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An Extension of Boltzmann's Minimum Theorem. By S. H..
BuumntY, M.A., F.R.S. Iteeeived May 31st, 1895. Corn-
uiunicated Juno 13th, 1895, by G. H. BUYAN, F.R.S.

1. Let f (px ... qH) tfy, ... dqn, or shortly f .dpl ... dqn, denote the
chance that a molecule of a gas shall at any instant have its n coor-
dinates px ...p», and corresponding momenta qy ... qn between the
limits Pi, Pi + dplt &c.

Similarly, let F. dPx ... dQn bo the corresponding chance for the
values P, ... Pl + dPx of the coordinates and momenta.

2. If at a given instant the variables pi... Q,, stand to one another
in a certain relation, an encounter between the two molecules
ensues, that is, within a very short time after the given instant the
variables px..l Q,, will, by the mutual action of the two molecules
alone, assume new values comervatix cowervandis, which may bo
denoted by accented letters p[ ... Q'u.
. If we ask what is the number por unit of volume of pairs for
which at this instant the variables are so related to one another, the
answer usually given is that it is proportional to Ff.dpx... dQ,,. In
other words, it is usual to assume the chances / and F to be inde-
pendent.

3. On this assumption of independence, and on this assumption
only, it has been proved that, if

•—- is necessarily negative. If, therefore, when the system is
III

isolated, F and / continue to bo independent, - - continues to bo
lit

negative. If tends to a minimum, which it reaches when the
distribution of momenta is according to tho Boltzmann-Maxwell
law.

4. Now, systems may exist in which that independence of / and F
for encountering molecules cannot be conceded. I have myself pro-
pounded tho doctrine that the independence of / and F is only a
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consequence of the (generally) assumed rai'ity of the medium, and
that they cease to be independent as the medium becomes denser, on
the ground that in the dense medium the proximity of two molecules,
implied by their encounter, affords a presumption that they have
recently been exposed to the same influences, and have acquired
some velocities in common. However this may be, and 1 am not
now assuming the truth of it, it is worth while to consider whether
and how we can prove the theorem without assuming the indepen-
dence of/ and F. I propose in this paper to treat only the simplest

•case, regarding the molecules as equal elastic spheres.

5. Let c be the diameter of a sphere. Consider two spheres A
and B. Let R bo their relative velocity. About 0, the centre of A,
suppose a circular area described of radius c, perpendicular to R.
Let r be the distance of the centre of B from the plane of that area.
Then ' ,- •?=& .

dt

Let a be the distance from 0, the centre of A, to the point P, in
which the line through the centre of B parallel to-li cuts that plane.

1 Then, if a < c, a collision will occur between A and B, unless any
third sphere previously collides with either of them. Further, a2+»"*

•cannot be less than cJ. And, if as+r* is infinitely nearly equal to cs,
the chance of any third sphere colliding with either A or B before
they collide with each other vanishes, and a collision necessarily

•occurs between A and B. The only effect of that collision is to
•change the direction of the relative velocity R; and the nature of
that change depends only on a, and on the angle /3, which OP makes
with a fixed diameter of the circular area.

Let us call o, /J the collision coordinates. If the velocities of the two
•colliding spheres before- collision bo denoted by

u ... u•+• du

v ... v+dv

w ...

for one sphere,

• and ' U ... U + dU'

V ... V+dV

W ... W+dW

for the other,
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and if the collision coordinates be n ... fi + du, and ft ... ft + dft, then
as the result of collision u, v, w, U, V, W become u\ v, to, V, V, W,
and a, ft become a, ft'.* Conversely, if before collision the variables
be denoted by the accented letters, their values after collision will be
denoted by the unaccented letters, and, as is known,

du dv dw dUdVdW = du'dv'dw'dU'dV'dW.

6. Let the number per unit volume of spheres whoso velocities
are u... u + du, v...v + dv, w...w + div bo / («, v, w) du dv dtv. Call
these the class u. Similarly, let the number whose velocities are
U... U+dU, &c, be F (U, F, W)dUdVdW, and call these the
•class U. Now, let us suppose for a moment that no collisions are
allowed to happen, except (1) direct collisions between the spheres of
class u and spheres of class U, without restriction as to the values
of a and ft ; and (2) reverse collisions between spheres of class to
•and spheres of class U', with such values only of a' and ft' as that
«', v, w\ &c.,#shall after collision become u ... u-\-dii, &c.

If that were so, the only way by which any sphere could leave the
•class u would be by one of the direct collisions, and the only way by
which any sphere could enter the class u would be by one of the
reverse collisions. Hence on this supposition the increase per unit of
time of the number of spheres in the class u, i.e.,

* / ( « , * , « ) , or | ,

would be (number of reverse collisions per unit of time) — (number of
•direct collisions per unit of time).

7. Now, in the ordinary case, when / , F are independent, the
number of direct collisions is

f| nJRfF.dudft.

.And the number of reverse collisions is

jj ircUif F'.dadft, .

and so ? = f f ̂  (f'F'-fF)da dfl-

8. But I now propose to treat the case in which / and Faro not
VOL. xxvi.—NO. 527. 2 F
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independent, or the velocities u, IT ave correlated. And, therefore, for
fF we must substitute a more general form

<f> (w, v, w, U, 7 , W, a, /3),

where <j> is some function.

For the reverse collisions we shall have a corresponding function

f («', v\ io\ U\ V\ W\ a, /3) or if.

Then, collisions being still restricted as stated in .6, we should have

dt

9. But now we can make U, V, W assume successively all values,,
still maintaining u, v, to unaltered.; and then we obtain for the com-:
plete variation of / with the time ;

# = ([ITf Trc'ft (fl>'-f) da dp dUdVdW.

Now, let II = j I j / (log/—I) dn dv dw ;

and therefore

l7f==\\\filoefdudvdw

- \\[du dv dio f [ jj[ TTC'JJ ( f -<f) log/ da dpdUdVdW.

10. In this integration, extending over all values both of ti, v, to-
and Z7, V, IK, these classes interchange, so that our integral includen
the two terms „,, , , N,

TTCUI (0 —if) log/

and jr^/tJ (̂ '—if) log F j

and therefore includes the term

For a similar reason it includes the term
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and therefore includes the term

and consists wholly of terms of this form.

11. Thus expressed, — is not necessarily always of the same sign,
(It

unless of the two equations

one involves the other (which condition, however, will be found to
hold in the cases we shall consider). But in the permanent state

--•- must be zero, which can be by making either
lit

0 = 0' or fF=f'F'.

Also (-j- must be zero, which can only be by making
Cut

If, therefore, in any problem we find that the two equations

0 = 0' and fF = f'F'

cannot co-exist, but one must be taken and the other left, we must take

0 = 0'.

In our case, however, we shall find that the solution of

0 = 0'

involves fF = fF*.

12. A solution of tin's equation

0 = 0'

is obtained by making 0 a function of the energy only, namely, the
ordinary solution

But, as Mr. Bryan has pointed out, in his " Report on Thei'mo-
dynamics," that is not the only solution. And it must be rejected
here because it makes the velocities of colliding spheres independent,
which is assumed not to be true.

2 p 2
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13. The following is another solution, namely,

in which Q = A (tt'+v* + w*+ U' + 72 + IP) +13 (uU+vV+wW)

and K, A, B are constant.

For, using this form, we have, after collision,

Q' = A (w'2+t/2+™"i+ U'*+ 7'2 +

Now, by the conservation of energy,

and, by conservation of Ji or R2,

and tlici'cforo also

n'U'+v'V'+w'W = «ET+t;F+wTr;

and thercfoi'o $ ' = Q

and 0' = <p.

14. Assuming that our function r/> contains the velocities of two
•spheres only, -we find f (n, v, •»>) or f by integrating (p according to
U, V, IFbofcwocn limits ±co, ami find l'\ f, and IP' in the same way.
Whence it is easily seen that

involves fF = /'.F',

and so the function II found on our hypothesis has all the properties
of that function as usually found on the liypothesis that 13 =• 0. But
the actual value attained by II when minimum will be a function
of I?.

15. Now let us consider a more general case, that the velocities, not
of two only, but of «, spheres are correlated.

Let ns suppose that a certain spherical space S contains n spheres,
and that, their positions being unknown, the chance of their having
velocities
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is of the form 7Ce"Aa, in which

Q = (aw* + hix u2 + au\ -f hux «8 + &tt2 u3 + &c.),

and JT, a, 6 are constants.

In order that our system may bo permanent, that is, unaffected by
collisions, it is necessary and sufficient that when, by collision of any
pair of spheres, their velocities uv vx, ioXi w2, vv w2, become ti[, v\, &c,
all the terms in the index should remain with u'u v[, &c, substituted
for uu vXi &c, that is, if Q contain aw2, Q' must contain aun, and
so on.

16. Let us then denote, by A, /i, v the direction cosines of the
line of centres at collision between the two spheres whose velocities
aro before collision uxvxwu «2v2w2- Their velocities resolved in the
line of centres JVTO X?t, + fivl+ »'•?«, and \u2 +1*1% +vwr And these are
interchanged by the collision, so that after collision

u[ = w,—X (A.7t,+fti\ + vwl) +\ (X«2+/iV!1 + »'t/;2),

and, to determine u\... w;,', we have the six linear equations

n\ = (1—X2) nl — \fivx—

v[ = — \pnx+ (1—fx2) vx— /

w[ = — A»'7«1 — /ui'U, + ( l — v

-fXt'w,^- (1 — X2) M2—X/u\j—

To solve these equations for ?«„ vu &c, we have only to interchange
the accents between the right .and left hand members.

17. If, now, in the expression

we substitute for nu n2, and similarly for vx, vit wu w%, their values in
terms of u[, n',, &c, AVC find

(1) The coefllcicnt of U? is a. That is because «' and wj have
the same coefficient a in Q.

(2) The cocflieient of «[w£ is 6, the same as before for uxuv

(3) The coefficient of ttU^ is b, the same as for uxus, &c.



438 Mr. S. H. Burbury on an [June 13,

The form of the index is therefore unaltered, and the assumed law
of distribution is unaffected by collisions.

18. We can now find the chance that two of the n spheres shall
have velocities M, ... t^ + dw,, &c, and ut... 7I2+IZM2, &c, whatever the
velocities of the others may be, by integrating <j> according to
«g, v8 ... wn between the limits dbco. As no products of the form
uv, uw, or vw are supposed to occur in Q, it is sufficient to operate on
the w's only.

Form then the determinant of the function Q, that is,

2a, b, b, ... b

b, 2a, b, ... b

in all v? constituents. Let JDU, D12, &c, be its first minors, and Dmi

tlie coaxial minor formed by omitting the first and second rows and
columns. Then the result of the integration is

in which ^ = ^ U - » B==JT1'
- f 1231 -̂ 1221

But, evaluating the determinant, we find

D = (2a-b)n + nb (2a—&)—».

This is easily seen for n = 2, n = 3, and can be extended by
induction. . .

Therefore also

Dn = (2a-&)"-l + ( « - l ) b (2a-6)""2,

Am - (2a-&)-J + («-2) & (2a-6)»-3.

Also we find 2?,, = 6 (2a—6)"-a.

Therefore ^ = (2a-&) ^ t l L T . 2 & '
2a + 3&

j g , b(2a-b)

We can now treat the function J2" as in 13.
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19. Again, if we integrate once more, we can find the chance that
to single sphere shall have velocities n ... « + <Ztt, &c, in the form

Kt-xniDn{*+++**) dudvdw = / ( « , v, w) dudvdw,

whence also for two colliding spheres ...

And from that result we find that H exceeds the value which it has

when b = 0 by \ log =—, and the function H has for this system all

its ordinary properties, becoming minimum in the assumed distribu-
tion, and having when minimum the last stated value.

20. We must consider further the coefficients a and b.
The integration in 18 extended over n spheres supposed to be con-

tained in a spherical space S, so that, p being the number of spheres
4n unit of volume, n = pS. As 8 becomes very large, the chances for
the two spheres, whose positions within S are unknown, having given
velocities must approach independence, that is, A becomes constant
and B tends to zero. Comparing this with the values found above
for A and B, we see that for large values of 8 (or of n) 2a — b is in-
dependent of S, and b tends to vanish. That is one condition which
•a and b have to satisfy. Another can be found as follows.

21. On the equilibrium of a vertical column of gas whose
«,re equal elastic spheres of diameter c.

' If in the Olausian equation

wo evaluate the virial term ^2272r, Ave find it equal in case of our
elastic spheres to %nc?p . 2pTr. Here Tr is the energy of the motion
of the Bphei'es in the volume considered relative to their common
centre of gravity. (See Science Progress, November, 1894.)

T of a » — _ 4 x aggregate volume of spheres in volume V

Then we know that p, or the pressure per unit of surface, is equal to

22. I find now that in a vertical column of gas whose molecules are
•equal elastic spheres of diameter c it is not T that is constant, as
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proved by Maxwell for the case where c (and therefore *:) is.
negligible, but T+KT..

(Sec Appendix.)

Also T+KTr— a(ui
l + nl+...-\-

if we make 2a = 1 + »>',
n

n ~ 3 S '

because n = p#.

The coefficients a and 6 so found satisfy the condition of 20 above-
Also the distribution of velocities according to this law is unaffected
by collisions, as shown in 17. Therefore it gives a more general
solution of the problem of the motion of clastic spheres than the
ordinary one in which the velocities of each sphere are supposed to
bo independent. Also, with these values of a and h,

' - ' and

The value of II found for this system is

JET = £ log h4-£ log —- -f constant

= £ log h + ~ log (1 + 0 + constant.

The smaller n is, the greater in numerical value is the ratio-

—, and therefore the more intense the correlation,
a

23. The above values of a and h are to bo regarded as limiting
values which a and b assume when S, the space considered, is very
lai'ge compared with frc8. For smaller values of 8 a correction is
required, as follows.

Correction.

The limiting values assumed for a and b were

'..„.; ( i) .
7 i K

• n
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The corrected values are

o n+K I, , n—1 \\
2a = — 1H K I

n \ n I

441?.

(2),
h — — n + * K

n n

which also satisfy the condition of 20.

I assume the chance for a (spherical) group of n contiguous,
spheres, whose positions within the sphere are unknown, having
velocities infinitely near to uv vu ... wn, &c, to be Ge~h<idux ... with

Q = a2 («2 + va + w3) + &2S (iiu' + vv

Now, if this bo trae, the chance for any single sphere having velocity
in x, w, ...?*, +duy is found by integrating e'hQ dt^ ... divn for all the
variables except ux between ±oo, and comes out in the form

in which D-

"ia du,

2a, b, b ...

b, 2a, b ...

and Vn is its first coaxial minor.

Now, to be consistent, this chance must be the same, whether wd
regard the single sphere as a member of a group of n, or as a member

of a group of 2n, <fcc, so long at least as p or - is constant. There-

fore -•- must for all values of n be independent of w, except as it
Mi

appears in -**-. But, with the values (1) of a and b,
8'

D
n+K

Therefore, with the values (2) of a and b,

i f • : S = f 7TC8,

and that is the solution.
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24. With these values (2) of a and 6, the index becomes

o
a

which becomes in limit, when — is large, T+icTr whatever the den-
s

sity, or -• -, may be. Without affecting the above results, we may
o

by a further small correction of 2a and b cause the determinant to

vanish when the density -'• exceeds a certain point, beyond which
o

point therefore the formulae may cease to be applicable.

APPENDIX.

To prove the above stated result for the vertical column.

1. If p be the pressure per unit of surface, x the height of a point
in the column above a fixed plane, / the vertical force, m the mass of
a sphere, p the density, we have

ialso p =

Here K = f rrc8p,

•and Tr is kinetic energy of relative motion; whence, if we make .

3
(1 +K) Tr = constant = —,

we find p = poe-A"^,

which is the same equation as found for the ordinary case when
•c = 0 and K = 0.

2. Again, consider iV spheres crossing the plane x = 0 with « for
vertical component of velocity. Of these some, my N—N*, will reach
the plane x = dx without collision. N ' will undergo collision before
reaching dx. But for these N' there will be substituted, as the
result of collisions, # ' other spheres with the# same vertical com-
ponent u. ' '
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Now, if the impact were direct, i.e., the line of
•centres at collision vertical, the substituted sphere
would gain a vertical height c, i.e., the diameter of
a sphere, without losing in respect of that distance
any kinetic energy to the force / . This is a conse-
quence of the fundamental assumption of instan-
taneous impacts, for which I am not responsible.
The conservation of energy is not affected, because
whatever kinetic energy one sphere gains the other
loses. If, therefore, all the N' collisions were direct,
the average height of the .W spheres at the end of the

dx N'
time — would be, not dx, but dx+ -~c, while their loss of kinetio

u N
•energy would be Nmfdx.

3. But all impacts will not be direct; we must consider then £he
result of indirect impacts. For this purpose consider two classes of
collisions, in one of which the sphere A has vertical component u
before collision, and in the other A' has vertical component u after

•collision. The effect of a pair of collisions, one from each class, is
to substitute A' for A as the sphere with vertical component it.
Now let I denote the vector line of centres at collision, and cos (ul)
the cosine of the angle which I makes with the vertical. Then in
the first of the pair of collisions the centre of A is below the point
•of contact by | c cos (ul). In the second, the centre of A' is above
the point of contact by £ccos(t*Z). Thei'e is no reason why the
point of contact should be higher or lower in one case than in the
other. It will be on average at the same height. Therefore on
^average of all pairs of collisions substituting A' for A with vertical
velocity u, A' is above A by

c cos (ul) = r, suppose.

Let q be the relative velocity of the two colliding spheres. Then

r = c cos (ui)

= c cos (uq) cos (ql)

= f c cos (uq),

because cos (ql) = ^ r—:——=-r = f.
J cos 0 sin 0 dO
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Let w be the absolute velocity of the sphere whose vertical com-
ponent velocity is u, BO that

cos (na) =s — ,

Then

Let \fr be the velocity of the other
colliding sphere, E the angle between
<i> a n d \\f. T h e n

3 o) q

We have to multiply this by the number of collisions which
N spheres having velocity u undergo with spheres of velocity

\p ... \f/-\-di{/, making with a» angles E ... E+dE in time dt, or —, and
then integrate for all values of \p and E.

Let pf (i/') d4> be the number of spheres in unit volume with velocity
The result is

— $> cos JE7 dxNnc'p [" difff (^) f * | sin E dE q f c ~ -
Jo Jo w

. Ndx

Therefore at time dt the average height of the N spheres or their-
successors above the plane x = 0 is (1 + *) dx.

But the energy which they lose in the ascent is Nmfdx. The loss
takes place only during free path. It follows that the loss of energy

due to the ascent dx is, allowing for substitutions, -•£-— per sphere.

4. Now suppose that at x = 0 the number per unit of volume of
spheres having %mu*... d (u*) for energy of vertical velocity to be

(1)

Then, by what has been proved in (2), the number which at height
dx have \mv? ... d (u%) for energy of vertical velocity is
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and the number which at height dx have

• o j / o\ fnfdx\mu*... CZ(M2)- - - j —

for energy of vertical velocity is

)] d ( 2 ) = Ke-n*i»* d (u*) (2).

The two groups (1) and (2) are equally numerous, and therefore
either can by ascending or. descending, allowing for substitutioniS,
exactly replace the other. Now this is the reasoning by which in
the ordinary case, when JC = 0, we. prove T to be constant. It now
proves ( 1 + K) Tr to be constant.

5. Further, any group of n spheres will generally have some energy
of motion of their common centre of gravity, or, as Natanson calls it,
apparent motion, of which we have as yet taken no account. Call
this T,. . Then T, is independent of x for the same reason that when
c = 0 T is independent of x. Therefore T,+T+iiTr or T+icTr is
independent of #.

6. The pressure per unit of surface is increased in the ratio 1 : 1 + K
as the molecules, from being material points, become spheres with
finite diameter c.

But the pressure per unit of surface is the quantity of momentum
which is carried through unit of surface in unit of time (Watson,
Kinetic Theory of Gases). Now, so far as this mo7nentum is earned
through the surface by molecules during their free path, it is not
altered in the least by K acquiring finite value. The increase of the
transfer of momentum consists wholly in the process above explained,
namely, the instantaneous transfer of momentum through the dis-
tance c which occurs on collision.


