
206 MR. J. MERCER [Dec. 18,

ON THE LIMITS OF REAL VARIANTS

By J. MERCER.

[Received November 26th, 1906.—Read December 13th, 1906.]

Introduction.

There are two well known theorems due to Cauchy which are con-
cerned with the limits of variants* {i.e., functions of a variable positive
integer n) for infinite indices. The first + is to the effect that, if Xn is
any variant such that y _ Y

tends to a definite limit X when n is increased indefinitely, then

tends to the same limit. The second i shows that, if Xn is a positive
variant such that y /•«-

tends to a definite limit X when n is increased indefinitely, then

tends to that limit.
Now the converse of neither of these theorems is necessarily true.

To take a particular example, suppose that Xn = an6{n) where 6(n) = n
for odd values of n and = %n for even values.

T b e D 1 < 0(n) < n

for all values of n. Consequently

Since Lt n1/n = 1, it is clear that
11 = <X>

Lt {ah0{7i)\lil = a.
/ t = GO

But Lt Xn+\IXn does not exist, since
/I = 00

Jut A-2n+il**-2n. ~~ £& and J-iu A2n/̂ »-2n—1 ^~ 2
H=0O 11=00

• Cf. Meray, Nouveau Precis d'Analyse infinitisimale, p. 1.
t " Cours d'Analyse de l'Ecole royale polytechnique " (1821), (Euvret Completes, nme. Serie,

t. m., p. 54-58, p. 62-63.
X Cauchy, loe. tit., pp. 51-63.
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Examples such as this suggest the question: Can we fiud some single
variant analogous to the Xn+X—Xn or Xn+\IXU of Cauchy's theorems
such that the existence of its limit for an infinite index will ensure
the existence of both

Lt (Xn+l-Xn), Lt >rlXn or Lt Xn+1/X*, . Lt A*1/u

as the case may be ? This will be considered in Section I.* The
succeeding section will be devoted to the extension of the theorems to
the case of variants of more than one index. Section III. will be devoted
to an extension of Pincherle's theorem on the radius of convergence of
a power series which arises natually from the analysis of the first section.

I.

1. We are to shew that there do exist single functions answering
the above mentioned requirements. In fact, analogous to Cauchy's first
theorem, we have the following! :—

THEOREM I.—Let Xn + be any variant whose index is n and which is
such that v

tends to a definite limit X when n tends to infinity ; then (i.), if X is finite,

Xn+i—Xn. and « - 1 Xn

tend simultaneously to the limit X/(/x-f-l), provided that M + I > 0;
(ii.) if X is infinite (±oo), n~lXn tends to X when /x + 1 > 0, whilst
Xn+i—Xn certainly does so only if 0 ̂  (x > — 1.

It will be observed that this theorem when proved will give us a
single limit whose existence is necessary and sufficient for the two limits
Lt Xn+i—Xn and Lt n~lXn so long as they are finite.

«=oo '/< = »: ° °

We now proceed to prove it. Suppose, in the first place, that X is
finite. By the definition of limit we can, if e is any arbitrarily assigned
positive quantity, however small, find an integer m such that, if u ̂  m,
we have A ^ - v v i - i v ^ - \ i r\

where a = %(fx + l)e, a- being positive since /x + 1 > 0.
Writing n = m in this equality and dividing along by (l—fx/m)

(which can be taken to be positive, since we may always suppose m

* Where it will be answered in the affirmative.

t Of course, the theorem may be stated in various forms : e.</., we may write

A',, = .S'1 + A'j+... + .S',l.

X I t is assumed that X,, is finite for finite valu"s «f n.
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so chosen as to be greater than M)» we obtain

^ — V ^ •%» + ! y ^ \-\-<T

1 1 l
m m m

Writing now n = m-\-1 in (i.) and dividing along by

£ (i £_
ml \ m+V'

we have ^ ^ < ^ ± 2 x°>*<

m

ml \ 7>i-\-lJ

Proceeding in this manner, we obtain p double inequalities, of which the
last is

^~<r ^
^ - p - l / \ v-i i .. \ "*•/)-!

ff(i—^-Y
t=o \ m + tJ

m-\-tJ t=o

U we add all these inequalities, we obtain

*«±Z _ x , , < (X+«r)Sp_i (ii.)

where Sp-\ is the sum of the series

_ ii + (!_ ii.) (i_ _ ^
m \ m/ \ m-fl

Now, by a well known theorem of elementary algebra,* the sum of this
series is (/x+1 =£ 0)

n(i—
=o V m-

Consequently, multiplying along the equality (ii.) by

• Cf. A Treatise on Algebra, C. Smith, Fourth Edition (1893), p. 410.
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after having added Xm to each term of i t ; we obtain

) I, j t=o \ m-\-t) I i Y m(\—a-))

i=o

Now, provided that i*-\-l > 0, the expression

'ff (i-
<=0 m-\-t.

vi

tends to zero t when jp is increased indefinitely : we can therefore choose
a value of p—say, P—such that p^ P; the second members of the ex-
treme terms of this last inequality are less than Je in absolute magnitude.
We have then, on writing m-\-p = n, ??i+P = N,

provided that n ^ N.
This proves that n~lXn tends to the limit A/(u + l) as n increases

indefinitely.
From this it follows at once, by well known theorems on limits, that

/ X \ Y
Lt (Xn+i — Xn) = Lt (Xn+l — Xn~\-fX —)—fX Lt —

n='r. n=<x> \ n 1 n = y> H

which completes the proof of the theorem for the case where A is finite.

52. Next, suppose that A = -+- » .
Let H be any positive number as great as we please. Then, corre-

sponding to (i.) above, we have.the single inequality

a being a positive number.
Corresponding to (ii.), we have

•A-m + v ~v -^

n'(i-
m+tj

• Hereafter to be denoted uy i\,,. t <Jf. 0. Smiu., op. cit., pp. 423-4.

SKR. 2. VOL. 5. NO. 957. I*
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whilst, instead of (iv.), we have

— , >-n i j-r i- Op

m+p fx+1
where Sp tends to zero when p is increased indefinitely. Consequently,
choosing P so great that for p > P we have | Sp\ < tr/OtA+l), we deduce,
on writing m+p = n, m+P = N,

tr1Xn>H (n>#),

which proves that Lt n~lXn = +00.
J/=CC

It follows, then, at once that

Lt (Xn+i-Xn) = Lt [Xn+l-Xn+/tn-1Xn~]-n Lt w"1^ = + » ,
11= X 71=00 U H = O!

if M ̂  0- The remaining case, viz. X = — QD , may at once be deduced
(by writing Xn = — X!n) from the preceding.

The theorem is then completely established.

3. As corollaries of Theorem I. we have :

COR. I.—If we write fx = 0 in the above, we at once obtain Cauchy's
theorem.

COR. II.—Suppose that Xn is such that n~'2Xn tends to zero when
n becomes indefinitely great.

The theorem may be then stated in the form :
If Xn be any variant such that n~2Xn tends to zero when n

increases indefinitely, whilst at the same time

tends to a definite limit X, then, /x + 1 > 0, we have

Lt (Zn+1—Xn) = Lt —- =

As a simple application of this corollary we may evaluate

Lt
7l=oo IV

Write Zn+1 = -

Obviously, if /x > 0, Xn+\ < n ;

if ft < 0, Xn+\ •< nl~"-.
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Consequently, yu-f 1 > 0, the Lt n~2Xn = 0.

11=00

Again, rt Xn+i—{n - IT Xn = it.

We have therefore in this case X = 1; therefore
Lt — — Lt

4. Before proceeding further, let us examine the limitation (viz.,
> 0) which has been forced upon us in the course of the proof

when X is finite.
It will be observed that the proof turns upon the fact that

ff(i
T , <=
Lt

m
Lt ;

*>=•*> m-\-p
tends to zero when p is increased indefinitely, provided M + 1 > 0 . If
fM-j-1 ^ 0, our argument breaks down, and, if the theorem is true for
a wider range of values of n, we should have to find some new line of
reasoning.

It will be seen, however, by the following particular example, that
it is impossible to widen the range of values of /x in the general case.

T h e n we h a v e a l w a y s Xn+1— ( l — — jXn = 0 .

n + l

which tends to the limits 0, 1, co according as /i + l > , = , or < 0.
This shows at once that /A + 1 > 0 is the greatest range of values for

which the theorem is generally true.

5. We have next to inquire whether in the case X = + ao we could
hope to prove generally that Lt (Xn+i—Xn) = X when n > 0. As in

ft—CO

the preceding, we shall prove that this is impossible by a particular
example.

* In the language of the integral calculus [' x"dx = — ^ (M+ 1 > °)» ifc i s e a s y t o s e e n o w

Jo M+ *
to evaluate directly such integrals as | | x"y"dxdy (v+l > 0, p + v + 2 > 0).

Jo Jo
p 2
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Let a variant be defined by the following :—

X2n+i = M>*+3), X2ll = %n(n+l).

Obviously A'2;l+1 — X2n = n, Z2)l—X»u_i — 1.

But Lt {Xn+i-Xn+nn-'Xu} = + x 0* > 0),

whilst the two equations just given above show that Xn+\—X7l oscillates
between 1 and 4- <x>.

It is easy to see, however, that, if we regard the numbers of the
sequence Xn+\—Xn as represented by points on a line, even if /J. > 0, X is
a limiting point of the set.

6. Before leaving this theorem we may remark that the condition

Lt (X^-Xn+tin-'Xn) = X fo + l > 0)
Ji.=a>

is necessary and sufficient for the existence of the limits

Lt (Xn+1-Xn) and Lt n~lXn
u = <» n=«

only if X is finite. If X is infinite, the above condition is necessary, if
ix > 0, but is not sufficient; whilst, if /x < 0 but /x + 1 > 0, the condition
is sufficient, but not necessary. This last point may be made clear by
the following example :—

4
Let / i b e a negative number ( > —2), r a positive number = 1,

and let a variant be defined by the equations M

c* fW v _ (l+r)n(n+l) Y _ rn(n—l) Aso that A2»i+i — r , Aou — 1

Then, obviously, Lt (Xn+\—Xn) = oo, Lt n~lXn = oo;
}( = » n=y

but ^ [x2 ) l + l -Z2 n+M ^ - l ] = + oo ,

Lt X2n—Xm-i+fi. n
 2n~\ = finite quantity.

7. It is easy to see that, by a slight modification of the above
argument, we can generalise this theorem.* Let f(x) be a function
of x defined for all real values of x greater than a fixed number and

* Cf. Cauchy, op. cit., pp. 54-58.
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which is finite for finite values of x. The theorem referred to is the
following :—

THEOREM II.—If for increasing values of a; the difference

/ ( a H - l ) - ( l - • £ • ) / ( * )

tends to the limit X, then the functions

tend at the same time to the limit X/(r-f 1), provided that X is finite and
r + 1 > 0: in the case when X = + oo these each tend to X if 0 ^ r > — 1;
whilst, if / ">0 , Lt x~lf{x) = X, but f(x-\-l)— f(x) may not tend to
this limit.

8. Corresponding to Cauchy's second theorem, we have the following :—

THEOREM III.—Let Xn be a variant, positive for great enough values
of n, such that

X

tends to a definite limit X when n increases indefinitely; then

Xn+l/Xn and Z f

each tends to the limit X1/(71+1), if X is finite and not zero and /x + 1 > 0,
whilst, if X = 0 or oo , each tends to the limit X, provided that 0 ̂ /u > — 1.
In the latter case X^n certainly tends to the limit X if /x > 0, though
Xn+\jXn may not do so.

As before, we may remark that this will give a single limit whose
existence is necessary and sufficient for that of two—in this case

Lt Xn+1/Xn and Lt X*"1

71=00 n—oo n

—provided X is neither zero nor infinite.
It is, of course, quite clear that Theorem III. may be deduced from

Theorem I. by writing log X!n = Xn; but, following Cauchy's lead in his
proof of the classical theorems, a separate proof which does not require
the theory of logarithms may be supplied. Space does not, however,
permit such proof being given here. The reader will have little difficulty
in constructing it if he so desires.
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Corresponding to Theorem II., it is easily seen that we have the
following generalisation of Theorem III.:—

THEOREM IV.—If for increasing values of x the quotient

tends to the definite limit X, then (1), if X is finite and not zero, the

functions [J(x+l)/f(x)] and [/(at-

tend at the same time to the limit X1/(r+1) ( r+1 > 0); (2), if X = oo or 0,
these each tend to X if 0 > r > — 1; whilst, if r > 0, Lt [fix)]11? = X,

though fix-\-l)lfix) may not tend to this limit.

II.

9. In extending the theorems of I. to variants of more than one index
we will confine ourselves to the consideration of the case when there are
only two, as the statement of the theorems and their proof will be
sufficiently obvious in the more complex cases.

Corresponding to Theorem I. of the previous section, we have:

THEOREM I.—-Let Xm,w be a variant of two positive indices m and n,
such that iXn+i,n—Xm>n) is limited* for m infinite and iXm,n+i—Xmin) for
n infinite ; moreover, suppose that for increasing values of m and n the
variant

Y (i P \ Y (t " \ y _L (i fJL\ (i v \ Y

\ ml \ n I \ ml\ nl

tend8 to a definite limit X. Then

(i.) If X is finite,

The variants Xm+it)ll+i—Xm>n+i—Zm+1>n+Zm,n,

n m ' inn

all tend to the limit+

* A variant Xnti n is limited for m infinite if for any finite value of n we can find two finite
numbers ln and Zn such that ln < Jm>n < Ln for all values of «». It is easy to see that, if
•Xm*i,n —-Xm, n is so limited, then m-1Xm< „ is also limited.

t To remove all possibility of doubt, it may be stated that here and throughout a variant of
two indices Xm< „ will be said to tend to a finite number A for increasing values of m and n, when
or any assigned positive number e we can find integers i f and iVso that | Zm,n—A | < e, pro-
vided m ^ M and n ̂  N. Should A be infinite, the definition is modified in the usual manner.
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when m and n are increased indefinitely, provided that

(ii.) If X = + oo,

(a) The last of the above variants tends to X, provided that

(6) The third variant tends to A, provided that

(c) The second tends to X, provided that 0 > fx ~> — 1, i /+l > 0 .

(d) The first variant tends to X, provided that n or v = 0, and
the one ^ 0 lies between 0 and — 1 .

We remark that this theorem, when proved, will give us a single
variant the existence of whose (finite) limit for m and n indefinitely
increased is the necessary and sufficient condition that the four variants
mentioned above should have (finite) limits.

10. We proceed to prove the theorem, assuming in the first place that
X is finite.

Consider the last variant, viz., vi~1n~1Xm,n- Then, if e be any
arbitrarily assigned positive number, however small, we can under the
proposed conditions find two integers m and n, such that when N ^ n,
M ^ m, we have

X—a- < XM+\, AT+I— ( 1 — - T J ) XM,N+I— ( 1 — -j i, x

where a- =

Writing now N = n, M = m, and dividing through the inequality by

(l— — j ( l j (which may be assumed positive, since we can always

assume m and n chosen greater than fx and v respectively), we have

X < r ^ , A

\ ml \ nl \ ml \ nl n) \ m

? -JL) ( l_ i) (
ml \ n
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Again, writing M = m-\-l, N = n, and dividing through by

V 1 " ^J
we obtain

Y
n+l

,=o

ml \ m

Proceeding in this manner and giving M all possible values -<
and .AT all possible values < n-\-q, we have a number of inequalities of
which the last is

i i 1 1 — ) i i 1 1 T—-j) n i l — ) I L ( I — j
t=o \ vi+tJ r=o \ n+t ) t=o \ 7ii+tj c=o \ n+tJ

(8)P (

n ( i -
Adding all these inequalities, we obtain

(A a) 6v,_i, v_i < . j

n (1--4-) n
\ +tj

n I — y
t=o \ m+tj i

p-l 7 - 1

w h e r e S p _ ] l 9 - i = 2 2

t=o \ •m-yii t'=o \ n+t'J

Now it is clear that the sum of this series is equal to

I—I 1 7 - 1 1

( x J f
t=o \ m+t/ t-=o \ n
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Consequently, if we denote by rjp the same quantity as in the previous
section, and by £, the corresponding quantity when n is written for m and
q for p, we have after an easy reduction

( 1 —

Now it is obvious* that when p and q increase indefinitely the left- and

right-hand sides of this double inequality tend to the limits \ < T

respectively, i.e., to the limits -.—. .,,, , , x -̂ and

+ -pr. It is possible therefore to choose two positive integers
2 I D

P and Q such that

provided that p ̂  P, q^ Q. This is sufficient to show that

11. Now let us consider the third variant. The number <r used in the
inequality (a) is quite at our disposal, though, of course, in and n vary
with it. The number e being as before, choose o-= ^ (/x-j-l)e. Taking
those of the inequalities (f3) for which q = 1 and adding them, we obtain

n

(i-i)ff(i—£-) n'(i-^n) U-A
\ w/ «=o \ m+tj t=0\ >n+t/ \ n/ i
A+o-

r- Sp-\.

n

* Since Lt i)p = 0, Lt f, = 0, and iu virtue of the conditions of liinitediiess imposed on
P m ao '/ = XI

the variant.
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Using the notation of I., § 1, we obtain

(A o") v v -i . v v A , H + ; ) 7,

Xm+p<n+x-Xm+p,.n \±a
W+£) At + 1 lp/ '

Now consider the terms on the left-hand side when p and n increase
indefinitely. The first tends to the limit (X—<T)/(JJ. + 1) ; the second and
third vanish in virtue of the conditions of limitedness imposed; the
fourth tends to the limit

(M + D M - 1 ) '

in virtue of the result proved in the preceding paragraph. Similarly for
terms on the right.

Recalling that o-/(/* + l) = ^e, it follows that we can choose two
positive integers P and N such that, if p ^ P and n ^ N, we have

-,+*•^ m+p

This is sufficient to prove that

In the same manner we may prove that the second variant tends to
the same limit. It then follows at once by methods analogous to those
used at the end of § 1 that the first variant tends to this limit. We have
therefore proved the theorem for the case where A is finite. The proof of
the second part of the theorem we do not propose to give: the reader will
have no difficulty in constructing it, in view of what has just been done
here and in § 2 above.

12. We have the following corollaries of this theorem :—

COR. I.—Writing n = v = 0, we have the two-dimensional analogue
of Cauchy's first theorem, viz.,

If for increasing values of in and n the variant
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tends to a definite limit X, then

Am, n ft, n

mn ' n ' m

tend to the same limit.

The theorem may, of course, be stated in various ways, e.g., writing
m n

r = l s= l

we have it in a new form.

COR. II.—Let

j , -&m, u+1 -A-w, n T i. -A-wt+l, TO -̂ Mit, n. T J.

the latter for all positive integer values of r and s, r = s = 1 excluded.
We deduce at once—

If for increasing values of m and n the variant

tends to the definite limit X, then

Lfc 5SL» = ^ d + i > 0, v+1 > 0).
m=oo,,l=oo mn (JUL + 1)(V+1)

As a simple example of this consider

L t

r+1>0* ^ ^

If we write this equal to m+1'w+1, it is easy to see that the above condi-^ mn J

tions are all fulfilled; moreover, we have

mr[n^s+lXm+1,n+l-(n-lV+s+1Xn+1,n]

= ns {1' + 2'"+ • • • + N - l ) r + n r m r \ .
From which

) + + (
n m ) \ mn

Obviously this tends to the limit 1 when m and n are increased in-
definitely.
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We see therefore that

T 4- Aro+l , »l + l T J.
Lt •; . ' — r r = : Lit

ii, n A

m=oO)n=» (m+l)(n+l) ,»=«,, «=. run ( r + l ) ( r + s + 2 ) '

provided, of course, r-\-l and r + s + 2 > 0.

13. Sufficient indications have now been given to show how the
theorems of the preceding section extend to the case of variants of two
indices. We will content ourselves therefore with enunciating the follow-
ing theorems,4- which are easily established :—

THEOREM II.—Iif(x, y) is a real function of two positive variables x
and y (denned for all values of x > X and of y > Y when X and Y are
fixed numbers) such that f(x-\-l, y)—f{x, y) is limited for x > X, y ^ any
finite number > Y, with a corresponding condition for/(a?, y-\-l)—f(x, y),
then, if when x and y are increased indefinitely the function

, y+1)- (l--j)f(x, y+1)- ( l - j ) /(s+1, y)

tends to a finite limit A,

, y)—f(x> y) =

= Lt
,(=0O, 1/ = a5

(provided r+1 > 0, s+1 > 0).

THEOREM III.—Let Xm> n be a positive variant of two indices m and n,

such that ( ^ i l ^ V 1
 i s limited for m infinite, and (^^] ** for w in-

finite ; then, if for increasing values of m and w the variant

•A-m, ii + 1 4

• The limit evaluated is, of course. I dx I x*yrdy for one particular method of dividing the
Jo Jo

field of integration into infinitesimal elements. An evaluation when the method of division is
different (squares) is referred to in the footnote attached to the end of § 3.

t Wo only enunciate the theorems for the case in which \ is finite, and in the last two
theorems different from zero. There is no difficulty in stating them for other cases (rf. Theorem
of this section).
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tends to a definite finite limit X different from zero, the variants

Z V / V \ I'M. /Y \ 1/w
w+I, »,+]. -A-w, n. I A w + i, n\ l-A-iK, n + l\ (Y \\ mn

Z -y ' \ "V / ' I V / > \-A-m.n)

tend simultaneously to the limit

provided that M + 1 > 0, v+1 > 0.

COR. I.—Writing /* = » = 0, we have the two-dimensional analogue
of Cauchy's second theorem.

THEOREM IV.—If f(x, y) is a real positive function of two variables x
and y (defined for all values of x > X and of y > Y, where X, Y are fixed
numbers), such that [/(x+l, y)/f(x, y)~\±l is limited for x > X and
ij ^ any finite number > Y, with a corresponding condition for
[/(«, y-\-l)/f(x, y)~\±l, then, if when x and ;y are increased indefinitely
the function

[/(a:, y+DJ1-^ [/(a:+1, y)f-s ">

tends to a finite limit X different from zero,

provided that r + 1 > 0, 5+1 > 0.

III.

14. The object of the present section is to prove an extension of
Pincherle's well known theorem on the radius of convergence of a power
series, and in some measure to bridge the gap between it and the Cauchy-
Hadamard theorem on the same subject. Pincherle's theorem* may be
stated as follows :—

Let «r be the modulus of the coefficients of f in a power series P U)

* Pincnerle, Lezioni suila tcorin delle fttnzioiii analitiche, Bologna, 1899—1900 (lithographed)..
See also Vivanti-G-utzmer, Theorie der eindentigen analytisclien Funktionen, Leipzig, 1906, p. 64.
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Then, if L and I be the greatest* and least! of the limits of the set of
variants

, , , , ,

cto a i a»

the radius of convergence (/>) of the series satisfies the inequalities

p ^ Z/~\ if L be finite,

p < r \ iM =£ 0.

15. Using the same convention with regard to ar, the theorem we
propose to prove is—

If L and I are respectively the greatest and least limits of the set
of variants

a( 1~r ) ' a*,1"*'0' '" *' a ( 1~r / n ) ' '"''

then the radius (/>) of convergence of the series satisfies the in-
equalities

(1) p > L-1(r+1), if L is finite ;

(2) p < I-1 <r+1>, if Z =^ 0.

Let the power series be

P{z) = aQ+ayz-\-a2z
i-\- ...+anz

n+...,

so that | Oa | = an, and let g = \z\.

To prove (1) it will be sufficient to show that, if g be any number
< l/L1/(7l+1), the above series is convergent; supposing this to be the case,
Jet K be a number such that

£-('+D >K> L.

Then, by hypothesis, the above mentioned set contains only a finite
number of elements greater than K. We are able then to choose m so
that, if n^m,

a
,0-r/u)

Writing n = m in this inequality and supposing that m is chosen > r,
we have, on extracting the (1—r/m)-th root,

- 1 1/(1-rm)
m+1

- 1 1

• " La plus grando des limites," Borel, Series a termes positifs (1902), p. 9.
t " La plus petite des limites," ibid., p. 10.
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Again, if we write w = m + l , and extract the 1/|(1 — r/?w)[l —r/(wi+l)]f-th
root, we obtain

-[l( l-r .m)] n l { ( l -
m+1 "m+2

Next, writing n = m+2 , and so on, we obtain a number of inequalities of
which, if we take p of them, the last is

m+p—l m+p

Multiplying these inequalities together, we obtain

a-'.1/^1"-'*')* <**-.. (i.)
Ml M 4 y^

Consequently, if we multiply along (i.) by am and raise each side to
the power rjp, we have

Now, when ?̂ is increased indefinitely the right-hand side tends to the
limit Kll{r+1) (?-fl > 0). Moreover, 1 > KV(r+1)i; so that we can choose
a positive number 6 satisfying the inequalities

i > e> #i(r+1)£
It follows, then, that we can choose a number P such that, if p ̂  P, we have

since the right side is > 1.

We have therefore (p ̂  P)

In other words, if m-\-P = N, we have

<ut < &>
provided that n ̂  N. Since 0 is a proper fraction, the first part of the
theorem is proved.

16. The proof of (2) is quite similar, and we will content ourselves
with sketching it. It is sufficient to show that P(z) diverges for values
of z such that £ > £~1()+1). -For any such value of i we can choose a
number k such that , , . <?-<r+i)

• For the notation nee § 1, Section I .
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It is then possible to choose a positive integer in such that, if n ^ ?n, we
have

«».+ ! =5̂ . 7.
/ . \ s ^ ti'm

From this it easily follows that we can find a fixed number a > 1, such
that a corresponding positive integer N can be found in order to make

provided n ^ N.

This, of course, proves that the series diverges for all values of z
whose modulus is £'. The theorem is then completely established.

COR. I.—Writing r = 0, we have Pincherle's theorem.

COR. II.—If the set be such that there is only one limiting point,
i.e., l = L, then _ r_1 ( r J . 1 )

p — L


