NOTE ON THE VALUES OF *n* WHICH MAKE $\frac{d}{dx} \{P_n^{-n}(x)\}$ VANISH AT x = a

By H. J. PRIESTLEY.

[Received June 26th, 1918.—Read November 14th, 1918.]

In a paper "On the Scattering of Sound Waves by a Cone,"* Carslaw uses the fact that the roots of the equation in n, $\frac{d}{dx} P_n^{-m}(x) = 0$ when x = a, are real and separate. In a footnote he calls attention to the need for a proof of the theorem.

Such a proof is easily derived from the theory of the Homogeneous Integral Equation.

Consider the differential equation

$$\frac{d}{dt}\left[(1-t^2)\frac{dy}{dt}\right] - m^2(1-t^2)^{-1}y = 0.$$
 (1)

Solutions are $\{(1-t)/(1+t)\}^{m/2}, \{(1+t)/(1-t)\}^{m/2}$

From these are derived

$$Z_1(t) = \{(1+a)(1-t)/(1-a)(1+t)\}^{m/2} + \{(1-a)(1+t)/(1+a)(1-t)\}^{m/2},$$

$$Z_2(t) = \{(1+a)(1-t)/(1-a)(1+t)\}^{m/2}.$$

Consider now K(x, t) defined by the equations

$$\begin{split} K(x,\,t) &= Z_1(t)\,Z_2(x) \quad (t < x),\\ K(x,\,t) &= Z_2(t)\,Z_1(x) \quad (t > x). \end{split}$$
 If
$$a < x < 1, \end{split}$$

K(x, t) is a continuous solution of (1) satisfying the conditions

$$K(x, t) = 0$$
 when $t = 1$,
 $\frac{\partial}{\partial t} K(x, t) = 0$ when $t = a$.

* Math. Annalen, Vol. 75 (1914), p. 143.

NOTE ON GENERALISED LEGENDRE FUNCTIONS.

Further, $\frac{\partial}{\partial t} K(x, t)$ has a discontinuity at t = x, where $(1 - t^2) \frac{\partial}{\partial t} K(x, t) \Big|_{t=x^-}^{t=x^-} - 2m$

$$(1-t^2)\frac{\partial}{\partial t}K(x, t)\Big|_{t=x+}^{t=x+}=2m.$$

Again, $P_n^{-m}(t)$ is a solution, vanishing at t = 1, of

$$\frac{d}{dt} \left[(1-t^2) \frac{d}{dt} P_n^{-m}(t) \right] - m^2 (1-t^2)^{-1} P_n^{-m}(t) = -n(n+1) P_n^{-m}(t).$$
(2)

Also, if n has one of the required values,

$$\frac{d}{dt} P_{a}^{-in}(t) = 0$$
 at $t = a$.

Adopting Hilbert's^{*} well known method we obtain from (1) and (2) the integral equation

$$2mP_n^{-m}(x) = n(n+1)\int_a^1 K(x, t) P_n^{-m}(t) dt.$$

If $\lambda_1, \lambda_2, \ldots$ are the characteristic constants of this equation, the required values of *n* are the roots of the set of quadratic equations

$$n^2 + n = 2m\lambda_s$$
 (s = 1, 2, 3, ...).

Now K(x, t) is a symmetric function of x and t, consequently λ_s is real.

It follows that possible values of n are real or conjugate complex quantities.

The argument used by Macdonald⁺ in his discussion of the roots of

$$P_n^{-m}(a)=0,$$

shows that conjugate complex roots or multiple roots are impossible.

Hence the roots are real and separate.

1918.]

^{*} See Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen," Chap. vII, or *Gött. Nachr.*, 1904, pp. 213 *et seq*.

[†] Proc. London Math. Soc., Ser. 1, Vol. xxxt (1899), pp. 265-266.