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An Extension of Boltzmann’s Minimum T'heorem. By S. H..
Bursury, M.A., F.R.S. Received May 31st, 1895. Com-
municated June 13th, 1895, by G. H. Bryan, F.R.S.

1. Let f(p, ... q.) dp, ... dq,, or shorvtly f.dp, ...dq,, denote the
chance that a molecule of a gas shall at any instant have its n coor-
dinates "p, ... p,, and corresponding momenta g, ... q, between the
limits p,, p,+dp,, &c.

Similarly, let F.dP, ... d@), be the corresponding chance for the
values P, ... P,+dP, of the coordinates and momenta.

2. If at a given instant the variables p, ... @, stand to one another
in a certain relation, an encounter between the two molccules
ensues, that is, within a very short time after the given instant the
variables p,..: Q, will, by the mutual action of the two molccules
alone, assume new values conservalis conservandis, which may be
denoted by accented letters py ... (. )

If we ask what is the number per unit of volume of pairs for
which at this instant the variables ave so related to one anothcr, the
answer usually given is that it is proportional to Ff.dp,...dQ,. In
other words, it is usual to assume the chances f and F to be inde-
pendent.

3. On this assumption of independence, and on this assumption
only, it has been proved that, if

H= HJ....f(logf-l) dp, ... di

CxY

dH

= is necessarily negutive. If, therefore, when the system is

[¢

isolated, F' and f continue to be independent, fltlf continues to beo
{

negative. H tends to a minimum, which it reaches when the
distribution of momenta is according to the Boltzmann-Maxwell
law.

4. Now, systems may exist in which that independence of f and F
for encountering molecules cannot be conceded. T have myself pro-
pounded the doctrine that the independence of f and ¥ is only a
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-consequence of the (generally) assumed rarity of the medium, and
that they cease to be independent as the medinm becomes denser, on
the ground that in the dense medium the proximity of two molecules,

_implied by, their encounter, affords a presumption that they have
recently been exposed to the same influences, and have acquired
some velocities in common. However this may be, and 1 am not
now ugsuming the truth of it, it is worth while to consider whether
and how we can prove the theorem without assuming the indepen-

“dence of f and F. I propose in this paper to treat -only the simplest
-case, regarding the molecules as equal elastic spheres.

5. Let ¢ be the diameter of a sphere. Consider two spheres 4
-and B. Let R be their relative velocity. About O, the centre of A,
-suppose a circular area described of radins ¢, perpendicular to I.
Let » be the distance of the centre of B from the plane of that area.

1} .
nen glr _

d‘g—-—b

Let a be the distance from O, the centre of 4, to the point P, in
which the line through the centre of B parallel to- It cuts that plane.
"Then, if a<c¢, a collision will occur between 4 and B, unless any
third sphere previously collides with either of them. Further, ¢4+
-cannot be less than . And, if a®++* is infinitely nearly equal to ¢,

~the chance of any third sphere colliding with either 4 or I3 before
they collide with each other vanishes, and a collision necessarily
-occurs between A and J3. The only effect of that collision is to
change the direction of the relative velocity Il; and the nature of
that change depends only on a, and on the angle 3, which OP makes
with o fixed diameter of the civculur nrea.

Let us call «, 8 the collision coordinates. If the velocities of the two
-colliding spheres before collision be denoted by

% ... -u-ijrlitl
v . v+¢le for one sphere,

W ... wtdw

.and U..U+dU
V ... V44V } for the other,
W.. W4dW
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and if tho collision coordinates be a ... a+da, and B ... B+df, then
as the result of collision «, v, w, U, V, W become o/, o', ', U, V', W,

_and «, 8 become o', 3. Conversely, if before collision the variables
be denoted by the accented letters, their values after collision will be
denoted by the unaccented letters, and, as is known,

dudvdwdUdV AW = du’ dv’ dw' U’ dV' dW".

" 6. Let the number per unit volume of sphercs whose vclocities
are u... u+tdu, v..v+dv, w...w+dw bo f(u,v, w)dudvdw. Call
these the class ». Similarly, let the number whose velocitics are
U...U+dU, &c., bo F (U, V, W)dUdVdW, and call these the
class U. Now, let us suppose for a moment that no collisions are
allowed to happen, except (1) direct collisions between the spheves of
class » and spheres of class U, without restriction as to the values
of « and 8; and (2) reverse collisions between spheres of class o’
and spheres of class U’, with such values only of «' and ' as that
o', v, w', &c., shall after collision become w ... % +du, &c.

If that were so, the only way by which any sphere could leave the
class % would be by one of the direct collisions, and the only way by
which any sphere could enter the cluss « would be by one of the
reverse collisions. Hence on this supposition the increase per unit of
time of the number of spheres in the class «, <.e.,

1 d
(;tf(u’ v, w), or l_l{’
wonld be (number of reveise collisions per unit of time¢) — (number of
direct collisions per unit of time). V

7. Now, in the ordinary case, when f, ¥ are independent, the
‘number of direct collisions is

iy

j 7 ARfF . du d.

v

.And the number of reverse collisipns is

]’ 2L F . da dp,

andso - ‘%:[ 7OR (f B —fF) da dp.
¢ ]

8. But I now propose to treat the case in ‘which f and F arc not
VOL. XXVL.—N0. 527. 2r
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independent, or the velocities , U are correlated. And, therefore, for-
fF we must substitute a more general form

o(u,v,w, U, V, W,a, ),
where ¢ is some function.
For the reverse collisions we shall have a corresponding function
¢ @, U, V', W,a, ) or ¢.

Then, collisions being still restricted as stated in 6, we should have

& - f [ 7R (¢'—9) da df.

(

9. But now we can make U, V, W assume successively all values,.
still maintaining «, », w unaltered ; and then we obtain for the com-
plete variation of f with the time

4 I [ [ !' J' vl (9" —¢) da dB AU AV AW

Now, let H= ”1’ fogf=1) dudvdw;

and therefore

am _ ([ af
T —I“ i log f du dv dw

= j [ f du do dw ” m #0'R (¢'—¢) log f da dBAT AV AWV

10. In this integration, extending over all values both of u, v, w
and U, V, W, thesc classes interchange, so that our integral includes

the two terms AR (§'—¢) log f
and =c' Lt (p'—¢) log F;
and therefore includes the term

w 'R (¢'—¢) log (fF).
For a similar reason it includes the term

=l (p—9¢) log (fF);
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and therefore includes the term
'R ('~ i
e R (¢ ¢) ]ogfaFt’
and consists wholly of terms of this form.

an
di
unless of the two equations

p=¢, fF=fF
one involves the other (which condition, however, will be found to

hold in the cases we shall consider). But in the permanent state

AL st be zero, which can be by making either

dt
¢=¢ ovr fF=fF.

11. Thus expressed, is not necessarily always of the same sign,

Also‘ :—g must be zero, which can only be by making
¢=¢"
If, therefore, in any problem we find that the two equations
¢=¢ and fF=fF

cannot co-exist, but one must be taken and the other left, we musttake

$=¢.

In our case, however, we shall find that the solution of
¢=¢

involves fF =fF.

12. A solution of this equation
p=9¢

is obtained by making ¢ a function of the energy only, namely, the

ordinary solution
¢ = Ke-pussurs s 1)

But, as Mr. Bryan hay pointed out, in his *“Report on Thermo-
dynamics,” that is not the only solution. And it must be rejected
here because it makes the velocities of colliding spheres independent,
which is assumed not to be true.

2F 2
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13. The following is another solution, namely,
¢ = Ke 9,

in which Q=4 W+ 4+’ + U+ V+ W)+ B (uU4 oV +wW)
and K, 4, B are constant.

Il“or, using this form, we have, after collision,

Q=4+ +0*+ U+ VE+ W+ B (' U+ Vo' W).
Now, by the conservation of energy,
Wb+ U+ V2 W = P o'+ 0+ U VI WY,

and, by conservation of It or I,

@ =U)+ ' =V)+ @ =W) = (u—=U)"+(=V)'+(w—-W)";
and thevefore also

WU+ 0V ' W = aulU+oV+0wW,;

and thercfore Q=qQ
and A ¢ =¢.

14. Assuming that onr function ¢ contains the velocities of two
spheres only, we find f(u, v, w) or f by integrating ¢ according to

U, V, Whetween limits =, and find I, f, and F” in the same way.
Whence it is easily scen that

p=9
involves F=fr,

and so the function II fouud on our hypothesis has all the properties
of that function as usnally found on the hypothesis that B = 0. But
the actual value attained by H when minimum will be a function
of .

15. Now let us consider u more general case, that the velocities, not
of two only, but of %, spheres are correlated.

Let us suppose that a certain splerical space S contains » spheres,
and that, their positions being unkunown, the chance of their having
velocities

wy .yt dyy L w, L w, +dw,
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is of the form Ke-*¢, in which
= (att; + baey 1y + a2ty + by g+ bugug + &e.),
and K, a, b are constants.

In order that our system may be permanent, that is, urmﬂ:'ected by
collisions, it is necessary and sufficient that when, by colligion of any
pair of spheres, their velocities 1, v;, 1y, %, vy, w,, become 161,“1_)“ &e.,
all the terms in the index should remain with ], v;, &c., substituted
for w, v, &c., that is, if @ contain au}, @ must contain aul'”, and
80 on.

16. Let us then denote by A, p, » the direction cosines of the
line of centres at collision hetween the two spheres whose velocities
aro before collision v 1w, u,vg10, Their velocities resolved in the
line of centres ave Aw,+pv,+ viv; and Aw,+ pwyg+rw,. And these are
interchanged by the collision, so that after collision

2wy = 1ty— X (Ao + pvy +v10,) + X (Mg + pog +rw,),
and, to determine ;... w3, we have the six linear equations
) = (L=A%) w,— Apo, —Avao, + Mg+ Apvg + Avag,,
v = = Apay+ (1 —p®) oy — pvwy + Mpuaty + pvy + pvivy,
w] = — Aty — pvo,+ (1 —v?) w, + Aoy + pro, + vhwy

g == N0 Ay + Avaey + (1= A?) 2y — Ay — Ava,,

’

Vs

= Muow,+ v, + prwoy—Apuy + (L — p*) v,— pvaoy,

we = Aviey+ pvey +viwy — ety — pviy+ (1—+*) w,.

13
’
To solve these equations for u,, v,, &c., we have only to interchange
the accents hetween the right and left hand members.

17. If, now, in the expression
Q= aun’+1 ? + buey g+ buguy+ &
) = aw, + by g+ aw, + br, ug + buguy C.y
we substitnte for w,, 4, and similarly for v,, vy, w,, w;, their va.lues in
terms of w;, us, &c., we find .

(1) The coeflicient of #? is a. That is because u and u have
the same coeflicient @ in Q.

(2) The coellicient of u{ﬁ; is b, the same as before for u,u,.

(3) The cocfficient of w{u, is b, the same as for u u, &c.,
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The form of the index is therefore unaltered, and the assumed law
of distribution is unaffected by collisions.

18. We can now find the chance that two of the  spheres shall
have velocities v, ... u,+du,, &c., and v, ... #,+du,, &ec., whatever the
velocities of the others may be, by integrating ¢ according to
Ttg, Uy ves W, between the limits ==w. As no products of the form
uv, uw, or vw are supposed to occur in @, it is sufficient to operate on
the «'s only. :

Form then the determinant of the function @, that is,
D=|2, b, b, ...0],
b, 2a, b, ... b

in all #* constituents. Let Dy, Dy, &c., be its first minors, and D,g,
the coaxial minor formed by omitting the first and second rows and
columns. Then the result of the integration ir

e—hA (12 o tig 4.} # B (13105 4..)
b

. . D, D
in which A==20 p==m,
Doy Dy

But, evaluating the determinant, we find
D = (2a—b)"+nb (2a—b)"".

This is easily seen for n=2, n =3, and can be extended by
induction. -
Therefore also
D, = (2a=b)"""+(n=1) b (2a—Db)"-?,
1:7,,,, = (2a—b)"?+(n—2) b (2a—5)"f’.

Also we find Dy, = b (2a—Db)"-*
Therefore A= (2a—b) 20tn=2b
- 20+n—-3b
B =220
2a+n—30b

‘We can now treat the function H as in 13.
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19. Again, if we integrate once more, we can find the chance that
@ single sphere shall have velocities # ... w+du, &c., in the form

Ke?Putee 4o qyy dydw = f (u, v, w) du dv duw,
whence also for two colliding spheres
fF=fF.
And from that result we find that H exceeds the value which it has

when b = 0 by %logjgl, and the function H has for this system all
n

its ordinary properties, becoming minimum in the assumed distribu-
tion, and having when minimum the last stated value.

20. We must congider further the coefficients a and b.

_ The integration in 18 extended over = spheres supposed to be con-
tained in a spherical space S, so that, p being the number of spheres
in unit of volume, n = pY. As S becomes very large, the chances for
‘the two spheres, whose positions within § are unknown, having given
velocities must approach independence, that is, 4 becomes constant
and B tends to zero. Comparing this with the values found above
for 4 and B, we see that for large values of S (or of n) 2a—b is in-
dependent of S, and b tends to vanish, That is one condition which
« and b have to satisfy. Another can be found as follows.

21. On the equilibrium of a vertical column of gas whose molecnles
are equal elastic spheres of diameter c.

If in the Clausian équ‘atiOn
2pV = Simo’+ 133 R,

:we evaluate the virinl term 3232, we find it equal in case of our
elastic spheres to iwc’p.2pT,. Here T, is the energy of the motion

‘of the spheres in the volume considered relative to their common
centre of gravity. (See Sciertce Progress, November, 1894.)

4 X aggregate volume of spheres in volume V
N V‘ - . .

Then we know that p, or the pressure per unit of surface, is equal to
(L4+5) 3T -

Let 2acp=x=

22, I find now that in a vertical column of gas whose molecules are
equal elastic spheres of diameter ¢ it is not 7' that is constant, as
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proved by Maxwell for the case where ¢ (and therefore «) is
verlieri bl
negligible, but Tl

(See Appendix.)

Also T+, = a (u;+1ug+ ... +1uf,) +b (uyug vy .. + 0,05+ &),

. i n—1
if we make 2a =1+ K,

n * 8
because n = pS.

The coefficients o and b so found satisfy the condition of 20 above..
Also the distribution of velocitics according to this law is nnaffected
by collisions, as shown in 17. Therefore it gives a more general
solution of the problem of the motion of elastic spheres than the
ordinary one in which the velocitics of each sphere are supposed to-
bo independent. Also, with thesc values of a and ),

D= (1+0)"" and D, = Q+x)"2
The value of I found for this system is

H=%logh+3log I—J)l + constant
1

= 3 log k42 log (1 +«) +constant.

The smaller » is, the greater in numerical value is the ratio
b

~, and therefore the move intense the correlation.
a

23. The above values of o and ¥ are to be regarded as limiting
values which o and b assume when S, the space considered, is very

large compared with gwc’. For smaller values of § a correction is.
required, as follows.

Correction.

The limiting values assumed for a and b were
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The corrected values are

which also satisfy the condition of 20.

I assume the chance for a (spherical) group of = contiguous.
spheres, whose positions within the sphere are unknown, having-
velocities infinitely near to u,, v, ... w,, &c., to be Ce™*?du, ... with

Q = a3 (WP + v +w*) + DI (un’ 4 v’ +ww’).

Now, if this be true, the chance for any single sphere having velocity
ina, 4. %+dy is found by integrating e du, ... dw, for all the.
variables except #, between o0, and comes out in the form

€ h(D| Dy} dﬂ,

in which D=(2a, b b ..
b, 2a, b ...

v

and D), is its first coaxial minor.

Now, to he consistent, this chance must be the same, whether weé
regard the single sphere as a member of a group of », or as a member

of a group of 2n, &c., so long at least as p or -"7 is constant. Theve-

fore - must for all values of u be independent of », except as it
n

appears in —g—. But, with the values (1) of a and b,
4 >

== 1+«

D, (1+x)

.
n+x'
Therefore, with the values (2) of ¢ and b,
D n8
== =14 =,
Dy~ 0 =143
if © g = 3mc,

and ‘thut is the solution.
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24. With these values (2) of @ and b, the index becomes

h Tj——‘ (T+«T,),
or S+” S+3 py 1),

which becomes in limit, when ﬁ is large, T'+«T, whatever the den-
. 8

sity, or —g,-, may be. Without affecting the above results, we may

by a further small correction of 2a and b cause the determinant to
vanish when .the density -g- exceeds a certain point, beyond which

point therefore the formulie may cease to be applicable.

APPENDIX.
T'o prove the above stated result for the vertical column.

1. If p be the pressure per unit of surface,  the height of a point
in the column above a fixed plane, f the vertical force, m the mass of
a sphere, p the density, wé lmve

P = — mpp,
also p=2(+4«)pT,.
Here x = 3mc’p,

and 7, is kinetic energy of relative motion ; whence, if we make

_ 3
(14+«) Tr = constant = o

we find p = p,e~M,

which is the same equation as found for the ordinary case when
¢=0and x=0.

2. Again, consider N spheres crossing the plane #z =0 with  for
vertical component of velocity. Of these some, say N— N, will reach
the plane & = dz without collision. N’ will undergo collision before
veaching dv. But for these N’ there will be substituted, as the
result of collisions, N” other spheres with the same vertical com-
ponent u.
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Now, if the impact were direct, .c., the line of
.centres at collision vertical, the substituted sphere
would gain a vertical height ¢, 7.e., the diameter of
-a sphere, without losing in respect of that distance
any kinetic energy to the force f. I'his is a conse-
quence of the fundamental assumption of instan-
taneous impacts, for which I am not responsible.
The conservation of energy is not affected, because
whatever kinetic energy one sphere gains the other
loses. If, therefore, all the N’ collisions were divect,

~ the average height of the N spheres at the end of the
NI

time dz would be, not dz, but dz+
u N

¢, while their loss of kinetic

-energy would be Ninfdz.

3. But all impacts will not be direct; we must consider then the
result of indirect impacts. For this purpose consider two classes of
collisions, in one of which the sphere A has vertical component u
before collision, and in the other A’ has vertical component = after
-collision. The effect of a pair of collisions, one from each class, is
to substitute A’ for 4 as the sphere with vertical component u.
Now let ! denote the vector line of centres at collision, and cos (ul)
the cosine of the angle which ! makes with the vertical. Then in
the first of the pair of collisions the centre of A is below the point
of contact by jccos (ul). In the second, the centre of A4’is above
the point of contact by jccos (ul). There is no reason why the .
point of contact should be higher or lower in one case than in the
other. It will be on average at the same height. Therefore on
average of all pairs of collisions substituting 4’ for 4 with vertical
velocity u, 4" is above 4 by '

ccos (uti = r, suppose.

. Let q be the relative velocity of the two colliding spheres. Then
r = ¢ cos (ul)
== ¢ccos (ug) cos (¢!)

= $c cos (ug),

3 .
because cos ()= +28 0sin0de _

" Jcos@sintde

o
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Let w be the absolute velocity of the sphere whose vertical com-
ponent velocity is , so that

cos (nw) = £,
. w

Then r = fc cos (uq)
= % %(_3 08 (wqi

Let ¥ be the velocity of the other
colliding sphere, E the angle between
wand Y. Then,

L w—yoos T
w q

We have to multiply this by the number of collisions which

N spheres having velocity « undergo with spheres of velocity

¥ ... ¢ +dy, making with w angles E ... E+dF in time d¢, or -——, and
then integrate for all values of ¢ and E v -

Let pf (\{z) dy{ be the number of spheres in umt volume with velocity
¥... ¥y+dy. The result is

e

r = 3

ch’pj d.pf(np)J Lin BdBqlc ‘i—‘l’;-‘l’i" ‘i”

Therefore at time df the average height of the N spheres or their-
successors above the plane 2 = 0 is (1+4«) dz.

But the energy which they lose in the ascent is Nmfdx. The loss:
takes place only during free path. It follows that the loss of energy

due to the ascent dz is, allowing for substitutions, ’in-_f;l:' per sphere.

4. Now suppose that at z =0 the number per unit of volume of’
spheres having 3mu! ... d (u*) for energy of vertical velocity to be
Y e A (T D (1).

Then, by what has been proved in (2), the number which at height
dz have jmu? ... d (u') for energy of vertical velocity is

=M T = (e aymnt g (;‘:),
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-and the number which at height dz have

1 q 2 ?er dm

smad ... d (u?) e
for energy of vertical velocity is

e-hm!dz Ke-h(lu) (med = (mfdz)i(1+x)) d (uﬁ) -— Ke;hmtplu' d (u") . (2)

.

The two groups (1) and (2) are equally numerous, and therefore
either can by ascending or.descending, allowing for substitutions,
-exactly replace the other. Now this is the reasoning by which in
the ordinary case, when « = 0, we, prove I to be constant. It now
proves (1+«) T, to be constant.

5. Further, any group of » spheres will generally have some energy
of motion of their common centre of gravity, or, as Natanson calls it,
apparent motion, of which we have as yet taken no account. Call
this T\. . Then 7, is independent of # for the same reason that when
c=0Tis indepéndent of . Therefore T,+1+«xT, or T+«T, is
independent of x. '

6. The pressure per unit of surface is increased in the ratio 1 : 1+«
as the molecules, from being material points, become spheres with
finite diameter c.

But the pressure per unit of surface is the quaxit;ity of momentum
which is corried through unit of surface in unit of time (Watson,
Kinetic Theory of Gases). Now, so far as this momentum is carried
through the surface by molecules during their free path, it is not
altered in the least by « acquiring finite value. The increase of the
transfer of momentuin consists wholly in the process above explained,
namely, the instantaneous transfer of momentum through the dis-
tance ¢ which occnrs on collision.



