Executable Research Compendium

This is the technical specification of the Executable Research Compendium
(ERC) in PDF format.

The normative version is available in Markdown format in the online reposi-
tory at https://github.com/o2r-project /erc-spec/.

This specification and guides are developed by the members of the DFG-funded
project Opening Reproducible Research, https://o2r.info.

opening
() reproducible
- research

License

The o2r Executable Research Compendium specification is licensed under
Creative Commons CCO 1.0 Universal License (https://creativecommons.
org/publicdomain/zero/1.0/). To the extent possible under law, the people
who associated CCO with this work have waived all copyright and related or
neighboring rights to this work. This work is published from: Germany.

PUBLIC
DOMAIN

Build version: c2081e4

https://github.com/o2r-project/erc-spec/
https://o2r.info
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

Contents

Executable Research Compendium 2
Guides e 2
Credits. e 3
License 3

ERC specificationo o 4
Preface 4
ERC structure 6
ERC configuration file 8
Runtime manifest and image 10
R workspaces o 17
Interactive ERC 18
Preservation of ERC L 20
ERC checking o 27
Comprehensive example of erc.yml 28

Glossary o 29
(Computational) Analysis 29
Bag 29
Compendium contents, 29
Container o i i e e 29
Check 29
Create e 30
Discover 30
ERC . . . e 30
ERCcontents 30
ERC metadata, 30
Examine 30
Inner containero o 30
Inspect L 30
Dependency 31
Display file 31
Manipulate Lo 31
OAIS . . . e 31
Outer container 31
Reproducible, Reproducibility, Replication 31
Runtime container Lo 31
Runtime manifest 32
Substitute 32
Ul bindings« . o 32
Workspaceo 32

Executable Research Compendium

This is the technical specification of the Executable Research Compendium
(ERC).

Read the specification (PDF download**.

Guides

Are you a scientist and want to publish your research as an ERC? Read user
guides for authors, reviewers, and readers:

« ERC creation
¢ ERC examination
e ERC template

Are you a developer or architect and want to build applications using ERCs?
Read our developer documentation:

o Developer guide
e 02r System Architecture

Are your a librarian or preservationist and want to use ERCs for archival of
scholarly works? Read user guides for librarians and preservationists:

« ERC & OAIS

https://o2r.info/architecture/

Credits

This specification and guides are developed by the members of the DFG-funded
project Opening Reproducible Research

opening
() reproducible
- research

License

PUBLIG
DOMAIM

Figure 1: CC-0 Button

The o2r Executable Research Compendium specification is licensed under Cre-
ative Commons CCO 1.0 Universal License, see file LICENSE. To the extent pos-
sible under law, the people who associated CCO with this work have waived all
copyright and related or neighboring rights to this work. This work is published
from: Germany.

Build @ 2018-12-14T19:21:24Z

https://o2r.info
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

ERC specification

An Executable Research Compendium (ERC) is a packaging convention for
computational research. It provides a well-defined structure for data, code,
text, documentation, and user interface controls for a piece of research and is
suitable for long-term archival. As such it can also be perceived as a digital
object or asset.

Note

This is a draft specification. If you have comments or suggestions please file
them in the . If you have explicit changes please fork the and submit a pull
request.

Preface

Version
Specification version: 1
Warning

This version is under development!

Notational conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” are to be interpreted as described in RFC 2119.

The key words “unspecified”, “undefined”, and “implementation-defined” are to
be interpreted as described in the rationale for the C99 standard.

Purpose, target audience, and context

This specification defines a structure to transport and execute a computational
scientific analysis (cf. computational science). It carries technical and concep-
tual details on how to implement tools to enhance reproducibility and is most
suitable for developers. Authors may feel more comfortable with the

These analyses typically comprise a digital workspace on a researcher’s com-
puter, which contains data (born digital, simulated, or other), code, third party
software or libraries, and outputs of research such as digital plots or data. Code
and libraries are required in executable form to re-do a specific analysis or work-
flow. Research is only put into a context by a text, e.g. a research paper, which
is published in scholarly communication. The text comes in two forms: one
that is machine readable, and another one that is suitable for being viewed by

http://tools.ietf.org/html/rfc2119
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf#page=18
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Born-digital
https://en.wikipedia.org/wiki/Scholarly_communication

humans. The latter is derived, or “rendered”, from the former. The viewing
experience can be static, textual, visual, or interactive.

Putting all of these elements in a self-contained bundle allows examining, repro-
ducing, transferring, archiving, and formally validating computational research
results in a time frame for peer review and collaboration. The ERC specification
defines metadata and file structures to support these actions.

Major constituents
Three major constituents group possible user interactions with ERC.

Create Creation is transforming a workspace with data, code and text into an
ERC.

Examine Examination is evaluating ERC at different levels, from inspecting
contents to creating derived analyses.

Discover Discovery is searching for content powered by ERC properties, such
as text, content metadata, code metadata et cetera.

Design principles

Simplicity This specification should not re-do something which already exists
(if it is an open specification or tool). The risk of scattering information
is mitigated by clear documentation. It must be possible to create a valid
and working ERC manually, while supporting tools should be able to cover
typical use cases with minimal required input by a creating user.

Nested containers We acknowledge well defined standards for packaging a
set of files, and different approaches to create an executable code package.
Therefore an ERC comprises one or more containers but is itself subject to
being put into a container. We distinguish these containers into the inner
or “runtime” container and the outer container, which is used for transfer
of complete ERC and not content-aware validation.

Transparency, Stability, and Openness Plain text files usable by both hu-
mans and computers are the backbone to make sure ERCs are acceptable
by users from all scientific domains, are understandable today and tomor-
row, and are easy to extend. The ERC contains everything needed to
execute a workflow.

How to use an ERC

The steps to (re-)run the analysis contained in an ERC as part of an examination
are as follows:

o (if compressed first extract then) unpack the ERC’s outer container

e execute the runtime container

e compare the output files contained in the outer container with the output
files just created by the runtime container

../glossary.md#create
../glossary.md#examine
../glossary.md#discover
../glossary.md#examine

This way an ERC allows computational reproducibility based on the original
code and data.

Three questions
[Section inspired by REANA’s “Four Questions”]

The ERC helps to make research papers more transparent an reusable by giving
minimal structure for contents and context. They help to answer the “Three
Questions” both for users, but more importantly for tools and services built
around them.

1. What is your result?
o file I should look at to see the description and visualisations
o the “display file” shown by applications based on ERC
2. What is your workflow?
o file I should look at as a reader when I want to understand your
code/analysis/workflow, the steps you took
o the “main file” used by applications based on ERC for creating ERCs
and executing them, which means running the analysis and creating
the result
3. What is your environment?
e operating system you used
o software you used (libraries, your own scripts, ...)
e can be used by tools to recreate the same environment

ERC structure

Base directory

An ERC MUST has a base directory. All paths within this document are relative
to this base directory.

The base directory MUST contain an ERC configuration file.

Besides the files mentioned in this specification, the base directory MAY contain
any other files and directories.

Main & display file

An ERC MUST have a _ main file, i.e. the file which contains the text and
instructions being the basis for the scientific publication describing the packaged
analysis. An ERC MUST have a display file, i.e. the file which is shown to a
user first when she opens an ERC in a supporting platform or tool.

Main file and display file MUST NOT be the same file.

https://reana.readthedocs.io/en/latest/concepts.html#four-questions

The main file MUST be executable in the sense that a software reads it as the
input of a process to create the display file. The main file’s name SHOULD be
main with an appropriate file extension and media type.

Note
The main file thus follows the literate programming paradigm.
Example

If the main file is an R Markdown document, then the file extension should be
.Rmd and the media type text/markdown. A file main.Rmd will consequently be
automatically identified by an implementation as the ERC’s main file.

The display file’s name SHOULD be display with an appropriate file extension
and media type.

Example

If the display file is an Hypertext Markup Language (HTML) document, then
the file extension should be .htm or .html and the media type text/html. A
file display.html will consequently be automatically identified by an imple-
mentation as the ERC’s display file.

The ERC MAY use an interactive document with interactive figures and control
elements for the packaged computations as the display file. The interactive
display file MUST have HTML format and SHOULD be valid HTMLS5.

Example

Typical examples for the two core documents are R Markdown with HTML
output (i.e. main.Rmd and display.html), or an R script creating a PNG file
(i.e. main.R and display.png).

Nested runtime

The embedding of a representation of the original runtime environment, in which
the analysis was conducted, is crucial for supporting reproducible computations.
Every ERC MUST include two such such representations:

1. an executable runtime image of the original analysis environment for
re-running the packaged analysis, and

2. a runtime manifest documenting the image’s contents as a complete,
self-consistent recipe of the runtime image’s contents which is a machine-
readable format that allows a respective tool to create the runtime image.

The image MUST be stored as a file, e.g. a “binary” or “archive”, in the ERC
base directory.

The manifest MUST be stored as a text file in the ERC base directory.

System environment

https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Literate_programming
https://www.w3.org/TR/html5/

The nested runtime encapsulates software, files, and configurations up to a spe-
cific level of abstraction. It may not include a complete operating system, for
example for better performance or security reasons. While this information is
included in the nested runtime, it MUST be accessible without executing the
runtime. Hard to obtain information SHOULD be replicated in the configura-
tion file.

If the nested runtime does not include the operating system, then the config-
uration file MUST include the following data about the environment used to
create the ERC:

o architecture

e operating system

o kernel (if applicable)

o runtime software version

An implementation SHOULD notify the user if the provided system environment
is incompatible with the implementations capabilities.

Tip

A partially incompatible system environment, especially a different kernel ver-
sion, may still produce the desired result, as breaking changes are very rare.
An implementation may utilise semantic versioning to improve its compatibil-
ity tests. An incompatible operating system, e.g. linux vs. windows, and
architecture, e.g. amd64 or arm/v7, are likely to fail.

ERC configuration file

The ERC configuration file is the reproducibility manifest for an ERC. It defines
the main entry points for actions performed on an ERC and core metadata
elements.

Name, format, and encoding

The filename MUST be erc.yml and it MUST be located in the base directory.
The contents MUST be valid YAML 1.2. The file MUST be encoded in UTF-8
and MUST NOT contain a byte-order mark (BOM).

Basic fields

The first document content of this file MUST contain the following string nodes
at the root level.

e spec_version: a text string noting the version of the used ERC specifi-
cation. The appropriate version for an ERC conforming to this version of
the specification is 1.

https://semver.org/
http://yaml.org/

o id: globally unique identifier for a specific ERC. id MUST not be empty
and MUST only contain lowercase letters, uppercase letters, digits and
single separators. Valid separators are period, underscore, or dash. A
name component MUST NOT start or end with a separator. An imple-
mentation MAY introduce further restrictions on minimum and maximum
length of identifiers.

Note

While URIs (see rfc3986) are very common identifiers, not all systems sup-
port them as identifiers. For example they cannot be used for Docker image
names. A UUID is a valid id. A regular expression to validate identifiers is
/" ["-_.1[a-zA-Z0-9. _-1+["-_.1%/.

The main and display file MAY be defined in root-level nodes named main and
display respectively. If they are not defined and multiple documents use the
name main. [ext] or display. [ext], an implementation SHOULD use the first
file in alphabetical order.

Example of ERC configuration file with user-defined main and display files

id: b9b0099e-9£8d-4a33-8acf-cb0cO062efaec
spec_version: 1

main: workflow.Rmd

display: paper.html

Additionally, related resources such as a related publication can be stated with
the relatedIdentifier element field. A related identifier SHOULD be a glob-
ally unique persistent identifier and SHOULD be a URI.

Author and license metadata

The main document MUST include information about the authors. It SHOULD
contain this information in a structured way so it can be parsed by tools sup-
porting ERCs.

Note

An example for structured metadata is markup with author names and affilia-
tions in the header of the main document.

The file erc.yml MUST contain a first level node licenses with licensing in-
formation for contained artefacts. Each of these artefacts, e.g. code or data,
have distinct requirements so it must be possible to apply different licenses.

The node licenses MUST have four child nodes: text, data, code, and
metadata.

Note

https://tools.ietf.org/html/rfc3986
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Alphabetical_order

There is currently no mechanism to define the licenses of all the used libraries
and software in a structured format. Manual creation would be tedious. Tools
for automatic creation of ERC may add such detailed licensing information and
define additional metadata elements.

The content of each of these child nodes MUST be a string with one of the
following contents:

o license identifier as defined by the Open Definition Licenses Service
o name of file with either documentation on licensing or a full license text

Example for common licenses

id: b9b0099e-9f8d-4a33-8acf-cb0OcO062efaec
spec_version: 1
licenses:

code: Apache-2.0

data: 0ODbL-1.0

text: CCO-1.0

metadata: CCO-1.0

Example for non-standard licenses

id: b9b0099e-9f8d-4a33-8acf-cb0cO062efaec
spec_version: 1
licenses:
code: Apache-2.0
data: data-licenses.txt
text: "Creative Commons Attribution 2.0 Generic (CC BY 2.0)"
metadata: "see metadata license headers"

Runtime manifest and image

The ERC uses Docker to define, build, and store the nested runtime environ-
ment.

Runtime image

The runtime environment or image MUST be represented by a Docker image
v1.2.0.

Note

A concrete implementation of ERC may choose to rely on constructing the run-
time environment from the manifest when needed, e.g. for export to a repository,
while the ERC is constructed.

The base directory MUST contain a tarball.

10

http://licenses.opendefinition.org/
http://docker.com/

The image MUST have a tag erc:<erc identifier>, for example
erc:b9b0099e-9f£8d-4a33-8acf-cb0c062efaec.

The image file MAY be compressed.

The image archive file name MUST be image with an appropriate
file extension, such as .tar, .tar.gz (if a gzip compression is used
for the archive) or .bin, and have an appropriate mime type, e.g.
application/vnd.oci.image.layer.tar+gzip.

Note

Before exporting the Docker image, it should be build from the runtime manifest,
including the tag which can be used to identify the image, for example:

docker build --tag erc:b9b0099e-9f8d .

docker images erc:b9b0099e-9£8d

docker save erc:b9b0099e-9f8d > image.tar

save with compression:

docker save erc:b9b0099e-9f8d | gzip -c > image.tar.gz

Do not use docker export, because it is used to create a snapshot of a container,
which must not match the Dockerfile anymore as it may have been manipulated
during a run.

Runtime manifest

The runtime manifest MUST be represented by a valid Dockerfile, see Docker
builder reference.

The file MUST be named Dockerfile.

The Dockerfile MUST contain the build instructions for the runtime environ-
ment and MUST have been used to create the image saved to the runtime image.
The build SHOULD be done with the option —-no-cache=true.

The Dockerfile MUST NOT use the latest tag in the instruction FROM.
Note

The “latest” tag is merely a convention to denote the latest available image, so
any tag can have undesired results. Nevertheless, using an image tagged “latest”
makes it much more likely to change over time. Although there is no guarantee
that images tagged differently, e.g. “v1.2.3” might not change as well, using
such tags shall be enforced here.

The Dockerfile SHOULD contain the label maintainer to provide authorship
information.

The Dockerfile MUST have an active instruction CMD, or a combination of the
instructions ENTRYPOINT and CMD, which executes the packaged analysis.

11

https://en.wikipedia.org/wiki/Tar_(computing)#Suffixes_for_compressed_files
https://en.wikipedia.org/wiki/Tar_(computing)#Suffixes_for_compressed_files
https://docs.docker.com/engine/reference/commandline/build/
../glossary.md#manipulate
http://container-solutions.com/docker-latest-confusion/
https://docs.docker.com/engine/reference/builder/#maintainer-deprecated

The Dockerfile MUST contain a VOLUME instruction to define the mount point
of the ERC base directory within the container. This mount point MUST be
/erc and the bind MUST be configured as with read and write access. Imple-
mentations SHOULD make sure an execution does not interfere with original
uploaded files, but a write access is required to store the created display file
outside of the container.

The Dockerfile MUST contain a WORKDIR instruction with the value /erc.

The Dockerfile SHOULD NOT contain a COPY or ADD command to include data,
code or text from the ERC into the image. These commands MAY be used to
copy code or libraries which must be available during the image build.

The Dockerfile SHOULD NOT contain EXPOSE instructions.

System environment

The following system environment configurations MUST be provided as nodes
under the root-level node execution:

« (if applicable) kernel, node kernel

The following system environment configurations are available within the run-
time image metadata and therefore not be replicated in the ERC configuration
file.

e operating system, node os,

e architecture, node architecture

o runtime software version, node DockerVersion in output of docker
inspect and node docker_version in image metadata JSON file (cf.
source code).

Accessing system environment configurations from image metadata in a saved
image tarball

manifest.json contains a list of the layers and the config as the name of the
configuration file. The image metadata is in the &1t;image id> . json file in
the root directory of the tarball. The following commands show how to extract
the image metadata file from the tarball and print the relevant properties to the
console using the JSON cli tool jq.

$ tar -xf image.tar --wildcards --no-anchored '[!manifest]*.json'
$ cat *.json | jq '.architecture, .os, .docker_version'

"amd64"

"linux"

"17.05.0-ce"

Together the image metadata and ERC configuration file provide all properties
of the underlying system environment. An implementation SHOULD notify the

12

https://github.com/moby/moby/blob/17.05.x/image/image.go#L45
https://stedolan.github.io/jq/

user if the required system environment is incompatible with the implementa-
tion’s capabilities.

System environment incompatibilities

A partially incompatible system environment, especially a different kernel ver-
sion, may still produce the desired result, as breaking changes are very rare.
An implementation could utilise semantic versioning to improve its compati-
bility tests. An incompatible operating system, e.g. linux vs. windows, and
architecture, e.g. amd64 or arm/v7, are likely to fail.

Example of ERC configuration file with user-defined kernel and excerpt from
runtime image metadata

ERC configuration file

id: b9b0099e-9£8d
spec_version: 1
execution:
kernel: "4.13.0-32-generic’

Image metadata (excerpt) (results of an docker image inspect call):

L
{
"Id": "sha256:87362162878143c5e10e94a6ec9b7e925b...",
"RepoTags": [],
"RepoDigests": [],
"Parent": "sha256:a280c143f£833d99274e96bbcfdc86...",
"Created": "2018-02-15T15:18:42.623467682Z",
"Container": "840b75b48121012a0847bbael148ed96df7...",
"ContainerConfig": { ... },
"DockerVersion": "17.05.0-ce",
"Author": "<https://o2r.info>",
"Config": { ... I},
"Architecture": "amd64",
"Os": "linux",
[...]
}
]
Image metadata (excerpt) (content of <image id>.json from
image.tar): “‘json { “architecture”: “amd64”, “config”: { ..., “Labels”: {
“maintainer”: “o2r” } }, “container”: “747198d654630530c2a6523abbc19e41d7fcf977833c6854a2a48tb11b8c607c¢
“container__config”: { ... }, “created”: “2018-03-08T15:24:20.164740334Z”,
“docker_ version”: “17.05.0-ce”, “history™: [...], “os”: “linux”, “rootfs”: {

“type”: “layers”, “diff _ids”: [“sha256:8568818b1{7{534832b393c531edfch4a30e7eb40b573e68{dea903589872311
“sha256:fccd38ea8016190426aa7ef4baba29b0c92delee’863¢3460a34151695fbcba08”,
“sha256:cf52051fff5bb6430c972ef822d435¢9b5242117398b43c6d36f1ed71d978a94”,
“sha256:5535e4fbfaded182d3cc87bfe643f87801c91be6c171535675effb4efc8cleba”,

13

https://semver.org/

“sha256:9d55d57e41e02115{48e428a880d88d 7hf0af993a232d0c967ccl7{012e2¢250”
I3}

Execution

The configuration file MUST provide enough information to for implementations
to create the commands for execution of the runtime image and to provide access
to the data and software in the ERC. Implementations MUST support Docker
Engine APT v1.35 (or compatible).

Making data, code, and text available within container

The runtime environment image contains all dependencies and libraries needed
by the code in an ERC. Especially for large datasets, it in unfeasible to replicate
the complete dataset contained within the ERC in the image. For archival, it
can also be confusing to replicate code and text, albeit them potentially being
relatively small in size, within the container.

Therefore a host directory MUST be mounted (also “bind-mounted”) into the
compendium container at runtime using a data volume.

Example Dockerfile

In this example we use a Rocker base image to reproduce computations made
in R.

" "Dockerfile
FROM rocker/r-ver:3.3.3

RUN apt-get update -qq \
&& apt-get install -y --no-install-recommends \
Packages required by R extension packages
required by rmarkdown:
lmodern \
pandoc \
for devtools (requires git2r, httr):
libcurl4-openssl-dev \
libssl-dev \
git \
for udunits:
libudunits2-0 \
libudunits2-dev \
required when knitting the document
pandoc-citeproc \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*

14

https://docs.docker.com/engine/api/v1.35/
https://docs.docker.com/engine/api/v1.35/
https://docs.docker.com/engine/reference/commandline/run/#mount-volume--v---read-only
https://docs.docker.com/engine/tutorials/dockervolumes/#mount-a-host-directory-as-a-data-volume
https://github.com/rocker-org/rocker

install R extension packages
RUN install2.r -r "http://cran.rstudio.com" \
rmarkdown \
ggplot2 \
devtools \
&& rm -rf /tmp/downloaded_packages/ /tmp/*.rd

Save installed packages to file
RUN dpkg -1 > /dpkg-list.txt

LABEL maintainer=o2r \
description="This is an ERC image." \
info.o2r.bag.id="123456"

VOLUME ["/erc"]
WORKDIR ["/erc"]

ENTRYPOINT ["sh", "-c"]
CMD ["R --vanilla -e \"rmarkdown::render(input = '/erc/myPaper.rmd', \
output_dir = '/erc', output_format = rmarkdown::html_document ())\""]

Main and display file in the container

The fixed mount point have the advantage that users and tools can be
sure the main and display files are usually available at /erc/main.Rmd and
/erc/display.html respectively.

Default execution

If no execution information is provided, then the implementation MUST as-
sume an unconfigured Docker control flow for loading and executing the nested
runtime environment is sufficient. Unconfigured means that NO configuration
besides providing a mount of the compendium files (see previous section) MAY
be applied.

The control statements for Docker executions comprise load, for importing an
image from the archive, and run for starting a container of the loaded image.
Both control statements MUST be configured by using nodes of the same name
under the root-level node execution in the ERC configuration file. Based on
the configuration, an implementation can construct the respective runtime soft-
ware’s commands, i.e. docker load and docker run, using the correct image
file name and further parameters (e.g. performance control options).

Constructing the execution commands

The Docker CLI commands constructed based on configuration file for ERC with

15

https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/run/

ID 19b0099e-9£8d could be as follows. In this case the implementation uses
-it to pass stdout streams to the user and adds an identifier for the container
using —-name.

docker load --input image.tar

docker run -it --name run_b9b0099e \
--volume /storage/erc/abcl123:/erc \
erc:b9b0099e-9£8d

The output of the container during execution MAY be shown to the user to
convey detailed information to users.

Adjusted execution

Two means MAY be used to adjust the execution of a compendium: environ-
ment variables and bind mounts.

Environment variables can be set for containers at runtime. They overwrite
variables that are defined within the image and thus SHOULD be used sparsely,
for example only when the same configuration can not be achieved within the
main file, and only to increase reproducibility.

The MUST NOT be used for manipulating the compendium’s workflow instead
of using Ul bindings.

Environment variable use case: Time zone

A possible use case for environment variables can be setting the time zone.
When the display file contains text output of times and timestamps, running
the analysis on a machine with a different time zone may wrongly cause errors
during checking. While a careful author can cover this within the main file
via settings or controlling output, she may also be offered during a creation
workflow to freeze the timezone. The following command sets the system time
zone to CET.

docker run -it --name run_b9b0099e \
--volume /storage/erc/abcl123:/erc --env TZ=CET \
erc:b9b0099e-9£8d

In addition to the mandatory mount of all compendium files, bind mounts MAY
be added to replace specific files for substitution.

The mounts MUST be configured in a list node bind_mounts under the root-
level node execution in the ERC configuration file. Implementations SHOULD
apply them in the same order as given in the configuration file. Each mount
MUST include the following nodes:

e source: mount source file or directory.
e destination: mount target path within the container; MUST be an ab-
solute path.

16

https://docs.docker.com/engine/reference/commandline/run/#set-environment-variables--e-env-env-file
../glossary.md#substitute
../glossary.md#substitute

The binds used for substitution MUST be configured as read only.

If a list of mounts is configured, it MAY NOT include the mandatory bind
mount.

Example: data file replacement with bind mounts

The following example includes an explicit definition of the mandatory mount
to /erc and an overlay bind mount of a CSV file.

id: b9b0099e-9f8d
spec_version: 1
execution:
bind_mounts:
- source: '/storage/erc/abc123'
destination: /erc
- source: /storage/erc/other/input_data/fixed.csv
destination: /erc/data.csv

It can be translated by an implementation to the following bind string:
/storage/compendium/other123/input_data/fixed.csv:/erc/data.csv:ro
More on mounts and binds

See Docker API specification section Create a container > HostConfig >
Binds/Mounts.

R workspaces

ERC support the R software environment for statistical computing and graphics.

Structure

The structure (file names for data, directories, etc.) within the ERC are inten-
tionally unspecified. However, the content’s structure MAY follow conventions
or be based on templates for organizing research artifacts.

If a convention is followed then it SHOULD be referenced in the ERC config-
uration file as a node convention section. The node’s value can be any text
string which uniquely identifies a convention, but a URI or URL to either a
human-readable description or formal specification is RECOMMENDED.

A non-exhaustive list of potential conventions and guidelines for R is as follows:

¢ Ben Marwick’s rrtools

¢ ROpenSci rrrpkg

o Jeff Hollister’s manuscriptPackage

o Carl Boettiger’s template

o Francisco Rodriguez-Sanchez’s template

17

https://docs.docker.com/engine/api/v1.35/#operation/ContainerCreate
https://www.r-project.org/
https://github.com/benmarwick/rrtools
https://github.com/ropensci/rrrpkg
https://github.com/jhollist/manuscriptPackage
https://github.com/cboettig/template
https://github.com/Pakillo/template

¢ Ben Marwick’s template
¢ Karl Broman’s comments on reproducibility
e R package: “Writing R Extensions”

Example for using the ROPenSci rrrpkg convention
The convention is identified using the public link on GitHub.

id: b9b0099e-9£8d-4a33-8acf-cbOcO62efaec
spec_version: 1
convention: https://github.com/ropensci/rrrpkg

R Markdown main file
The ERC’s main file for R-based analyses SHOULD be R Markdown.

If the main file is R Markdown, it SHOULD include basic metadata in its YAML
front matter: author(s), title, date, et cetera.

The main document SHOULD NOT contain code that loads pre-computed re-
sults from files, but conduct all analyses, even costly ones, during document
weaving.

The document MUST NOT use cache=TRUE on any of the code chunks (see
knitr options. While the previously cached files (.rdb and .rdx) MAY be
included, they SHOULD NOT be used during the rendering of the document.

Note

A popular alternative solution is Sweave with the .Rnw extension, which is still
widely used for vignettes. R Markdown was chosen of LaTex for its simplicity
for users who are unfamiliar with LaTeX.

Fixing the environment in code

The time zone MUST be fixed to UTC Coordinated Universal Time) to allow
validation of output times (potentially broken by different output formats) by
using the following code within the RMarkdown document, or other code to
that effect.

Sys.setenv("TZ" = "UTC")

The manifest file (i.e. Dockerfile) MUST run a plain R session without loading
.RData files or profiles at startup, i.e. use R --vanilla.

Interactive ERC

Enabling interaction with the contents of an ERC is a crucial goal of this spec-
ification (see Preface). Therefore this section defines metadata to support two
goals:

18

https://github.com/benmarwick/template
http://kbroman.org/knitr_knutshell/pages/reproducible.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/html_document_format.html#overview
https://rmarkdown.rstudio.com/html_document_format.html#overview
https://yihui.name/knitr/options/
http://www.statistik.lmu.de/~leisch/Sweave/
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

o aide inspecting users to identify core functions and parameters of an anal-
ysis, and

o allow supporting software tools to create interactive renderings of ERC
contents for manipulation.

These goals are manifested in the UI bindings as part of the ERC configuration
file under the root level property ui_bindings. The license of code specifically
included to support Ul bindings MUST be the same as the code license.

An ERC MUST denote if UI bindings are present using the boolean property
interactive. If the property is missing it defaults to false. An implemen-
tation MAY use the indicator interactive: true to provide other means of
displaying the display file.

Example for minimal interaction configuration

id: b9b0099e-9f8d-4a33-8acf-cb0cO062efaec
spec_version: 1
ui_bindings:

interactive: true

An ERC MAY embed multiple concrete UI bindings. Each Ul binding is repre-
sented by a YAML dictionary.

It MUST comprise a purpose and a widget using the fields purpose respectively
widget (both of type string). The values of these fields SHOULD use a concept
of an ontology to clearly identify their meaning.

A purpose defines the user’s intention, for example manipulating a variable
or inspecting dataset or code. A widget realizes the purpose with a concrete
interaction paradigm chosen by the author, for example an input slider, a form
field, or a button.

For each widget, implementations MAY use the properties code, data, and text
to further describe how a specific UI binding acts upon the respective part of
the ERC.

Example of two Ul bindings

id: b9b0099e-9f8d-4a33-8acf-cbOcO62efaec
spec_version: 1
ui_bindings:
interactive: true
bindings:
- purpose: http://.../data-inspection
widget: http://.../tabular-browser

code: [...]
data: [...]
text: [...]

- purpose: http://.../parameter-manipulation
widget: http://.../dropdown

19

../glossary.md#inspect
../glossary.md#manipulate
../glossary.md#manipulate
../glossary.md#inspect

Preservation of ERC

This section places the ERC in the context of preservation workflows by defining
structural information and other metadata that guarantee interpretability and
enable the bundling of the complete ERC as a self-contained, archivable digital
object.

Archival bundle

For the purpose of transferring and storing a complete ERC, it MUST be pack-
aged using the Baglt File Packaging Format (V0.97) (Baglt) as the outer con-
tainer. Baglt allows to store and transfer arbitrary content along with minimal
metadata as well as checksum based payload validation.

The remainder of this section comprises

e a description of the outer container,
e a Baglt profile,

o a package leaflet, and

o secondary metadata files.

Baglt outer container

The ERC base directory MUST be the Baglt payload directory data/. The path
to the ERC configuration file subsequently MUST be <path-to-bag>/data/erc.yml.

The bag metadata file bagit.txt MUST contain the case-sensitive label
Is-Executable-Research-Compendium with the case-insensitive value true to
mark the bag as the outer container of an ERC.

Implementations SHOULD use this field to identify an ERC.
Example bagit.txt

Payload-Oxum: 2172457623.43
Bagging-Date: 2016-02-01

Bag-Size: 2 GB
Is-Executable-Research-Compendium: true

Example file tree for a bagged ERC

├ ─ ─ bag-info.txt

├ ─ ─ bagit.txt

├ ── data

│ ├ ─ ─ 2016-07-17-sf2.Rmd
&#HO4T4 ├ ─ ─ erc.yml

│ ; ├ ─ ─ metadata.json
│ ├ ; ── Dockerfile

│ └ ─ ─ image.tar

20

http://tools.ietf.org/html/draft-kunze-bagit

├ ─ ─ manifest-md5.txt
└── tagmanifest-mdb5.txt

Baglt profile - DRAFT
Note

The elements of the o2r Bagit Profile is yet to be specified. This section is
under development. Current Baglt tools do not include an option to add a
Baglt Profile automatically.

A Baglt Profile as outlined below would make the requirements more explicit.
The Baglt Profiles Specification Draft allows users of Baglt bags to coordinate
additional information, attached to bags.

{
"BagIt-Profile-Info":{
"BagIt-Profile-Identifier":"https://o2r.info/erc-bagit-vl.json",
"Source-Organization":"o2r.info",
"Contact-Name":"o2r Team",
"Contact-Email":"o2rQ@uni-muenster.de",
"External-Description":"Baglt profile for packaging
executable research compendia.",
"Version":"1"
1,
"Bag-Info":{
"Contact-Name" : {
"required" :true
3,
"Contact-Email":{
"required" :true
s
"External-Identifier":{
"required" :true

}!

"Bag-Size":{
"required":true

T,

"Payload-Oxum":{
"required" :true
}
1,
"Manifests-Required": [
"md5"
1,
"Allow-Fetch.txt":false,
"Serialization":"optional",

21

https://github.com/ruebot/bagit-profiles

"Accept-Serialization": [
"application/zip"

1,

"Tag-Manifests-Required": [
"md5"

1,

"Tag-Files-Required": [

".erc/metadata. json",

"erc.yml"
1,
"Accept-BagIt-Version": [
"0.96"
]
¥

Package leaflet

Each ERC MUST contain a package leaflet, describing the schemas and stan-
dards used. Available schema files are supposed to be included with the ERC,
if available (licenses for these schemas may apply).

Example package leaflet

{
"standards_used": [
{
"o {
"map_description": "maps raw extracted metadata to
02r schema compliant metadata",
"mode": "json",
"name": "o2r",
"outputfile": "metadata_o2r.json",
"root": "
}
1,
{
"zenodo_sandbox": {
"map_description": "maps o2r schema compliant MD to
Zenodo Sandbox for deposition creation",
"mode": "json",
"name": "zenodo_sandbox",
"outputfile": "metadata_zenodo_sandbox.json",
"root": "metadata"
}
X

22

}

Elements used for each schema standard used are contributed via the MD map-
ping files in the o2r meta tool suite.

Secondary metadata files

The ERC as an object can be used in a broad range of cases. For example, it
can be an item under review during a journal publication, it can be the actual
publication at a workshop or conference or it can be a preserved item in a digital
archive. All of these have their own standards and requirements to apply, when
it comes to metadata.

These metadata requirements are not part of this specification, but the following
conventions are made to simplify and coordinate the variety.

Metadata specific to a particular domain or use case MUST replicate the infor-
mation required for the specific case in an independent file. Domain metadata
SHOULD follow domain conventions and standards regarding format and en-
coding of metadata. Duplicate information is accepted, because it lowers the
entry barrier for domain experts and systems, who can simply pick up a meta-
data copy in a format known to them.

Metadata documents of specific use cases MUST be stored in a directory .erc,
which is a child-directory of the ERC base directory.

Metadata documents SHOULD be named according to the used stan-
dard/model, format/encoding, and version, e.g. datacite40.xml or
zenodo_sandbox10. json, and SHOULD use a suitable mime type.

Requirements of secondary metadata

In order to comply to their governing schemas, secondary metadata must include
the mandatory information as set by 3rd party services. While the documenta-
tion of this quality is a perpetual task, we have gathered the information most
relevant our selection of connected services.

Zenodo

e Accepts metadata as JSON.
e Mandatory elements:
— Upload Type (e.g. Publication)
— Publication Type
— Title
— Creators
Description
— Publication Date
Access Right
— License

23

DataCite (4.0)

e Accepts metadata as XML.
e Mandatory elements:

— Identifier

— Creator

— Title

— Publisher
Publication Year
— Resource Type

Development bundle

While complete ERCs are focus of this specification, for collaboration and offline
inspection it is useful to provide access to parts of the ERC. To support such use
cases, a development bundle MAY be provided by implementations. This bundle
most importantly would not include the runtime image, which is potentially a
large file.

The development bundle SHOULD always include the main file and (e.g. by
choice of the user, or by an implementing platform) MAY include other relevant
files for reproduction or editing purposes outside of the runtime environment,
such as input data or the runtime manifest for manual environment recreation.

Content metadata

The current JSON dummy file to visualises the properties. These elements
SHOULD be filled out as good as possible in the user interface.

{
"access_right": "open",
"author": [{
"name": null,
"affiliation": [],
"orcid": null

H,

"codefiles": [],

"community": "o2r",

"depends": [{
"identifier": null,
"version": null,
"packageSystem": null

H,

"description": null,

"file": {

"filename": null,
"filepath": null,

24

../glossary.md#inspect

"mimetype": null
3,
"generatedBy": null,
"identifier": {
"doi": null,
"doiurl": null,
"reserveddoi": null
3,

"inputfiles": [],
"keywords": [],
"license": {

"text": None,

"data": None,

"code": Nome,

"md": None
3,
"paperLanguage": [],
"paperSource": null,
"publicationDate": null,
"recordDateCreated": null,
"softwarePaperCitation": null,

"spatial": {
"files": [],
"union": []

},

"temporal": {
"begin": null,
"end": null

},

"title": null,
"upload_type": "publication",
"viewfiles": []

I
The path to the o2r metadata file MUST be
<path-to-bag>/data/metadata_raw.json

and the refined version metadata_o2r. json.

Description of 02r metadata properties

e access_right String.

e creators Array of objects.

e creators.name String.

e creators.orcid String.

e creators.affiliation String.

25

codefiles Array of strings List of all files of the recursively parsed
workspace that have an extension belonging to a (“R”) codefile.
communities Array of objects prepared zenodo MD element
communities[0] .identifier String. Indicating the collection as required
in zenodo MD, default “o2r”.

depends Array of objects.

depends.operatingSystem String.

depends.identifier String.

depends . packageSystem String. URL

depends.version String.

description String. A text representation conveying the purpose and
scope of the asset (the abstract).

displayfile String. The suggested file for viewing the text of the
workspace, i.e. a rendering of the suggested mainfile.
displayfile_candidates Array of strings. An unsorted list of candidates
for displayfiles.

identifier Object.

inputfiles Array of strings. A compiled list of files from the extracted
workspace that is called or used in the extracted code of the workspace.
interaction TBD

keywords Array of strings. Tags associated with the asset.
licenseObject. License information for the entire ERC.

license.code String. License information for the code included.
license.dataString. License information for the data included.
license.md String. License information for the metadata included.
Should be cc0 to include in catalogues.

license.textString. License information for the text included.
mainfile String. The suggested main file of workspace
mainfile_candidates Array. Unsorted list of mainfile candidates of the
workspace.

paperLanguage Array of strings. List of guessed languages for the
workspace.

publication_date String. The publication date of the paper publication
as ISO8601 string.

publication_type String.

related_identifier String.

spatial Object. Spatial information of the workspace.

spatial.files Array of objects.

spatial.union Array of objects.

temporal Object. Aggregated information about the relevant time period
of the underlying data sets.

temporal.begin

temporal.end

title The distinguishing name of the paper publication.

upload_type String. Zenodo preset. Defaults to “publication”.

26

ERC checking

Procedure

A core feature ERCs are intended to support is comparing the output of an
ERC executions with the original outputs. Therefore checking an ERC always
comprises two steps: the execution and the comparison.

The files included in the comparison are the comparison set. The comparison
set MUST include the display file. It MAY include any other files. An im-
plementation MUST communicate the comparison set to the user as part of a
check.

Previous to the check, an implementation SHOULD conduct a basic validation
of the outer container’s integrity, i.e. check the file hashes. The output of the
image execution MAY be shown to the user to convey detailed information on
Progress or errors.

Comparison set file

The ERC MAY contain a file named .ercignore in the base directory to define
the comparison set.

Its purpose is to provide a way to efficiently exclude files and directories from
checking. If this file is present, any files and directories within the outer con-
tainer which match the patterns within the file .ercignore will be excluded
from the checking process. The check MUST NOT fail when files listed in
.ercignore are failing comparison.

The file MUST be UTF-8 (without BOM) encoded. The newline-separated
patterns in the file MUST be Unix shell globs and support the prefix ! (see
man gitignore). For the purposes of matching, the root of the context is the
ERC'’s base directory.

Lines starting with # are treated as comments and MUST be ignored by imple-
mentations.

Example .ercignore file

comment
.erc
/temp
data-old/*

Recommended .ercignore file comparing only the display file

Assuming the display file is named display.html, the following ‘ercignore ig-
nores all files except the display file.

!display.html

27

../glossary.md#check
../glossary.md#check
https://en.wikipedia.org/wiki/Glob_(programming)

Note

If using md5 file hashes for comparison, the set could include plain text files, for
example the text/* media types (see TANA’s full list of media types. Of course
the comparison set should include files which contain results of an analysis.

Comparing the display file

Readers make the ultimate decision about the results of a check, but they tools
SHOULD assist them as much as possible to compare the display file generated
by the original author with the display file generated during a check, manipu-
lation, or substitution.

Tools MAY include other files than the non-display files in a check, but authors
SHOULD make sure that the display files contains suitable computational re-
sults to judge the outcome of the analysis.

Comparing text output SHOULD utilise established file comparison and
difference, or “diff tools”, which the text-based HTML format allows very well.

Comparing graphics included in the display file SHOULD also provide visual
comparison results, e.g. on a pixel-by-pixel basis or even conceptual differences
of images (“perceptual hashes”).

Comprehensive example of erc.yml

The following example shows all possible fields of the ERC specification with
example values.

id: b9b0099e-9£8d-4a33-8acf-cbOcO62efaec
spec_version: 1
main: paper.rmd
display: paper.html
execution:
bind_mounts:
licenses:
code: MIT
data: ODbL-1.0
text: "data_licenses_info.pdf"
metadata: CCO-1.0
convention: https://github.com/ropensci/rrrpkg
ui_bindings:
interactive: true
bindings:
- purpose: http://.../data-inspection
widget: http://.../tabular-browser
code: [...]

28

https://tools.ietf.org/html/rfc1321
https://en.wikipedia.org/wiki/Media_type
https://www.iana.org/assignments/media-types/media-types.xhtml
../glossary.md#check
../glossary.md#manipulate
../glossary.md#manipulate
../glossary.md#substitute

data: [...]
text: [...]

- purpose: http://.../parameter-manipulation
widget: http://.../dropdown

Glossary
(Computational) Analysis

A scientific workflow that is to be preserved in an ERC. It conducts a number
of operations on data and generates an output (text, numbers, plots).

Bag

See Baglt specification.

A set of opaque data contained within the structure defined by this
specification.

Compendium contents

See ERC contents

Container

A receptacle holding a collection of things (“payload” or “contents”). In the
context of this specification, two containers are distinguished: runtime container
and outer container.

Check

A subconstituent of Eramine. Checking an ERC is a syntactical validation,
which may be largely automated by a software tool reporting the check result
and potential errors. A check comprises (a) the validation of a concrete ERC
against the ERC specification, e.g. are required files and metadata fields present,
and (b) an execution of the contained analysis. The execution includes a com-
parison of the result files in the just executed inner container with the result
stored in the outer container.

29

https://tools.ietf.org/html/draft-kunze-bagit

Create
One of the major constituents of ERC interaction. The user can create an ERC
by following the technical instructions included in the Specification (ERC Spec)

or use the o2r reproducibility service. For more information, see erc-spec/user-
guide/creation/.

Discover
One of the major constituents of ERC interaction. Discovery comprises the

findability of the ERC as well as the exploration of its features, e.g. time and
space driven search operations.

ERC

Executable Research Compendium, see article.

ERC contents

See workspace.

ERC metadata

Schema compliant information about the ERC, its contents and creators.

Examine
One of the major constituents of ERC interaction. It comprises Check, Inspect,
Manipulate and Substitute. To examine an ERC means to explore its contents in

depth, i.e. check the reproduced version, inspect text, code and data, manipulate
interactive elements, as well as exchange input data.

Inner container

See runtime container

Inspect
A subconstituent of Fzamine. Inspection includes looking at all the contents of

an ERC, such as code or data files, and metadata documents. A user conducting
inspection evaluates the meaning of the ERC’s artifacts.

30

https://en.wikipedia.org/wiki/Findability
https://doi.org/10.1045/january2017-nuest

Dependency

If software/library X is required by software/tool Y to function properly, then Y
has the dependency X or X is a dependency of Y. Collecting all the right depen-
dencies, which work with each other, can be a hard problem, see Dependency
hell. Dependencies can be packages of the same language (like R extension
package requiring another R extension package) or system dependencies (like a
Python library from PyPI requiring a specific library available via the operating
system package manager).

Display file

The file in the container that a reader software uses as the first display to a user
to read text and explore graphics. The entry point for examination.

Manipulate

A subconstituent of Fzamine. A manipulation comprises interactive changing of
selected, pre-defined parameters that influence the computation packaged in an
ERC. For example, the number of layers in a neural network, the size/selection

method of the training dataset in supervised machine learning, or the variogram
model of geostatistical kriging. These parameters are defined via UI bindings.

OAIS

The Open Archival Information System and its reference model.

Outer container

Term used to distinguish the “outer” Bag from the embedded runtime container.

Reproducible, Reproducibility, Replication

See section 2.1 “Definition of Reproducibility”.

Runtime container

A Linux container, more specifically a Docker container, which is a special for-
mat to package an application and its dependencies. For usage in this specifica-
tion, the runtime container can be used to provide the computational environ-
ment needed for execution of an ERC’s workflow. It is a transferable snapshot
of the authors computer, but also documents the software used by an ERC.

31

https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Dependency_hell
https://en.wikipedia.org/wiki/Dependency_hell
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Open_Archival_Information_System
https://web.archive.org/web/20131020200910/http://public.ccsds.org/publications/archive/650x0m2.pdf
https://doi.org/10.1045/january2017-nuest
https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/Docker_(software)

Runtime manifest

A formal description or recipe for a runtime container, more specifically a Dock-
erfile.

Docker can build images automatically by reading the instructions
from a Dockerfile. A Dockerfile is a text document that contains all
the commands a user could call on the command line to assemble an
image. source

Substitute

A subconstituent of Ezamine. During a substitution, compatible parts of an
ERC are exchanged, e.g. similar data sets for a given analysis, or exchanging
an analysis script. A substitution process usually creates a new ERC based on
two input ERCs: the base ERC and the overlay ERC. One or several data or
code files from the overlay FRC replace corresponding files in the base ERC, to
create a new ERC.

UI bindings
Formal descriptions of parameters and interactions used during Fzamine. The

UI bindings are included in the configuration file and may be created manually
or with help of a user-friendly wizard.

‘Workspace
The files created by the author of the original analysis. The workspace is pack-

aged together with ERC metadata, runtime container and runtime manifest in
the payload directory of the outer container.

32

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

	Executable Research Compendium
	Guides
	Credits
	License

	ERC specification
	Preface
	ERC structure
	ERC configuration file
	Runtime manifest and image
	R workspaces
	Interactive ERC
	Preservation of ERC
	ERC checking
	Comprehensive example of erc.yml

	Glossary
	(Computational) Analysis
	Bag
	Compendium contents
	Container
	Check
	Create
	Discover
	ERC
	ERC contents
	ERC metadata
	Examine
	Inner container
	Inspect
	Dependency
	Display file
	Manipulate
	OAIS
	Outer container
	Reproducible, Reproducibility, Replication
	Runtime container
	Runtime manifest
	Substitute
	UI bindings
	Workspace

