendium/view/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Create new compendium » Compendium » API upload

Upload via API

Upload a research workspace or full compendium as a compressed .zip archive with an HTTP POST request

using multipart/form-data .

The upload is only allowed for logged in users. Upon successful extraction of archive and processing of the

contents, the id for the new compendium is returned.

 Required user level and authentication

The user creating a new compendium must have the required user level. Requests must be authenticated

with a cookie connect.sid , see user authentication.

curl -F "compendium=@compendium.zip;type=application/zip" \
 -F content_type=compendium \
 --cookie "connect.sid=<cookie string here>" \
 https://…/api/v1/compendium

curl -F "compendium=@path/to/workspace.zip;type=application/zip" \
 -F content_type=workspace \
 --cookie "connect.sid=<cookie string here>" \
 https://…/api/v1/compendium

200 OK

{"id":"a4Ndl"}

 Important

After successful upload the candidate process must be completed for workspaces.

Body parameters for compendium upload

compendium - The archive file

content_type - Form of archive. One of the following:

compendium - compendium, which is expected to be complete and valid, for examination of a

compendium

workspace - formless workspace, for creation of a compendium

 Warning

If a complete ERC is submitted as a workspace, it may result in an error, or the contained metadata and

other files may be overwritten by the creation process.

Error responses for compendium upload

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
file:///doc/site/user/#user-levels
file:///doc/site/user/#client-authentication
file:///doc/site/compendium/upload/#candidate-process

Next

400 Bad Request

{"error":"provided content_type not implemented"}

401 Unauthorized

{"error":"user is not authenticated"}

401 Unauthorized

{"error":"user level does not allow compendium creation"}

422 Unprocessable Entity

For local testing you can quickly upload some of the example compendia and workspaces from the erc-

examples project.

 Previous

Built with MkDocs using a theme provided by Read the Docs.

https://github.com/o2r-project/erc-examples
file:///doc/site/compendium/public_share/
file:///doc/site/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Create new compendium » Compendium » Public share submission

Public share

Load a research compendium by submitting a link to a cloud resource using an HTTP POST request using

multipart/form-data .

Currently, the following repositories are supported:

Sciebo

Zenodo

Zenodo Sandbox

Common

All repositories use the same API endpoint https://…/api/v1/compendium , but with different required/optional

parameters.

The upload is only allowed for logged in users.

 Required user level and authentication

The user creating a new compendium must have the required user level. Requests must be authenticated

with a cookie connect.sid , see user authentication.

To run the load from the command line, login on the website and open you browser cookies. Find a cookie

issued by o2r.uni-muenster.de with the name connect.sid . Copy the contents of the cookie into the request

example below.

Upon successful download from the public share, the id for the new compendium is returned.

curl -F "content_type=compendium" \
 -F "share_url=https://uni-muenster.sciebo.de/index.php/s/G8vxQ1h50V4HpuA" \
 --cookie "connect.sid=<code string here>" \
 https://…/api/v1/compendium

200 OK

{"id":"b9Faz"}

 Important

After successful load from a public share, the candidate process applies.

Sciebo

Sciebo is a cloud storage service at North Rhine-Westphalian universities. Although it builds on ownCloud

and the implementation might be able to handle any ownCloud link, only Sciebo's publish shares are

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
https://sciebo.de
https://zenodo.org
https://sandbox.zenodo.org
file:///doc/site/user/#user-levels
file:///doc/site/user/#client-authentication
file:///doc/site/compendium/upload/#candidate-process
http://www.sciebo.de/en/about/index.html

supported by this API.

File selection

Depending on the public share contents different processes are triggered:

1. If a file named bagit.txt is found, the directory is checked for Bagit validity

2. If a single zip file is found, the file is extracted, if multiple zip files are found, the filename has to be specified,

otherwise an error is returned

3. If a single subdirectory is found, the loader uses that subdirectory as the base directory for loading

4. Depending on the value of content_type (see below), the public share contents are treated as a complete

compendium or as a workspace

Body parameters for creating compendium from public share

share_url - The Sciebo link to the public share (required)

content_type - Form of archive. One of the following (required):

compendium - complete compendium

workspace - formless workspace

path - Path to a subdirectory or a zip file in the public share (optional)

default is /

the leading / is optional, the loader supports both ways

when a directory has multiple zip files, the path can be used to specify which file is used, e.g.

path=/metatainer.zip

Examples

curl -F "content_type=compendium" \
 -F "share_url=https://uni-muenster.sciebo.de/index.php/s/G8vxQ1h50V4HpuA" \
 -F "path=/metatainer" \
 --cookie "connect.sid=<code string here>" \
 https://…/api/v1/compendium

Error responses for creating compendium from public share

401 Unauthorized

{"error":"unauthorized: user level does not allow compendium creation"}

403 Forbidden

{"error":"public share host is not allowed"}

422 Unprocessable Entity

{"error":"files with unsupported encoding detected: [{'file':'/tmp/o2r/compendium/ejpmi/data/test.txt','encoding':'Shift_JIS'}]"

Example data

For testing purposes you can use the following public share, which contains a few ready-to-use compendia:

`https://uni-muenster.sciebo.de/s/G8vxQ1h50V4HpuA

Zenodo

Body parameters for creating a compendium from a Zenodo record

https://uni-muenster.sciebo.de/s/G8vxQ1h50V4HpuA

Identification of the Zenodo record, one of the folloing is required:

share_url - The link to the zenodo record (optional). May be a link to https://zenodo.org or

https://doi.org

doi - A DOI resolving to the zenodo record (optional)

zenodo_record_id - The ID of the zenodo record (optional)

content_type - Form of archive. One of the following (required):

compendium - complete compendium for inspection

workspace - formless workspace for creation

filename - Filename of your compendium. For now, only zip-files are supported. (optional)

if no filename is provided the first zip file is selected

multiple files are currently not supported

There must at least one url parameter that resolves to a zenodo record. I.e. one of the following:

Examples

1. Zenodo Record URL (with optional filename parameter)

curl -F "content_type=compendium" \
 -F "zenodo_url=https://sandbox.zenodo.org/record/69114" \
 -F "filename=metatainer.zip" \
 --cookie "connect.sid=<code string here>" \
 https://…/api/v1/compendium

1. DOI

curl -F "content_type=compendium" \
 -F "doi=10.5072/zenodo.69114" \
 --cookie "connect.sid=<code string here>" \
 https://…/api/v1/compendium

1. Zenodo Record ID

curl -F "content_type=compendium" \
 -F "zenodo_record_id=69114" \
 --cookie "connect.sid=<code string here>" \
 https://…/api/v1/compendium

If the Zenodo record id is supplied through the doi or zenodo_record_id parameter, or if the share_url

parameter is a doi.org URL, a default base URL for the file download is used as selected by the API

maintainer. This may be:

https://zenodo.org or

https://sandbox.zenodo.org

Error responses for creating compendium from a Zenodo record

401 Unauthorized

{"error":"unauthorized: user level does not allow compendium creation"}

403 Forbidden

{"error":"host is not allowed"}

422 Unprocessable Entity

{"error":"public share URL is invalid"}

https://doi.org

Next

422 Unprocessable Entity

{"error":"DOI is invalid"}

422 Unprocessable Entity

{"error":"files with unsupported encoding detected: [{'file':'/tmp/o2r/compendium/ejpmi/data/test.txt','encoding':'Shift_JIS'}]"

Example data

For testing purposes you can use the following public shares. They contain the a compendium with metadata.

Sciebo: https://uni-muenster.sciebo.de/index.php/s/G8vxQ1h50V4HpuA

Zenodo: https://sandbox.zenodo.org/record/69114

 Previous

Built with MkDocs using a theme provided by Read the Docs.

https://uni-muenster.sciebo.de/index.php/s/G8vxQ1h50V4HpuA
https://sandbox.zenodo.org/record/69114
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/upload/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Compendium » Download

Download compendium

Download compendium files as an archive.

 Warning

This download feature does not provide access to complete and valid compendia, because it does not

comprise an update of the packaging, while it does include brokered metadata files. To download a valid

compendium, create a shipment with the appropriate recipient.

Supported formats are as follows:

zip

tar

tar.gz

Requests

GET /api/v1/compendium/$ID.zip

GET /api/v1/compendium/:id.zip
GET /api/v1/compendium/:id.tar
GET /api/v1/compendium/:id.tar.gz
GET /api/v1/compendium/:id.tar?gzip
GET /api/v1/compendium/:id.zip?image=false

URL parameters for compendium download

:id - the compendiums id

?gzip - only for .tar endpoint - compress tarball with gzip

?image=true or ?image=false - include tarball of Docker image in the archive, default is true

Response

The response is a file attachment. The suggested file name is available in the HTTP header content-

disposition using the respective file extension for a file named with the compendium identifier (e.g.

wdpV9.zip , Uh1o0.tar , or LBIt1.tar.gz).

The content-type header also reflects the respective format, which can take the following values:

application/zip for ZIP archive

application/x-tar for TAR archive

application/octet-stream for gzipped TAR

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
file:///doc/site/shipment/#packaging
file:///doc/site/compendium/metadata/#update-metadata
file:///doc/site/shipment/

Next

200 OK
Content-Type: application/zip
Transfer-Encoding: chunked
Content-Disposition: attachment; filename="$ID.zip"
X-Response-Time: 13.556ms

The zip file contains a comment with the original URL.

$ unzip -z CXE1c.zip
Archive: CXE1c.zip
Created by o2r [https://…/api/v1/compendium/CXE1c.zip]

Error responses for compendium download

404 Not Found

{"error":"no compendium with this id"}

400 Bad Request

{"error":"no job found for this compendium, run a job before downloading with image"}

 Previous

Built with MkDocs using a theme provided by Read the Docs.

file:///doc/site/compendium/metadata/
file:///doc/site/compendium/delete/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Compendium » Metadata

Compendium metadata

Basics

Metadata in a compendium is stored in a directory .erc . This directory contains the normative metadata

documents using a file naming scheme <PREFIX>_<MODEL>_<VERSION>.<FORMAT> filled via each metadata mapping

file found in the broker tool of the o2r metadata tool suite, the default prefix is metadata , e.g.

metadata_o2r_1.json , metadata_zenodo_1.json , or metadata_datacite_41.xml . The filename of the extracted

raw metadata has no versioning and is constantly found as metadata_raw.json .

A copy of the files in this directory is kept in database for easier access, so every compendium returned by the

API can contain different sub-properties in the metadata property. This API always returns the database copy

of the metadata elements. You can download the respective files to access the normative metadata

documents.

Metadata formats

The files are available on demand, but metadata variants are created after each metadata update.

The sub-properties of the metadata and their content are

raw contains raw metadata extracted automatically

o2r holds the main information for display and is modelled according the the o2r metadata model. This

metadata is reviewed by the user and the basis for translating to other metadata formats and also for

search.

zenodo holds Zenodo metadata for shipments made to Zenodo and is brokered from o2r metadata

zenodo_sandbox holds Zenodo metadata for shipments made to Zenodo Sandbox, i.e. a clone of zenodo

metadata

 Note

The information in each sub-property are subject to independent workflows and may differ from one

another. The term brokering is used for translation from one metadata format into another.

Metadata validation

Only valid metadata can be saved to a compendium. The o2r metadata element is validated against a JSON

Schema using the validate tool of o2r-meta . The schema file is included in the o2r-meta repository:

https://raw.githubusercontent.com/o2r-project/o2r-meta/master/schema/json/o2r-meta-schema.json.

Get all compendium metadata

curl https://…/api/v1/$ID

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
file:///doc/site/search/
https://zenodo.org/
https://zenodo.org/
http://json-schema.org/
https://github.com/o2r-project/o2r-meta
https://raw.githubusercontent.com/o2r-project/o2r-meta/master/schema/json/o2r-meta-schema.json

GET /api/v1/compendium/:id

Abbreviated example response:

200 OK

{
 "id":"12345",
 "metadata": {
 "raw": {
 "title": "Programming with Data. Springer, New York, 1998. ISBN 978-0-387-98503-9.",
 "author": "John M. Chambers",
 …
 },
 "o2r": {
 "title": "Programming with Data",
 "creators": [
 {
 "name": "John M. Chambers"
 }
],
 "publication_date": 1998,
 …
 },
 "zenodo": {
 …
 }
 },
 "created": …,
 "files": …
}

Get o2r metadata

The following endpoint allows to access only the normative o2r-metadata element:

curl https://…/api/v1/$ID/metadata

GET /api/v1/compendium/:id/metadata

200 OK

{
 "id":"compendium_id",
 "metadata": {
 "o2r": {
 …
 }
 }
}

URL parameters

:id - compendium id

Spatial metadata

For discovery purposes, the metadata includes extracted GeoJSON bounding boxes based on data files in a

workspace.

Currently supported spatial data sources:

shapefiles

The following structure is made available per file:

 "spatial": {
 "files": [

http://geojson.org/
https://en.wikipedia.org/wiki/Shapefile

 "files": [
 {
 "geojson": {
 "bbox": [
 -2.362060546875,
 52.0862573323384,
 -1.285400390625,
 52.649729197309426
],
 "geometry": {
 "coordinates": [
 [
 [
 -2.362060546875,
 52.0862573323384
],
 [
 -1.285400390625,
 52.649729197309426
]
]
],
 "type": "Polygon"
 },
 "type": "Feature"
 },
 "source_file": "path/to/file1.geojson"
 },
 {
 "geojson": {
 "bbox": [
 7.595369517803192,
 51.96245837645124,
 7.62162297964096,
 51.96966694957956
],
 "geometry": {
 "coordinates": [
 [
 [
 7.595369517803192,
 51.96245837645124
],
 [
 7.62162297964096,
 51.96966694957956
]
]
],
 "type": "Polygon"
 },
 "type": "Feature"
 },
 "source_file": "path/to/file2.shp"
 }
],
 "union": {
 "geojson": {
 "bbox": [
 -2.362060546875,
 51.96245837645124,
 7.62162297964096,
 51.96245837645124
],
 "geometry": {
 "coordinates": [
 [
 -2.362060546875,
 51.96245837645124
],
 [
 7.62162297964096,
 51.96245837645124
],
 [
 7.62162297964096,
 52.649729197309426
],
 [
 -2.362060546875,
 52.649729197309426
]
],
 "type": "Polygon"
 },
 "type": "Feature"
 }
 }
 }

The spatial key has a union bounding box, that wraps all extracted bounding boxes.

Update metadata

The following endpoint can be used to update the o2r metadata elements. All other metadata sub-properties

are only updated by the service itself, i.e. brokered metadata. After creation the metadata is persisted to both

files and database, so updating the metadata via this endpoint allows to trigger a brokering process and to

retrieve different metadata formats either via this metadata API or via downloading the respective file using

the download endpoint.

 Metadata update rights

Only authors of a compendium or users with the required user level can update a compendium's metadata.

Metadata update request

curl -H 'Content-Type: application/json' \
 -X PUT \
 --cookie "connect.sid=<code string here>" \
 -d '{ "o2r": { "title": "Blue Book" } }' \
 /api/v1/compendium/:id/metadata

The request overwrites the existing metadata properties, so the full o2r metadata must be put with a JSON

object called o2r at the root, even if only specific fields are changed.

 Note

This endpoint allows only to update the metadata.o2r elements. All other properties of

URL parameters

:id - compendium id

Metadata update response

The response contains an excerpt of a compendium with only the o2r metadata property.

200 OK

{
 "id":"compendium_id",
 "metadata": {
 "o2r": {
 "title": "Blue Book"
 }
 }
}

Metadata update error responses

401 Unauthorized

{"error":"not authorized"}

file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/user.md#user-levels

Next

400 Incomplete metadata (description property missing)

{
 "error":"Error updating metadata file, see log for details",
 "log": "[o2rmeta] 20180302.085940 received arguments: {'debug': True, 'tool': 'validate', 'schema': 'schema/json/o2r-meta-schema.json', 'candidate': '/tmp/o2r/compendium/1cAIr/data/.erc/metadata_o2r_1.json'}
 [o2rmeta] 20180302.085940 launching validator
 [o2rmeta] 20180302.085940 checking metadata_o2r_1.json against o2r-meta-schema.json
 [o2rmeta] 20180302.085940 !invalid: None is not of type 'string'

 Failed validating 'type' in schema['properties']['description']:
 {'type': 'string'}

 On instance['description']:
 None"
}

400 Bad Request

"SyntaxError [...]"

422 Unprocessable Entity

{"error":"JSON with root element 'o2r' required"}

Other metadata properties

Besides the metadata element, a compendium persists some additional properties to reduce computation on

the server, and to allows client applications to improve the user experience.

bag - a boolean showing if the uploaded artefact was detected as a BagIt bag (detection file: bagit.txt)

compendium - a boolean showing if the uploaded artefact was detected as a compendium (detection file:

erc.yml)

Example:

(Properties metadata and files not shown for brevity.)

{

 "id": "U9IZ7",
 "metadata": {},
 "created": "2017-01-01T00:00:42.000Z",
 "user": "0000-0002-1825-0097",
 "bag": false,
 "compendium": false,
 "files": {}
}

 Previous

Built with MkDocs using a theme provided by Read the Docs.

file:///doc/site/compendium/files/
file:///doc/site/compendium/download/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Compendium » Substitution

Substitution

Substitution is the combination of an base compendium, "base" for short, and an overlay compendium, or

"overlay". A user can choose files from the overlay to replace files of the base, or upload new files. Additionally

the user can choose, if the metadata of the base ERC will be adopted for substitution (keepBase) or there will

be a new extraction of the metadata for the substituted ERC. This new extraction is divided into two choices.

The user can let the new extracted metadata be merged into the existing metadata of the base ERC

(extractAndMerge - not implemented) or just save the extracted metadata (extract - not implemented).

Create substitution

Create substitution produces a new compendium with its own files in the storage and metadata in the

database. A substitution can be created with an HTTP POST request using multipart/form-data and content-

type JSON . Required content of the request are the identifiers of the base and overlay compendia and at least

one pair of substitution files, consisting of a base file and an overlay file.

 Note

A substitution process removes potentially existing packaging information, i.e. if the base compendium

was a BagIt bag, the substitution will only contain the payload directory contents (/data directory).

The overlay file is stripped of all paths and is copied directly into the substitution's root directory.

Request

POST /api/v1/substitution

Request body for a new substitution:

{
 "base": "G92NL",
 "overlay": "9fCTR",
 "substitutionFiles": [
 {
 "base": "climate-timeseries.csv",
 "overlay": "mytimeseries_data.csv"
 }
],
 "metadataHandling": "keepBase"
}

Request body properties

base - id of the base compendium

overlay - id of the overlay compendium

substitutionFiles - array of file substitutions specified by base and overlay

base - name of the file from the base compendium

overlay - name of the overlay compendium that is exchanged for the original file

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/

metadataHandling - property to specify, if the metadata of the base ERC will be adopted (keepBase = keep

metadata of base ERC) or there will be a new extraction of metadata, that will be merged into the

metadata of the base ERC (extractAndMerge = extract and merge metadata for new ERC) or that will not

be merged (extract = extract metadata of new ERC)

 Required user level

The user creating a new substitution must have the required user level.

Response

201 CREATED

{
 "id": "oMMFn"
}

Error responses

401 Unauthorized

{"error":"not authenticated"}

401 Unauthorized

{"error":"not allowed"}

404 Not Found

{"error":"base compendium not found"}

404 Not Found

{"error":"overlay compendium not found"}

View substituted Compendium

Request

curl https://.../api/v1/compendium/$ID

GET /api/v1/compendium/:id

This request is handled as regular GET request of a compendium (see View single compendium).

Response

A substituted compendium is be saved as a usual compendium, but with additional metadata specifying this

as a substituted compendium and giving information about the substitution.

Example 01 - in case there are no conflicts between filenames of any base file and overlay file :

file:///doc/site/user/#user-levels
file:///api/compendium/view/#view-single-compendium

200 OK

{
 "id": "oMMFn",
 ...
 "metadata": {
 ...
 "substitution": {
 "base": "G92NL",
 "overlay": "9fCTR",
 "substitutionFiles": [
 {
 "base": "climate-timeseries.csv",
 "overlay": "mytimeseries_data.csv",
 "filename": "climate-timeseries.csv"
 }
],
 "metadataHandling": "keepBase"
 },
 ...
 },
 "substituted": true,
 ...
}

Example 02 - in case the overlay file has the same filename as one of the existing base files and is in a sub-

directory in the overlay compendium:

200 OK

{
 "id": "oMMFn",
 ...
 "metadata": {
 ...
 "substitution": {
 "base": "G92NL",
 "overlay": "9fCTR",
 "substitutionFiles": [
 {
 "base": "climate-timeseries.csv",
 "overlay": "dataFiles/input.csv",
 "filename": "overlay_input.csv"
 }
],
 "metadataHandling": "keepBase"
 },
 ...
 },
 "substituted": true,
 ...
}

Response additional metadata

metadata.substitution - object, specifying information about the substitution

base - id of the base compendium

overlay - id of the overlay compendium

substitutionFiles - array of file substitutions specified by base and overlay

base - name of the file from the base ERC

overlay - name of the file from the overlay ERC

filename - as seen in the examples above, filename will be created. If there is a conflict with any

basefilename and an overlayfilename, the overlayfilename will get an additional "overlay_"

prepended (see Example 02). (optional add)

metadataHandling - property to specify, if the metadata of the base ERC will be adopted (keepBase =

keep metadata of base ERC) or there will be a new extraction of metadata, that will be merged into the

metadata of the base ERC (extractAndMerge = extract and merge metadata for new ERC) or that will

not be merged (extract = extract metadata of new ERC)

substituted - will be set true

List substituted Compendia

Request

curl https://.../api/v1/substitution

GET /api/v1/substitution

Response

The result is a list of compendia ids which were created by a substitution process.

200 OK

{
 "results": [
 "oMMFn",
 "asdi5",
 "nb2sg",
 …
]
}

If there are no substitutions yet, the returned list is empty.

200 OK
{
 "results": []
}

Filter results with following parameters:

curl https://.../api/v1/substitution?base=$BASE_ID&overlay=$OVERLAY_ID

GET /api/v1/substitution?base=base_id&overlay=overlay_id

Filter by base :

curl https://.../api/v1/substitution?base=jfL3w

GET /api/v1/substitution?base=jfL3w

Result is a list of substituted compendia based on the given base compendium:

200 OK

{
 "results": [
 "wGmFn",
 …
]
}

Filter by overlay :

curl https://.../api/v1/substitution?overlay=as4Kj

GET /api/v1/substitution?overlay=as4Kj

Result is a list of substituted compendia based on the given overlay compendium:

Next

200 OK

{
 "results": [
 "9pQ34",
 "1Tnd3",
 …
]
}

Filter by base and overlay :

curl https://.../api/v1/substitution?base=lO3Td&overlay=as4Kj

GET /api/v1/substitution?base=lO3Td&overlay=as4Kj

Result is a list of substituted compendia based on the given base and overlay compendium:

200 OK

{
 "results": [
 "9pQ34",
 …
]
}

Error responses

401 Unauthorized

{"error":"not authenticated"}

401 Unauthorized

{"error":"not allowed"}

404 Not Found

{"error":"base compendium not found"}

404 Not Found

{"error":"overlay compendium not found"}

400 Not Found

{"error":"base file is undefined"}

400 Not Found

{"error":"overlay file is undefined"}

URL parameters for substituted compendium lists

:base - id of the base compendium that the results should be related to

:overlay - id of the overlay compendium that the results should be related to

 Previous

Built with MkDocs using a theme provided by Read the Docs.

file:///doc/site/job/
file:///doc/site/compendium/files/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Job

Execute a compendium

Execution jobs are used to run the analysis in a compendium. When a new execution job is started, the

contents of the research compendium are cloned to create a trackable execution (see Job files). The status

information, logs and final working directory data are saved in their final state, so that they can be reviewed

later on.

All execution jobs are tied to a single research compendium and reflect the execution history of that research

compendium.

A trivial execution job would be a completely unmodified compendium, to test the executability and thus

basic reproducibility of the contained workflow.

Job files

All files except the following are copied to a separate storage for each job:

existing image tarballs, e.g. image.tar to reduce size of copied files and because jobs use images from the

local image repository anyway

the display file to make sure the check does not wrongly work on the original display file

Job status

The property job.status shows the overall status of a job.

The overall status can be one of following:

success - if status of all steps is success .

failure - if status of at least one step is failure .

running - if status of at least one step is running and no status is failure .

More information about steps can be found in subsection Steps of section View single job .

Steps of a job

One job consists of a series of steps. The are executed in order.

validate_bag Validate the BagIt bag using the npm library bagit; may be skipped if compendium is not a

bag, will usually fail because of added metadata files during upload.

generate_configuration Create a compendium configuration file; may be skipped if configuration file is

already present.

validate_compendium Parses and validates the bagtainer configuration file.

generate_manifest Executes the given analysis to create a container manifest; may be skipped if manifest

file is already present.

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
https://o2r.info/erc-spec/spec/#main-display-file
https://www.npmjs.com/package/bagit

image_prepare Create an archive of the payload (i.e. the workspace, or the data in a BagIt bag), which

allows to build and run the image also on remote hosts.

image_build Build an image and tag it erc:<job_id> .

image_execute Run the container and return based on status code of program that ran inside the

container.

check Run a check on the contents of the container. Validate the results of the executed calculations. The

check provides either a list of errors or a reference to displayable content in the property display.diff .

image_save Export the image to a file within the compendium directory (potentially a large file!). This is

skipped if the check failed.

cleanup Remove image or job files (depending on server-side settings).

Status

All steps can have one of the following status:

queued : step is not yet started

running : step is currently running

success : step is completed successfully - positive result

failure : step is completed unsuccessfully - negative result

skipped : step does not fit the given input or results of previous steps, e.g. bag validation is not done for

non-bag workspaces - neutral result

Step metadata

Additional explanations on steps' status will be transmitted in the text property. text is an array, with the

latest element holding the newest information. During long running steps, the text element is updated by

appending new information when available.

The start and end timestamps indicate the start and end time of the step. They are formatted as ISO8601.

Specific steps may carry more information in additional properties.

New job

Create and run a new execution job with an HTTP POST request using multipart/form-data . Requires a

compendium_id .

 Required user level and authentication

The user creating a new compendium must have the required user level. Requests must be authenticated

with a cookie connect.sid , see user authentication.

curl -F compendium_id=$ID https://…/api/v1/job

POST /api/v1/job

200 OK

{"job_id":"ngK4m"}

Body parameters for new jobs

file:///doc/site/user/#user-levels
file:///doc/site/user/#client-authentication

compendium_id (string): Required The identifier of the compendium to base this job on.

Error responses for new jobs

404 Not Found

{"error":"no compendium with this ID found"}

500 Internal Server Error

{"error":"could not create job"}

List jobs

Lists jobs with filtering and pagination, returning up to 100 results by default.

Results are be sorted by descending date of last change. The content of the response can be limited to certain

properties of each result by providing a list of fields, i.e. the parameter fields .

Results can be filtered:

by compendium_id i.e. compendium_id=a4Dnm ,

by status i.e. status=success or

by user i.e. user=0000-0000-0000-0001

curl https://…/api/v1/job?limit=100&start=2&compendium_id=$ID&status=success&fields=status

GET /api/v1/job?limit=100&start=2&compendium_id=a4Dnm&status=success

200 OK

{
 "results": [
 "nkm4L",
 "asdi5",
 "nb2sg",
 …
]
}

The overall job state can be added to the job list response:

GET /api/v1/job?limit=100&start=2&compendium_id=a4Dnm&status=success&fields=status

200 OK

{
 "results": [
 {
 "id":"nkm4L",
 "status":"failure"
 },
 {
 "id":"asdi5",
 "status":"success"
 },
 {
 "id":"nb2sg",
 "status":"running"
 },
 …
]
}

If there are no jobs, the returned list is empty:

200 OK
{
 "results": []
}

GET query parameters for listing jobs

compendium_id - Comma-separated list of related compendium ids to filter by.

start - Starting point of the result list. start - 1 results are skipped. Defaults to 1.

limit - Limits the number of results in the response. Defaults to 100.

status - Specify status to filter by. Can contain following status : success , failure , running .

user - Public user identifier to filter by.

fields - Specify which additional attributes results list should contain. Can contain following fields:

status , user . Defaults to none.

View single job

View details for a single job. The file listing format is described in compendium files.

curl https://…/api/v1/job/$ID?steps=all

GET /api/v1/job/:id?steps=all

200 OK

{
 "id":"UMmJ7",
 "compendium_id":"BSgxj",
 "steps":{
 "validate_bag":{
 "status":"skipped",
 "text":[
 "Not a bag"
],
 "end":"2017-11-17T13:22:48.105Z",
 "start":"2017-11-17T13:22:48.105Z"
 },
 "generate_configuration":{
 "status":"success",
 "text":[
 "configuration file not found, generating it...",
 "Saved configuration file to job and compendium"
],
 "end":"2017-11-17T13:22:48.119Z",
 "start":"2017-11-17T13:22:48.113Z"
 },
 "validate_compendium":{
 "status":"success",
 "text":[
 "all checks passed"
],
 "end":"2017-11-17T13:22:48.127Z",
 "start":"2017-11-17T13:22:48.125Z"
 },
 "generate_manifest":{
 "status":"success",
 "text":[
 /* abbreviated */
 "INFO [2017-11-17 13:22:56] Going online? TRUE ... to retrieve system dependencies (sysreq-api)",
 "INFO [2017-11-17 13:22:56] Trying to determine system requirements for the package(s) 'knitr, backports, magrittr, rprojroot, htmltools, yaml, Rcpp, stringi, rmarkdown, stringr, digest, evaluate' from sysreq online DB"
 "INFO [2017-11-17 13:22:58] Adding CRAN packages: backports, digest, evaluate, htmltools, knitr, magrittr, Rcpp, rmarkdown, rprojroot, stringi, stringr, yaml"
 "INFO [2017-11-17 13:22:58] Created Dockerfile-Object based on /erc/main.Rmd",
 "INFO [2017-11-17 13:22:58] Writing dockerfile to /erc/Dockerfile",
 /* abbreviated */
 "generated manifest"
],
 "manifest":"Dockerfile",
 "end":"2017-11-17T13:22:58.865Z",
 "start":"2017-11-17T13:22:48.129Z"
 },
 "image_prepare":{
 "status":"success",
 "text":[
 "payload with 756224 total bytes created"
],

file:///doc/site/compendium/files/

],
 "end":"2017-11-17T13:22:58.906Z",
 "start":"2017-11-17T13:22:58.875Z"
 },
 "image_build":{
 "status":"success",
 "text":[
 "Step 1/6 : FROM rocker/r-ver:3.4.2",
 "---> 3cf05960bf30",
 /* abbreviated */
 "---> Running in eb7ccd432592",
 "---> 84db129215f6",
 "Removing intermediate container eb7ccd432592",
 "Successfully built 84db129215f6",
 "Successfully tagged erc:UMmJ7"
],
 "end":"2017-11-17T13:22:59.899Z",
 "start":"2017-11-17T13:22:58.912Z"
 },
 "image_execute":{
 "status":"success",
 "text":[
 "[started image execution]",
 /* abbreviated */
 "Output created: display.html\r\n> \r\n>",
 "[finished image execution]"
],
 "statuscode":0,
 "start":"2017-11-17T13:22:59.904Z"
 },
 "check":{
 "status":"failure",
 "text":[
 "Check failed"
],
 "images":[
 {
 "imageIndex":0,
 "resizeOperationCode":0,
 "compareResults":{
 "differences":204786,
 "dimension":1290240
 }
 }
],
 "display":{
 "diff":"/api/v1/job/UMmJ7/data/check.html"
 },
 "errors":[],
 "checkSuccessful":false,
 "end":"2017-11-17T13:23:04.439Z",
 "start":"2017-11-17T13:23:03.479Z"
 },
 "image_save": {
 "status": "success",
 "text": [
 "[Saving image tarball file]",
 "[Saved image tarball to file (size: 875.14 MB)]"
],
 "start": "2018-01-29T17:38:55.111Z",
 "file": "image.tar",
 "end": "2018-01-29T17:39:36.845Z"
 },
 "cleanup":{
 "status":"success",
 "text":[
 "Running regular cleanup",
 "Removed image with tag erc:UMmJ7: [{\"Untagged\":\"erc:UMmJ7\"},{\"Deleted\":\"sha256:84db129215f60f805320e0f70c54a706b6e4030f4627c74abfb1e17f287fefa8\"},{\"Deleted\":\"sha256:0dc5b951dc58a10e50ea42dd14a1cd59b080199d9ca40cadd0a4fc8ae5e0d139\"},{\"Deleted\":\"sha256:ea88669b92a1c67dc2825f9f6d90d334a6032882d3d31bc85671afbd04adaa70\"}]"
 "Deleted temporary payload file."
],
 "end":"2017-11-17T13:23:05.592Z",
 "start":"2017-11-17T13:23:04.575Z"
 }
 },
 "status":"failure",
 "files":{ /* see compendium */ }
}

URL parameters for single job view

:id - id of the job to be viewed

steps - Steps to be loaded with full details

The properties status , start and end of all steps are always included in the response.

Next

Supported values for steps are all or a comma separated list of one or more step names, e.g.

generate_configuration,check . The response will contain the default properties for all steps but other

properties only for the selected ones. Any other values for steps or not providing the parameter at all will

return the default (e.g. steps=no).

Error responses for single job view

404 Not Found

{"error":"no compendium with this ID found"}

Job status updates

You can subscribe to real time status updates on jobs using WebSockets. The implementation is based on

socket.io and using their client is recommended.

The job log is available at https://o2r.uni-muenster.de under the namespace api/v1/logs/job .

create a socket.io client:
var socket = io('https://o2r.uni-muenster.de/api/v1/logs/job');

 Previous

Built with MkDocs using a theme provided by Read the Docs.

https://en.wikipedia.org/wiki/WebSocket
http://socket.io
file:///doc/site/search/
file:///doc/site/compendium/substitute/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Search

Search

The search uses a document database to provide high speed and powerful search capabilities for compendia,

including spatial and temporal properties.

The search structure is based on Elasticsearch and thereby eases an implementation, because the requests

and responses shown here can be directly mapped to respectively from Elasticsearch's API.

Indexed information:

compendium metadata (including harvested and user-edited metadata such as temporal ranges and

spatial extents)

full texts of text files in a compendium

Simple search

A simple search allows searching for search terms using an HTTP GET request accepting application/json

content type.

curl -H 'Content-Type: application/json' https://.../api/v1/search?q=$SEARCHTERM

GET /api/v1/search?q=Reproducible

GET /api/v1/search?q=great reproducible research

The response is JSON with the root element is hits , which has the same as the hits element from an

Elasticsearch response but does not include internal fields such as _index , _type , and _id .

200 ok

{
 "hits": {
 "total": 1,
 "max_score": 1.0586987,
 "hits": [
 {
 "_score": 1.0586987,
 "_source": {
 "metadata": {
 "o2r": ...
 },
 }
 }
]
 }
}

 Note

The available metadata is a synced clone of the compendium metadata stored in the main database. For

more information on the mapping from the main database to the search database, take a look at the o2r-

finder microservice.

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
https://www.elastic.co/
https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html
https://github.com/o2r-project/o2r-finder

Query parameters for simple search

q - search term(s), must be URL-encoded

resources - a comma-separated list of resources to include in the search; supported values are

compendia

jobs

all (default)

Example requests

http://o2r.uni-muenster.de/api/v1/search?q=*

http://o2r.uni-muenster.de/api/v1/search?q=europe temperature data analysis

http://o2r.uni-muenster.de/api/v1/search?q=europe%20temperature%20data%20analysis

http://o2r.uni-muenster.de/api/v1/search?q=10.5555%2F12345678

http://o2r.uni-muenster.de/api/v1/search?q=geo&resources=compendia

http://o2r.uni-muenster.de/api/v1/search?q=failure&resources=jobs

Complex Search

A complex search is enabled via POST requests with a JSON payload as HTTP POST data (not multipart/form-

data) accepting an application/json content type as response. Queries can include filters, aggregation and

spatio-temporal operations as defined in the Elasticsearch Query DSL.

curl -X POST -H 'Content-Type: application/json' 'https://.../api/v1/search' -d '$QUERY_DSL'

The response structure is the same as for simple search.

 Note

Use the index names compendia and jobs in a terms query to only retrieve one resource type.

Query fields for complex search

The following fields are especially relevant to build queries.

metadata.o2r.temporal.begin and metadata.o2r.temporal.end provide a compendium's temporal extent

metadata.o2r.spatial.geometry has the compendium's spatial extent

Besides these fields, all metadata of the o2r metadata format can be used.

Examples

Temporal search

https://en.wikipedia.org/wiki/Percent-encoding
http://o2r.uni-muenster.de/api/v1/search?q=*
http://o2r.uni-muenster.de/api/v1/search?q=europe%20temperature%20data%20analysis
http://o2r.uni-muenster.de/api/v1/search?q=europe%20temperature%20data%20analysis
http://o2r.uni-muenster.de/api/v1/search?q=10.5555%252F12345678
http://o2r.uni-muenster.de/api/v1/search?q=geo&resources=compendia
http://o2r.uni-muenster.de/api/v1/search?q=failure&resources=jobs
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
file:///doc/site/compendium/metadata/#metadata-formats

POST /api/v1/search -d '{
 "query": {
 "bool": {
 "must": {
 "match_all": {}
 },
 "filter": [
 {
 "range": {
 "metadata.o2r.temporal.begin": {
 "from": "2015-03-01T00:00:00.000Z"
 }
 }
 },
 {
 "range": {
 "metadata.o2r.temporal.end": {
 "to": "2017-10-01T00:00:00.000Z"
 }
 }
 }
]
 }
 },
 "from": 0,
 "size": 10
}'

Spatial search

{
 "bool": {
 "must": {
 "match_all": {}
 },
 "filter": {
 "geo_shape": {
 "metadata.o2r.spatial.geometry": {
 "shape": {
 "type": "polygon",
 "coordinates": [... GeoJSON coordinates...]
 },
 "relation": "within"
 }
 }
 }
 }
}

In this example a filter has been nested within a boolean/must match query. The filter has been applied to the

metadata.o2r.spatial.geometry field of the dataset with a within relation so that only compendia with a

spatial extent completely contained in the provided shape are fetched.

Resource search

{
 "query": {
 "terms": {
 "_index": ["compendia"]
 }
 }
}

Response

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html

Next

200 ok

{
 "hits": {
 "total": 1,
 "max_score": 1.0586987,
 "hits": [
 {
 "_score": 1.0586987,
 "_source": {
 "metadata": {
 "o2r": ...
 },
 }
 }
]
 }
}

 Previous

Built with MkDocs using a theme provided by Read the Docs.

file:///doc/site/shipment/
file:///doc/site/job/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » Shipment

Ship compendia and metadata

Shipments are used to deliver compendia and their metadata to third party repositories or archives. This

section covers shipment related requests, including repository file management.

Packaging

The packaging of a compendium ensures a recipient can verify the integrity of the transported data. Currently,

the shipment process always creates BagIt bags to package a compendium.

Supported recipients

Use the recipient endpoint to find out, which repositories are available and configured. The response is list of

tuples with id and label of each repository. The id is the repository identifier to be used in requests to

the /shipment endpoint, e.g. to define the recipient, while label is a human-readable text string suitable for

display in user interfaces.

GET /api/v1/recipient

200

{
 "recipients": [{
 "id": "download",
 "label": "Download"
 }, {
 "id": "b2share_sandbox",
 "label": "Eudat b2share Sandbox"
 }, {
 "id": "zenodo_sandbox",
 "label": "Zenodo Sandbox"
 }]
}

An implementation may support one or more of the following repositories:

b2share - Eudat b2share

b2share_sandbox - Eudat b2share Sandbox

zenodo - Zenodo Sandbox

zenodo_sandbox - Zenodo Sandbox

The download recipient is a surrogate to enable shipping to the user's local storage.

List shipments

This is a basic request to list all shipment identifiers.

GET /api/v1/shipment

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
http://tools.ietf.org/html/draft-kunze-bagit
https://b2share.eudat.eu/
https://trng-b2share.eudat.eu/
https://zenodo.org
https://sandbox.zenodo.org

200

["dc351fc6-314f-4947-a235-734ab5971eff", "..."]

You can also get only the shipment identifiers belonging to a compendium id (e.g. 4XgD97).

GET /api/v1/shipment?compendium_id=4XgD97

URL parameter:

compendium_id - the identifier of a specific compendium

200

["dc351fc6-314f-4947-a235-734ab5971eff", "..."]

Get a single shipment

GET /api/v1/shipment/dc351fc6-314f-4947-a235-734ab5971eff

200

{
 "last_modified": "2016-12-12 10:34:32.001475",
 "recipient": "zenodo",
 "id": "dc351fc6-314f-4947-a235-734ab5971eff",
 "deposition_id": "63179",
 "user": "0000-0002-1825-0097",
 "status": "shipped",
 "compendium_id": "4XgD97",
 "deposition_url": "https://zenodo.org/record/63179"
}

 Note

Returned deposition URLs (property deposition_url) from Zenodo as well as Eudat b2share (records) will

only be functional after publishing.

Create a new shipment

You can start a initial creation of a shipment, leading to transmission to a repository and creation of a

deposition, using a POST request.

POST /api/v1/shipment

This requires the following parameters as multipart/form-data or application/x-www-form-urlencoded

encoded data:

compendium_id (string): the id of the compendium

recipient (string): identifier for the repository

The following are optional parameters:

update_packaging (boolean , default: false): the shipment creation only succeeds if a valid package is

already present under the provided compendium identifier, or if no packaging is present at all and a new

package can be created. In case a partial or invalid package is given, this parameter can control the

shipment creation process: If it is set to true , the shipment package is updated during the shipment

creation in order to make it valid, if set to false the shipment creation results in an error.

cookie (string): an authentication cookie must be set in the request header, but it may also be provided

via a cookie form parameter as a fallback

shipment_id (string): a user-defined identifier for the shipment (see id in response)

 Required user level

The user sending the request to create a shipment must have the required user level.

Creation response

The response contains the shipment document, see Get a single shipment. Some of the fields are not available

(have value null) until after publishing, e.g. deposition_url .

201

{
 "id": "9ff3d75e-23dc-423e-a6c6-6987ac5ffc3e",
 "recipient": "zenodo",
 "status": "shipped",
 "deposition_id": "79102"
}

If the recipient is the download surrogate, the response will be 202 and a zip stream with the Content type

application/zip .

202

(zip stream starting point)

The download zip stream is also available under the url of the shipment plus /dl , once it has been created,

e.g.:

http://localhost:8087/api/v1/shipment/22e7b17c-0047-4cb9-9041-bb87f30de388/dl

Shipment status

A shipment can have three possible status:

shipped - a deposition has been created at a repository and completed the necessary metadata for

publication.

published - the contents of the shipment are published on the repository, in which case the publishment

can not be undone.

error - an error occurred during shipment or publishing.

To get only a shipment's current status you may use the sub-resource /status :

GET api/v1/shipment/<shipment_id>/status

200

{
"id": "9ff3d75e-23dc-423e-a6c6-6987ac5ffc3e",
"status": "shipped"
}

file:///doc/site/user/#user-levels

Publish a deposition

The publishment is supposed to have completed the status shipped where metadata requirements for

publication have been checked.

 Note

Once published, a deposition can no longer be deleted on the supported repositories.

PUT api/v1/shipment/<shipment_id>/publishment

200

{
"id": "9ff3d75e-23dc-423e-a6c6-6987ac5ffc3e",
"status": "published"
}

Note that a publishment is not possible if the recipient is the download surrogate which immediately results

in a zip stream as a response.

Files in a deposition

List deposition files

You can request a list of all files in a deposition and their properties with the sub-resource /publishment .

GET api/v1/shipment/<shipment_id>/publishment

200

{
"files": [{
 "filesize": 393320,
 "id": "bae2a60c-bd59-47e1-a443-b34bb7d0a981",
 "filename": "4XgD9.zip",
 "checksum": "702f4db3e53b22176d1d5ddcda462a27",
 "links": {
 "self": "https://sandbox.zenodo.org/api/deposit/depositions/71552/files/bae2a60c-bd59-47e1-a443-b34bb7d0a981"
 "download": "https://sandbox.zenodo.org/api/files/31dc8f3d-df00-4d8a-bd99-64ef341372b3/4XgD9.zip"
 }
}]
}

You can find the id of the file you want to interact with in this json list object at files[n].id , where n is the

position of that file in the array. Files can be identified in this response by either their id in the depot, their

filename or their checksum.

Delete a specific file from a deposition

You can delete files from a shipped shipment's deposition. You must state a file's identifier, which can be

retrieved from the shipment's deposition files property id , as the file_id path parameter. Files for a

published shipment usually cannot be deleted.

DELETE api/v1/shipment/<shipment_id>/files/<file_id>

204

Next

Error responses

400

{"error":"bad request"}

403

{"error": "insufficient permissions"}

 Previous

Built with MkDocs using a theme provided by Read the Docs.

file:///doc/site/user/
file:///doc/site/search/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

Docs » User

User

List users

Return a list of user ids. Pagination (including defaults) as described for compendia is available for users.

curl https://…/api/v1/user

GET /api/v1/user

200 OK

{
 "results": [
 "0000-0002-1825-0097",
 "0000-0002-1825-0097"
]
}

If there are no users, the returned list is empty:

200 OK
{
 "results": []
}

Pagination is supported using the query parameters start and limit .

limit is the number of results in the response, defaults to 10 . It numeric and larger than 0 .

start is the index of the first list item in the response, defaults to 1 . It must be numeric and larger than

0 .

GET /api/v1/user?start=5&limit=10

Error responses for user list

400 Bad Request

{"error":"limit must be larger than 0"}

View single user

Show the details of a user.

curl https://…/api/v1/user/$ID

GET /api/v1/user/:id

 o2r web API

file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/upload/
file:///doc/site/compendium/public_share/
file:///doc/site/compendium/candidate/
file:///doc/site/compendium/view/
file:///doc/site/compendium/delete/
file:///doc/site/compendium/download/
file:///doc/site/compendium/metadata/
file:///doc/site/compendium/files/
file:///doc/site/compendium/substitute/
file:///doc/site/job/
file:///doc/site/search/
file:///doc/site/shipment/
file:///doc/site/user/
file:///doc/site/
file:///doc/site/
file:///doc/site/compendium/view/

200 OK

{
 "id": "0000-0002-1825-0097",
 "name": "o2r"
}

The content of the response depends on the state and level of the user that requests the resource. The above

response only contains the id and the publicly visible name. The following response contains more details and

requires a certain user level of the authenticated user making the request:

curl --cookie "connect.sid=<session cookie here>" https://…/api/v1/user/0000-0002-1825-0097

200 OK

{
 "id": "0000-0002-1825-0097",
 "name": "o2r",
 "level": 0,
 "lastseen": "2016-08-15T12:32:23.972Z"
}

URL parameters for single user view

:id - the user id

Error responses for single user view

404 Not Found

{"error":"no user with this id"}

Authentication

User authentication is done via authenticated sessions, which are referenced with a cookie called

connect.sid . For every endpoint that needs user authentication, a cookie with an authenticated session is

required.

Client authentication

To execute restricted operations of the API, such as compendium upload or job execution, a client must

provide an authentication token via a cookie.

A client must first login on the website to access a browser cookie issued by o2r.uni-muenster.de with the

name connect.sid . Provide the content of the cookie when making requests to the API as shown in the

request example below.

Access authentication information for direct API access

To run commands which require authentication from the command line, a user must login on the website first.

Then open you browser cookies and find a cookie issued by o2r.uni-muenster.de with the name connect.sid .

Use the the contents of the cookie for your requests, for example as shown below when using curl.

curl [...] --cookie "connect.sid=<code string here>" \
 https://…/api/v1/endpoint

Authentication within microservices

Attention: The authentication process requires a secured connection, i.e. HTTPS .

Authentication provider

Session authentication is done using the OAuth 2.0 protocol. Currently ORCID is the only available

authentication provider, therefore users need to be registered with ORCID. Because of its nature, the

authentication workflow is not a RESTful service. Users must follow the redirection to the login endpoint with

their web browser and grant access to the o2r reproducibility service for their ORCID account. They are then

sent back to our authentication service, which verifies the authentication request and enriches the user

session with the verified ORCID for this user.

Start OAuth login

Navigate the web browser (e.g. via a HTML <a> link) to /api/v1/auth/login , which then redirects the user

and request access to your ORCID profile. After granting access, ORCID redirects the user back to the

/api/v1/auth/login endpoint with a unique code param that is used to verify the request.

If the verification was successful, the endpoint returns a session cookie named connect.sid , which is tied to a

authenticated session. The server answers with a 301 redirect , which redirects the user back to / , the start

page of the o2r website.

If the login is unsuccessful, the user is not redirected back to the site and no further redirects are configured.

Request authentication status

As the cookie is present in both authenticated and unauthenticated sessions, clients (e.g. web browser user

interfaces) must know if their session is authenticated, and if so, as which ORCID user. For this, send a GET

request to the /api/v1/auth/whoami endpoint, including your session cookie.

curl https://…/api/v1/auth/whoami --cookie "connect.sid=…

GET /api/v1/auth/whoami

200 OK

{
 "orcid": "0000-0002-1825-0097",
 "name": "o2r"
}

Error response for requests requiring authentication

When no session cookie was included, or the included session cookie does not belong to a authenticated

session, the service responds with a 401 Unauthorized message.

401 Unauthorized

{
 "error": "not authenticated"
}

User levels

Users are authenticated via OAuth and the actions on the website are limited by the level associated with

an account. On registration, each account is assigned a level 0 . Only admin users and the user herself can

read the level of a user.

https://www.orcid.org

The following is a list of actions and the corresponding required minimum user level.

0 Users (everybody)

Create new jobs

View compendia, jobs, user details

100 Known users

Create new compendium

Create shipments

Create substitutions

Delete own candidates

500 Editors

Edit user levels

Edit metadata of other user's compendia

View other user's candidates

1000 Admins

Delete candidates

View status pages of microservices

Edit user

You can update information of an existing user using the HTTP operation PATCH .

Change user level request

The user level can be changed with an HTTP PATCH request. The new level is passed to the API via a query

parameter, i.e. ..?level=<new level value> . The value must be an int (integer). The response is the full user

document with the updated value.

 Required user level

The user sending the request to change the level must have the required user level.

curl --request PATCH --cookie "connect.sid=<session cookie here>" \
 https://…/api/v1/user/0000-0002-1825-0097?level=42`

200 OK

{
 "id": "0000-0002-1825-0097",
 "name": "o2r",
 "level": 42,
 "lastseen": "2016-08-15T12:32:23.972Z"
}

Error responses for user level change

401 Unauthorized

{
 "error": "user is not authenticated"
}

401 Unauthorized

{
 "error": "user level does not allow edit"
}

file:///doc/site/user/#user-levels

400 Bad Request

{
 "error": "parameter 'level' could not be parsed as an integer"
}

 Previous

Built with MkDocs using a theme provided by Read the Docs.

file:///doc/site/shipment/
http://www.mkdocs.org
https://github.com/snide/sphinx_rtd_theme
https://readthedocs.org

	o2r web API documentation
	About
	General notes
	License

	View compendium
	List compendia
	URL parameters for compendium lists

	View single compendium
	URL parameters for single compendium view
	Error responses for single compendium view

	List related execution jobs
	URL parameters for related execution jobs

	Candidate process
	Creation and view
	Metadata review and saving
	Deletion

	Compendium file listing
	path property
	type property

	File extension to MIME type mappings
	File inspection: RData
	Simple data types
	Complex data types
	Path parameters
	Query parameters
	Errors

	Delete compendium
	Request
	Response
	Error responses for compendium delete

	Upload via API
	Body parameters for compendium upload
	Error responses for compendium upload

	Public share
	Common
	Sciebo
	File selection
	Body parameters for creating compendium from public share
	Examples
	Error responses for creating compendium from public share
	Example data

	Zenodo
	Body parameters for creating a compendium from a Zenodo record
	Examples
	Error responses for creating compendium from a Zenodo record
	Example data

	Download compendium
	Requests
	URL parameters for compendium download

	Response
	Error responses for compendium download

	Compendium metadata
	Basics
	Metadata formats
	Metadata validation
	Get all compendium metadata
	Get o2r metadata
	URL parameters
	Spatial metadata

	Update metadata
	Metadata update request
	URL parameters
	Metadata update response
	Metadata update error responses

	Other metadata properties

	Substitution
	Create substitution
	Request
	Request body properties
	Response
	Error responses

	View substituted Compendium
	Request
	Response
	Response additional metadata

	List substituted Compendia
	Request
	Response
	Filter results with following parameters:
	Error responses
	URL parameters for substituted compendium lists

	Execute a compendium
	Job files
	Job status
	Steps of a job
	Status
	Step metadata

	New job
	Body parameters for new jobs
	Error responses for new jobs

	List jobs
	GET query parameters for listing jobs

	View single job
	URL parameters for single job view
	Error responses for single job view

	Job status updates

	Search
	Simple search
	Query parameters for simple search
	Example requests

	Complex Search
	Query fields for complex search
	Examples
	Temporal search
	Spatial search
	Resource search
	Response

	Ship compendia and metadata
	Packaging
	Supported recipients
	List shipments
	Get a single shipment
	Create a new shipment
	Creation response
	Shipment status
	Publish a deposition
	Files in a deposition
	List deposition files
	Delete a specific file from a deposition

	Error responses

	User
	List users
	Error responses for user list

	View single user
	URL parameters for single user view
	Error responses for single user view

	Authentication
	Client authentication
	Access authentication information for direct API access
	Authentication within microservices
	Authentication provider
	Start OAuth login
	Request authentication status
	Error response for requests requiring authentication

	User levels
	Edit user
	Change user level request
	Error responses for user level change

