284 Rev. E. W. Barnes [March 8,

(ON CERTAIN FUNCTIONS DEFINED BY TAYLOR’'S SERIES OF
FINITE RADIUS OF CONVERGENCE

By E. W. Barnes.

[Received and read March 8th, 1906.]

‘1. The function g (x; 6) is defined when |z| <1 by the Taylor’s series

) N

x

1z§0 (n+0)F

When S is a positive integer the function can be derived from the case
when 8 =1 by differentiation with regard to 6. The function

',L.'IL
on+6
has been separately studied by the author.*

We shall therefore assume in the present investigation that B is not
equal to zero or a positive integer. The subsequent theory is a develop-
ment of the investigation given in the author’s memoir “On the Asym-
ptotic Expansion of Integral Functions defined by Taylor’s Series.”t
Some of the following results were originally communicated in that paper.
On account of its length they were merely stated ! in brief without proofs ;
the complete investigation, with some extensions, is now given. I refer to
the introduction to that paper for an account of the general history and
literature of the subject.

We shall assume that 8 is not zero or a negative integer; in such cases
the function gg(z; 6) evidently does not exist.

We shall also assume that, in the definition of gg(z; 6),

(n+40)F = exp {B log (n+6)},
wherein 0 <|I{logm+06)}| < .
This definition completely specifies the function when |z| <1 and 6 is not
real and negative. In the latter case we may conveniently take
I{logn+6)} ==

when (7-0) is negative. We thus arbitrarily speciiy at most only a finite
aumber of terms of the series.

™Ms

glz; 0) =

n

f

* Quarteriy Journal of )l[ather;latics, Vol. xxxvu., pp. 289-313.
i+ Philosopiical Transactions of the Royal Socieiy (A), Vol. 206, pp. 249-297
% Loc. cic., Parts w. and v1,
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We use throughout I{f(@)} to denote the imaginary part of f (),
R{f(z)} denoting its real part. Thus the condition

0<|I{log+O)}| <=
is equivalent to —_r < —%—I {log (7i+ 0} <.

2. I propose to establish the following propositions :—

(1) The function gg(x; 6) has & single singularity in the finite part
of the plane. The singularity occurs at z =1, and is not an essential
singularity. :

(2) The funection gs(z; 0)—gg(z; 1)/z°~! has no smgularltles in the
finite part of the plane, and, if |logz| < 2, it admits the expansion

1 2 (].ng) Jf(ﬁ_—n’e)—f(ﬁ—’n, 1)}.

P n=o  n!

(8) Near x =1, gg(z; 0) is many-valued.
(4) The function gg(z; 0)—I'(1—B) (—logz)®~'z2~? is one-valued near
z = 1, and -in the vicinity of this point admits the convergent expansion

(ZTH_II) §n+1 (16s 6)

. 1l—

where ,41(8,6) denotes the (n+41)-ple Riemann { function of . equal
parameters unity.
(5) If 6 be not real, the function
9s(x; 0)+gga™t; —0) e,

the negative or positive sign being taken as I(f) > or < 0, is one-valued
near z = 1, and has no singularity at this point.

(6) If 6 be not real and a positive or negative integer (zero included),
gs(z; 0) admits, when |z| is very large, the asymptotic expansion

o ()
.{L —_— l . — }, Fmp [log (_m)]s—l < Sin 71'0 ’
(—0y gB( 6) J + (—=)° s n! T'(B—n)[log (—=z)]*

The modification of the previous theorem, when 6 is zero or a necatl ve
integer, will be indicated.

e . 2 " 21
Spence’s formulse conneeting the functions ¥ — and ¥ ——— when
. m=1 M m=1 2T M

n is an integer will be deduced.
-1t will be shown that the proposition (4) leads to the result previously
obtained when 8 = 1.
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In Part II. of the paper similar results are established for the more
general function f(z; 6), defined, when |z| < 1, by the series

§ z"x(n+6)
=0 (n+0)F °’
when, outside a circle outside which the points n+4+6 (n =0, 1, ..., @) all

lie, x (z) admits the convergent expansion 2‘,0 befz".

Part I.—The Function gg(z; 0).

8. To shew that gg(x; 0) has no singularities except possibly on the
real axis between x =1 and z = + o, the limits included.

We have

N-1 " _ ® e N-1 (:z:z)"
nEO (n-i-@)ﬂ - SO ¢ "-20 (n+9)” n! dz

S (g PPN RS )
—Le Gp(wz; 6) de Le nz:N(n-}-@)"n!dz'

. Y (s _(x~
where Gglzz; 0) = ?0 R L

and the integration is along the real axis.
Now, when N is large

@ (ZZ)“

2 —_— . l Zl elxz‘
n=N (n-l—G)”n! <)h\

(N—Fk)!
where 7, tends to zero as N tends to infinity, if £ > R(—f3). Hence

T e e (xa) Njw —a-lzz
L € n§=:N (n-+0)8 n!dz <ny|z] 0 é (N k)'dz’
and, if % < 1, this expression tends to zero as N tends to infinity.

Therefore, if | z| be sufficiently small,
gs(z; 6) = j e *Gglzz; 0) da.
0
Now, when [zz| is large, both Mr. Hardy and I have shown that

Golez; 6) = |- P(e)+(—29) [log (—z2) P Q2]

( xz)

where |P(zz)| and |Q(z2)| tend to definite finite limits as |zz| tends to
infinity.
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Therefore the integral re"Gp (xz; 6)dz
0

ig finite for all values of z such that R(z) < 1. It is evidently an analytic
function of z for all such values, and therefore it represents the con-
tinuation of gs(z; 6) for all such values of z.

Again, if j (B) denote an integral along an axis in the positive half of
0

the z-plane, J (4) denoting the original integral along the positive half
0

f l . 0 0

of the real axis, L ) = L (B)

when E(z) < 1; for they differ by an integral along a contour at infinity

which vanishes. Therefore 5 (B) represents the continuation of gs(z; 6)
0

for all values of = for which it is finite and eontinuous.

By taking suitable directions for the B-integral, we see that gg(z; 6) can
be continued for all values of z such that |arg (1—z)| < =, and that it has no
singularities in this region. We therefore have the given theorem. The
line (1, o) serves as a cross-cut to render the function gg(z; 6) one-valued.

4. We will now shew that the function

;1
galo; — L2250
z
has no singularities in the fintte part of the plane except z = 0, and that,
near x = 1, it admits the expansion

1 3 (oga® {¢B—n, 0)—E(B—n, 1)}.

.’EnO Tal

Let 1/L be an axis from the origin within 90° of the axis to the point a,
and let L be the image of 1/L in the real axis. Then, if the integral be
taken round a Gamma function contour embracing the axis L,

(TA=B) [ (-1 pmar gy = L

- L( yrleRdy =

where (—%)?~! has a cross-cut along the axis L, and log (—y) is real when

¥ is real and negative, and where a® has a cross-cut along —1/L (z.e., the

nsgative direction of the axis 1/L), and is real when a is real and positive.
We assume that @ is not real and negative.

Consider the integral

I — lI‘(l IB)J y)ﬁ-l
L

e v d
o T—ze? ™Y
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where the contour excludes the poles log z & 2nare of the subject of integ-
ration. If 6 be not real and negative, we can determine L so that it is
within 90° of the axes to the points 642, 2 =0,1, 2, ..., ®. We have.

I= Jda= B)j y)P-lev? E z"e ™ dy
277‘ L n=0
JQQ-=p) g1 ZN VO
+ 277’ JL ) 1—ze™ dy ’
N-—l
and therefore I= ”_0 w + 6)" +IN, let us say.
If |z] <1, the series tends to a definite finite limit as N tends to
infinity.

Also, if |z| <1, we shall have R(logz) < 0.

If logz lies outside the contour and [1—=z| be small, we may near
y = 0 deform the contour so that the minimum value of |1—ze™?| is
finite and occurs when y = logz+», where n > 0, and so that for
other values of y on the contour we have R(y—logz) > .

Then we shall have Iy = Ke™+La",
where | K| tends to a finite limit as N tends to infinity and |L| tends to
zero.

Therefore, if log « be outside the contour and |1—z| be small, |Iy|
tends to zero as N tends to infinity, provided |z|< 1.

Hence, when these conditions hold,

I = gg(x;0).

Hence . |
— gﬂ(fb‘ 1) tF(l—B)J gl o= _—g—Yp1-0
9s(z; 6) o ), TV T dy
A a=W)O-1 :
= xol—) ‘I‘(;ﬂ. B) j’L —y)B-le~? l_i_(_%%__ dy. (A)

For 1t is evident that any axis L as previously chosen is in the positive
half of the ¥ plane, and is therefore a possible axis when 6 = 1.

But in the latter integral the points y = logz+2nw: are no longer
gsingularities of the subject of integration: therefore we may drop the
condition that such points shall lie outside the contour of integration.
We shall assume that #°~? is completely specified, as will be the case
if we assign a cross-cut along the negative half of the real axis.

The integral (A) is evidently finite and continuous when & takes any
range of values limited by this cross-cut. It rejvesents, therefore, the
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continuation of gg(z; 0)—ga(xr; 1)/2®~! for all values of z so limited.
Therefore this function has no singularities in the finite part of the
plane except the singularity at the origin due to z°-!

5. Put y =logz+¢, and suppose that |log z| is small. The integral
(A) may be written
_:_I._ lr(l—ﬁ)j — _pB-1 e_t—e_el
7 op ) (Tles O g dt
Expand the original contour so that it includes P, a parallel to the
axis L from the point log z, and so that it also includes a circle of
radius |logz| whose centre is y =logz. Change the specification of
(—y)*~! 8o that it is unaltered on the contour, but has a cross-cut along
the parallel inside the contour, so that

- — -1 — a-1 = B—1) .
(—logz—t)f~! = (—1%) TE‘,O n'

. (B—mn) <log a:) "
t
when [¢| > |logz|, and is the continuation of the function represented
by the series when |¢| <|logz| Now close up the contour till it
embraces P, as the original contour embraced L. The integral in (A)
will be unaltered in value by these operations.
Hence

] L I'(l—- ) B e~ V—p—by
98(@; 0)—gs(z; 1)/2°"" = — a:" e JLA=5 L —logz—yP~ T——- dy.
B)

If now the bulb of the contour be a circle of radius > |log z| and centre
y = 0, and if the remainder of the contour be the double description of
that part of the axis L outside this circle, we have on the contour
N — n

([3 1) ... (B—n) (log x) +Ru,
= Y
where |Ey| tends to zero as N tends to mﬁnlty Thus the integral (B) is
equal to

(—log z—y)*~! = (—y)*~!

l

n!

1 N (ﬂ 1) 18 n ‘I‘(l_ﬁ)j — AB—n-1 e_t_e_m
— 5 n_ - —log z) B L( t) rp—— dt
1 .Ta— ~v_ gty
i I
— _1_ S (18 (18 n) n F(I_B) —_ — _ !
= pA = (=log z) I'—(l—,8+'n){§('8 n, —E(B—mn, 1)}
. —JN (S&y)
l 0
2%150(05?) [EB—n, 8)—EB—n, 1] —Jx,

SER. 2. VOL. 4. No. 930. U
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where {(s, 6) denotes the simple Riemann ¢ function of parameter
unity.

6. Now, if  be so chosen that R(6-7) is positive,

{B—n0) _ 6+m) (LA4n— 5’] (—a)p-r1 E0 gy
n! n! + 27T (1+n) 1—e™*

The contour of the integral embraces the axis L and excludes the
points 2nar: (n #0). Hence on the contour we may take the mmlmum
value of |z| to be k, where & << 2.

Hence, when 7 1s large and 0 not real and a negative integer,

§(,3—'n, 6) i n‘R(ﬂ

where K is finite when 7 is very large.

The series
s loga)f ca_, g

n=0 ¢!
therefore tends to a finite limit as n tends to infinity, provided
llog z| < k < 2.

Finally, therefore, if log z is defined by a cross-cut along the negative
half of the real axis, if 8 be not real and negative, and if |log z| < 2,

go(@; O—gaw; Djz*—t = L 5 18D 4eg_p 6)—¢(B—n, 1}

x2? =0 n!
By means of the relation

gs(z; 9 1) = +zgg(z; 6)

6— 1)‘l
we may enunciate the previous‘theorem with the narrower restriction
that 6 shall not be zero or a negative integer. Compare the investigation
in §9.

7. We proceed now to shew that gs(z; 0) has a single singularity in
the finite part of the plane, that this singularity occurs at x =1, and
that at this point the function branches infinitely often. '

We have seen in § 4 that, provided B be not a positive integer, [z] <1,
and the contour excludes the points logz+2nm n=0,1, ..., ®),

(z 6) :8)‘{ y)ﬁ -1 ___i dy

—ze Y
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-Suppose now that the contour includes log z, but excludes the points

log z+2nmc (05 0),
80 that, if z = re*?,
| (p£2m)logr—arg L | > | ¢/logr—arg L |;
then the integral is equal to
ge(z; )—T'(1—LB) (—log z)f1u~".

Now suppose that |z|> 1, and that (—logz)*~' is made one-valued
by a cross-cut along the axis of integration, log(—log ) being real when
log z is real and negative. The integral remains finite and continuous.
Hence the equality

—y0
ge(z; )—T'(1—PB) (—log )z~ = JTA—8) j —y)F! -l—ﬂ— dy (A)
L —

2 ze Y

continues to hold good, even for values of z which are real and greater
than unity, provided we regard gg(z; 6) as representing the continunation
of the function defined by the original Taylor’s series where |z|<<1.
Hence the function gg(z; ) has no singularities on the positive part of
the real axis between z =1 and z = . It has, therefore (§8), a
single singularity in the finite part of the plane, viz.,, at z =1. Near
this point the function is many-valued.

8. We proceed now to show that, near = = 1, the function
gs@; O—T'(1—PB)(~log z)fz~¢

s one-valued and admits the expansion
© r— )Il
e AN}

' n=0 .’l}'“’l
1I < 1. We thus see that x =1 s a singularity of

valid when

specifiable branching of ga(z; 0).
From the equality (A) of the previous paragraph we obtain

~gﬁ(x; 9)_r(1-6)(—10g x)ﬂ~1x-0
‘F 1— 18) _ -1 g'!ls (x—l)”
B 2 J'L( vy (1

4
‘n—0 277_ — —y)n+1 x-n+1 Y

T(1—8) oy (_a—1 ¥
T o j' = 1—ze™? (z(1—e™Y)) ay.
The first series may be written

N-1 r—1
n%o( ’l+l) (1L~+1(B 6



292 Rev. E. W. Barnrs : [March 8,

where zn+1(8, 6) is the (n+1)-ple Riemann ¢ function of equal parameters
unity defined by the integral
—y8
JLO0—F) L —9P g

We have assumed that 6 is not real and negative. T

Suppose now that R(6) > 0; then we may replace the contour L by
a contour C, embracing the positive half of the real axis, which now serves
as & cross-cut to make the function (—logz)*~! one-valued.

Deform this contour till it
consists of two lines above and w
below the real axis and distant
7 from it, and a line ¢ parallel
to the imaginary axis, cutting -
the real axis in a point whose
distance from the origin is > log 2 on the negative side of the origin.

Since I{log z} lies between =+, the point log z can always be
taken to lie within the contour.

The minimum value of |1—e~%| on the contour will be unity. For,
if ¥y = (cos ¢p+:sin ¢)r, we have on the two infinite lines »sin¢ = + =,

4

and therefore cos (rsin¢) = —1. Hence

|1—e~¥] = 4/[1—267"%% cos (2 8in @) ¢~ 2 ¢] = 14¢~7%%¢ > 1;
and on the line ! et > 9
and therefore |1—e¥| > &/[2—1)7%] > 1.

Hence, when # is large

1onn(8, 601 < SL2B [ (=gt ol ay | < wmo0K,

n+1

where # > 1 and K is finite and independent of = if 8 be not a positive
integer and R (6) > 0.
N-1 (1._

Hence the series D §n+1(,3 6)

tends to a definite finite limit as N tends to infinity if |(z—1)/z| < 1.

This can be otherwise seen since the integral

Ta— B)j Y { z—1 }Nd
o7 YV I lsa—en) Y

will tend to zero as N tends to infinity if |(z—1)/z] < 1.

Therefore, if R(f) > 0 and |(zx—1)/z|> 1, and if the principal value of
(—log )P~ [which is such that log(—log z) is real when log z is real and
negative and has a cross-cut along the positive half of the real axis,
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| I(log %) | being less than =, since | (z—1)/z| < 1] be taken
gsz; )= (1 —PB)(—log z)f~'z~° = n+l §n+1(,3 0).

Thus the nature of the singularity of gg(z; ) at z = 1 is given by
I1—pB)(—logz)*-1z~°.

This singularity is not essential*, and is not even an infinity unless
R(B) <1, or B is a positive integer, or we wind infinitely often round
the point. When B =0, galz;60) = (1—z)"", and the nature of its
gingularity near £ =1 is given by —=z~°/logz. This result, though
somewhat paradoxical at first sight, is evidently. true.

9. We will now remove the limitation R(0) > 0 introduced into the
proof of the preceding proposition, and show that the theorem is true if 6
be not zero or a negative integer.

We evidently have
galz; 6—1) = 2 1_'_6)5 = O—1)"P+zgs(z; ).

Hence, by the preceding theorem, if R (6) > 0,
gslz; 6—1)—T (1—pB)(—log w)ﬂ—lz—(o-l)

(9 1)ﬁ+ 2 (33 §ﬂ+1(B: 6)-

For brevity put
Un+1 — En+1 (ﬁ) 6—1), U1 — at+1(6s 6),

and z =
z

T have elsewhere shewn+t that

VUn4l = Up41— Up.

=

N
[Let Sy= 2 vp2" Sy = Z up12™
n=0 n=0

¢ It must, of course, be counted as an essential singularity if we say that log z has an
essential singularity at # = 0. Essential singularity is defined in such a negative manner that
it will probably be ultimately convenient to class such points as the one in question under another
title.

t+ ¢ The Theory of the Multiple Gamma Function,”” Transactions of the Cambridge Philosophical
Society, Vol. xrx., pp. 374-425, § 26.
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N N
Then Sy= n§0 (Unp1—2n) 2™ = — g+ Eounﬂ(z"—znﬂ).}.umlZN+1

= — g+ (1—2) Sy+uys1 2!

But UN+1 = Vy1+uy = ... = oyn+ov+...Fo, 44,
N+1
Therefore | unsr | € Z ve |+ .

We have seen that, when 7 is large and R (6) > 0,
[ | < K[u™*,
where x > 1.* Hence, when N is large,
| UN+1 | < K'N,
where K’ is finite, if 8 be not an integer and R(6) > 0.
Hence, if |z | <1, | uy412¥*!| tends to zero as N tends to infinity.

But Sy tends to a definite finite limit as N tends to infinity. Therefore
the same is true of Sxy. Hence

ot 2 () Gn6. B

’lto+ ”’ ( ;1)n§;z+1(181 0"’1)-]

~ =17 1)

And the latter series is convergent.

Now %, = (#—1)"A. Therefore, if R(6) > —1, and 0 be not zero,
the theorem of the preceding paragraphis valid. Proceeding by successive
stages, we shew that it is valid for all values of 6, provided O be not zero
or a negative integer.

10. If we compare the results of the preceding paragraphs with the
expansion obtained in § 4, we see that when z is in the immediate
vicinity of the point 1 we have the equality of the two expansions

L9 § M {g(ﬁ_n: 9)_§(B_n’ 1)},

z° n=0 !

and é xn+1)n{fc+l(187 )_331 0§1»+I(B 1)}

for each is convergent when | z—1 | is small and equal to

ge; O)—z'’galx; 1).

* The previous argument can be used to show that, when R(6) > 0 and B is not an mteger,
{ vr | tends to zero s8 r tends to infinity. .
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The Case of B = 1.
11. I have previously* shewn that, when 8 =1,
2’9 (@ ; 6)+log (1—2)
= Y-y O+ 3 (22 €D .. 6o (4.t D),

n!
provided | (1—z)/z| < 1.

This result, at first sight, seems very different from that previously
obtained for general values of B. It is now proposed to shew that as 8
tends to unity the result of § 8 leads to that just quoted.

It is necessary to introduce certain properties of (r2+-1)-ple Riemann
¢ functions of equal parameters: these are taken from an unpublished
chapter of a forthcoming book by the author on Gamma Functions and
Allted Transcendents. The reader will, however, find little difficulty in
deducing them from the author’s memoirs dealing with the general
multiple Riemann ¢ function.t

~If we put 8 =1—e in the result of the preceding paragraph, we
obtain

gio@; =T (@ (=loga)—z-0= 3 W'z ‘a9 @

n=0 1L+l

Now {§n+1(1—s,0>+( )’“‘“5(‘ “”} — Tan ),

when ,,+1§1 (6) denotes the ﬁ_rst (n-+1)-ple Bernoullian function of 6 of
equal parameters unity, and v,4+1(6) denotes

d

dG log { n+1(6)}

I..1(0) denoting the (n-+1)-ple ga,mma. funcblon of equal pa.ra.metms
unity.
I have elsewhere shewn that}-

0~1...6—n)

8P = B

Hence, if we. expand the result (A) in ascending powers .of ¢, as is

* Quarterly Journal of Mathematics, Vol. xxxviI., p. 308.
t+ Loc. cit., § 9.
+ Transactions of the Cambndge Phstawphwal Society, Vol. Xix., p. 431
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evidently legitimate if ¢ be very small, we get, on equating coefficients
of 1/e

i 1
- E (x n+1) n+1 1 (6)»

and, on equating the terms independent of e,

g(, 6)+2z°log (—log z)—y ()2~ = 2 1P Y1 (6).

=0 :D”‘+l
The result of equating higher powers of ¢ is to give us the nature of the
behaviour of functions
s z" Ilog(n+9)|
=0

n+6
near z = 1.

12. The first result is equivalent to
—e § (z—1)" (0—1)... (0—mn)

11=0 Il)"'+1 ,n!

1 — 0-1
== (1+18)7, )
and is evidently true.
The second result may be written
g(@; 0)+z~°log (1—z)—y(1)z~°

- 1— i 1
=20g (Z50) - £ 0.

x

We have then to prove that the right-hand side of this equality is equal to

—zry@+ 3 ESFOD 0oLy Ly 4 ).

n=1 I n.:

Put now (z—1)/z = z; then we have to shew, when | z| < 1, that

1=z I:\b(O)—log {(1 —2)log (1—2) }]

—z
=y O+ 2 znlw (9)+9—-°°——!————’( +ot+ D))
° T - (= g S (0) 5 '
Now ("') 3[11,“(9) k§1 k' n+l (6) 2 +n+lso(0)\l' (9):
where Sk(0) = ,Sx(6) and - (6) = ¥ (O)
Therefore
(1—=0)... (n—0)

Va1 6) = ¥ 6) +(— )"k 2, k' L a8 Sk]ﬁe).

n!
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Using the identity (1), we see that the terms involving +,(6) vanish
from the equality, and we have to establish that, if |z | < 1,

— (—2log { (1—2) log (1—2) }

k
=2 {EGFase %0 e (1+.+1)].

18. We will first shew that

grran [ 1 1 s (— 1 S5 () — S (0)
iSO (3 +ot )+ 5 S @ 2050

+20S5 (6) = 0.
Denote the function on the left-hand side of this equality by Fni1(6).
Then, since #4180 (0+1) = 14156(6)+.50 (6)
and SO —Si(0) = ki1 (6),
we have
Frt1(0)+Fa(6)
= Fan@+0+ .50- 3 S22 50 04 n e

= Faa0+D+ = 50+ 5 {1—exp (<0 2)} 804D
[for ,+18:(641) is a polynomial in 6]
= Fan@+ D+ 5 50— 5 1nBo0+D)

= Fn+1 (6+1):
6—-1)... (9—-11,)-

for n180(6) = po
Now, F,(0) is a polynomial in 8. Therefore, if
F.(6) =0,
we have " Fr41(6) = constant.
But, when 6 = 0,

Fu® =50 { T+t 525 | .50 0 =o.
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Therefore, if ' F.0) =0,

we have F.,..0 =0.

Now Fy (6) = 556(0)+355 0)—485°0) S, 0)
=0—141-0
=0.

Therefore, by induction, F,.100 =0.

14. We now have to shew, if | 2| << 1, that
—(1—2f"log {(l—z) log (l—z)}
—z
2 al < . g+ g Sk(0) 2
= 2 (=2 1 2 (=FanSo " 0) 757 A +51(0) 04155 (0)
The function on the left-hand side can evidently be expanded in a series

of ascending powers of 2, if | 2| be sufficiently small, and the coefficient
of (—2)" is given by

2I?J(l—z)"-l log {(l—z) log (1—2) } d,

(—2)+! —

taken round a small circle including z = 0, on which the subject of in-
tegration is one-valued.

Put 1—z=¢; then, when z makes a small cireuit round the origin,
y will do the same, and the integral becomes

1 e e
- o [ taron (2 L

2

Now, when ¥ is small, y+log Y admlts the expansion 2 T

Differentiating, we have

n-1 — -1 S (0)
Ency -1 1+_—eJ 1+ + ( ) I—n!_'
Hence 14810 = ¢ ;
and therefore o =— S1(0),
and Cy = (—)"1 S (O) , when n > 1.

The integral is therefore equal to

- > 1 80)
_ijw—e)m{ S10)y+ 2( 1 i k}dy_
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e il n+‘ls(k)(9)

Now* '(——-)ﬁ—l' 2 :I/L

+terms which are finite when y vanishes.

Therefore the integral is equal to

80

81(0) nraBY O+ 2, () SO 222

We thus have the required equality.

15. We proceed now to shew that, if 6 be not real, the function
gslx; A4gs (%, ;0> g8,

the positive or negative sign being taken according as I(6) is < or >0,
is one-valuedt near z = 1, and has no singularity at this point.

In the investigation of § 7, we have seen that

90(e; 0T (—F(—logaft o~ = LGB (—ypt 2 ay,
where 1/L is an axis within 90° of the points 8, 641, ..., 6+, ..., and
where arg (—log z); lies between —(w—v): and (w++):,  being the
angle between L and the positive half of the real axis, and ranging in
value from — to .

In exactly the same way we may prove that

(s —a) - (- 1)

_ lr(l ,6) J J)ﬁ 1 e¥e dy’

-~ or 11—z le?

where 1/A is an axis within 90° of the points —0, —0+1, ..., —0+n, ...,
and where arg (—log 1/z), lies between —(r—¢)« and (w-¢)¢, ¢ being
the angle between A and the positive half of the real axis, and ranging in
value from — = to m, —log 1/z being real when z is real and positive.

In the former case L is a cross-cut for logz to make gs(z; 6) one-
valued ; in the latter case —A is a cross-cut for log z to make gg(z~!; —6)
one-valued.

"These cross-cuts are in general not the same, but within the region
common to the two expansions it is readily seen by constructing &

* Cambridge Phiissopnrcal Transactions, Vol. xix., p. 3718,
+ Its actual value depends, of course, on which branches of the original functions wc choose.
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figure that, if I (6) > 0,
arg (—log 1/z), = arg (—log )+ m,
and, if 7(0) <0, arg(—log 1/z)\ = arg (—log ), — e

When the final integrals are expressed by convergent series in powers of
(1—=z)/x, we may rotate the cross-cuts till they coincide along an
imaginary axis ; and then, since

(—log 2); '+ (—log 1/2)y " e¥Fm =0
we see that ga(@; O)+ge(xz™t; —06) e¥mP '

may be represented by a series convergent when |1—z| is small.
Therefore this function is uniform near x = 1, and has no singularity at
this point.

16. The preceding proposition indicates a close connection between
the functions gg(z; ) and gg(z~'; —6), the former of which can be ex-
pressed by a Taylor’s series when |z| << 1, and the latter by a Taylor’s
series when |z |> 1.

We may readily shew that, when |z|> 1,

_1_. — Fmf__ _1_ — < _l__
gﬂ(z ’ 6)6 6° _n§1 z* (0 —mn)B’

the — or + sign being taken according as I(6) > or <0, provided
(6—n) has values which correspond to a cross-cut along the negative
half of the real axis.

For, by definition, when |z|> 1,

1, -1
9s (;’ _6) - n§0 z" (n—0)8’
where |arg (n—0)| < w
and (O—n)f = (n—0)P et™",

according as I(6) > or < 0.

17. We may now shew that, gs(z; 6) admits, when |z| is very large,
the asymptotic expansion

< 1
~Z 70—

o \®
[log (—z)P-! & (=) (sin 71'6)
(—2) n=0 n! I'(B—n) [log (—n)]*’

s+
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provided 0 be not real, and log (—z) be defined with respect to a cross-cut
along the positive half of the real axts, being real when z is real and
negative. If the argument of log (—=z) 1s ¢ (| ¢ | < 7), so that

log (—z) = | log (—2)| e*,
the argument of [log (—2)F~! s ¢[R(B)—1]+log {|log(—2)|} I(B).
It |z]| <1,

© gzt 1 5 7 (—z)°ds )

gﬂ(z; 9) = n=0 (7l+9)3 = 2—77'—‘ c sin 71'8(8+9)p

where the contour C encloses the origin but not the points —1 or —6, and
embraces the positive half of the real axis.

Let C, be a straight contour parallel to the imaginary axis, cutting the
real axis between 0 and —1, with a loop, if necessary, to ensure that —6
lies to the left of this contour. Then, if |arg (—z)| < =,

J=1.

for the integral vanishes along the infinite contour which is the difference
of the contours C and C,. Hence the integral (A) taken along the contour
C, represents the continuation of the function gg(z ; 6) for all values of z
such that | arg (—z)| <, |z | having any value greater than, equal to,
or less than unity.

Suppose now that | z| > 1, and that C, is the contour of the figure.
Then, if |arg (—=z) | < 7, the integral along the contour C, will equal that
along the contour C,, and the integral along the straight parts of this con-
tour at infinity will vanish.

We shall therefore have, if |z| > 1 and |arg (—2) | <,

2 1

g (:cA; O=— 2% 07—+ éf SC (—2) V0 (—y)*

™
a=1 g™ (@—n)P sin 7 (y+6) dy.

In obtaining the final integral we have employed the transformation
s =—y—6. The values of (0—n)® correspond to a cross-cut (—6 to
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— o) parallel to the real axis. In the final integral =/sin x (y+6) has no
poles within or on the contour of integration. It is therefore represented
by the summable divergent series ‘

(’: 1 ™ n) n
néo m (Sin 79) y
on the contour, and, in fact, over the whole of the y-plane dissected by
lines passing from the zeros of sin 7 (y+40) away from the origin to
infinity.
Therefore, by a proposition proved in my original memoir,* this
integral may be represented by the asymptotic series

(B §

2r aw=0 n! \sin 70

(n)
)| erca —yrray+an,
C

where |Jy {log (—z)}*#*?| tends to zero as | log(—z) | tends to infinity;
and this series is equal to

_ N (_)n. - () 1
(—z)~° 150 2! (sin 76) T (B—n) [lOg (—a) P+ (1)
where [log (—2)]"~# = exp {(z—B) log [(—=)] },

where, when log (—z) is specified, arg {log(—=z)} lies between + =, and is
zero when log (—z) is real and positive.

We thus have the given expansion.

We notice that, when R (f) <1, the series (1) gives the asymptotic
expansion near |z]|= ® of gg(z;6). When R(6) > 1, let v be the
integer next greater than R(6). Then the asymptotic expansion of
gelx; 0) is

v—1 1

v __ 1t .
Z T 0= +the series (1).

18. From the previous theorem we see that, when |z| is very large
and 6 is not real, we have the asymptotic equality

. ,‘ i. — — __1_'_ Fm8
ga@; O+ -gs (z ; 0) —opF °

n s (n).
. [log(=2)P! $ (=) (sin 76)
(—z)  w=on!T(B—n)[log (—2)]*’

the — or 4 sign being taken as I(6) > or <O.

1)

* Philosophical Transactions of the Royal Society (A), Vol. 206, pp. 249-297, § 6.



1906.] FuNcrioNs DEFINED BY. CERTAIN TAYLOR’S SERIES. 808

Changing = into 1/z, we get the asymptotic expansion of g (1/z; ) at
the origin. The relation (1) holds when |log(—2)| is very large, that
is, whether |z| or 1/|z| be very large. It is easy to verify that the
preceding formula remains unchanged when we change z into 1/z and
6 into —6.

The series (1) becomes convergent when we multiply the general term
by 1/n!: it is therefore what I have elsewhere* proposed to call an
asymptotic series in log (—x) of the second order, similar to the well
known series for log I'(2+a) when |z is large.

19. When B is a positive integer and 0 is not real, the previous
westigation will hold.
But now the asymptotic series (1) is replaced by the finite series

N T (n)
[log (—x)]p—" A2 =) (sin 7r9) .
(—z) =o' T({B—n)[log (—a)]*’
w(—z)
sin ms(s+6)8
€ is not real and B is a positive integer, we have the absolute equality
. RUNAVE B e |
98(@; 9)+{g” (x ’ 9) (—0r ° )
n T )
[log( z)]p 1821 (_) (Sin 7!'6)
(-——z)o n=0n! I‘(B—'"') [100 (_x)]

for this series is the residue of at s = —6. Thus, when

20. We must now tnvestigate the asymptotic expansion of gg(z; 6)
when 0 is real.

In this case difficulties arise from the fact that the specification of
{s+6)~# when s is real and less than —0 is arbitrary. We have (§ 1)
adopted the convention that in this case we will take arg(s+6) = + =.
We must therefore take a cross-cut from —6 to — o inclined at a small
angle to the real axis and work with the contours of the modified figure
{p. 804).

We see that, if |arg(—z)| <= and |z|> 1, and if 6 be not zero
or a positive or negative integer,

1 1 S (—z) ¥ (—y)"*F

w= 1:1:"(0—91,)’3 T 2w Je

95(23 0) = m ./y

the contour C' being derived from the part of the contour C, which

* «A Memoir on Integral Functions,” Phil. Tvrans. Roy. Soc. (A), Vel, 199, pp. 411-500,
§ 32.
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encloses —60 by the transformation s =—(y+6), so that C' embraces
an axis from the origin which lies above the real axis and is inclined
at a small angle to it.

We obtain the same result as before for the asymptotic expansion
of this integral. And this is to be expected, since the terms of

0

z?l«

n=ziw (n+9)5’
for which » < —6, are, when |z| is large, of order less than that of
any term of the asymptotic expansion.

21. Consider next the case where 8 is a positive integer.
If we put 6 = p, we now obtain

> 1 1 y=p(—qyy~8 ()T
gole; 0) = u. 1a: (p—n)’B ZmE (—2)™= (= " smwydy’
the accent denoting that the term corresponding to n =p is to be
omitted from the summation.
On the contour C' we have the summable divergent expansion
TY =1+§ ( T )(n) ﬂ

sin Ty =1 \8in 7z/ ;o n !’

Therefore the integral gives rise to the asymptotic series

1 § (_7,_3;_>(n) (—yr-1 Lse_ylog(_z)(_y)n—ﬂ—ldy.

Z? n=0 \8In 7x/ -0 Nn! 2w

We therefore have the asymptotic expansion

S 1
9a(@;p) = = 2 S
+[log(—w)]" @ ( Tz )‘"’ (=)t
sin wz/ ;-0 7! L'(14+B—n)[log (—z)]*’
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22. Suppose, finally, that 6 = p, a positive integer, and that B ur

a positive integer.

The result just obtained becomes the actual equality

"’ 1
ge@ip) =— X o
_ Qog (=) A5} ( Tz )‘"’ (=r
zP 7=0 \gIn 7/ y=o 7! ' (14+B—n)[log (—z)]**
Suppose now that 6 = 1.
Then, if we put .
Pg(z) = n~Pz",

80 that Pg(x) is one of the series which Leau makes fundamental in his

researches, we have

gs(z; 0) = z~1Pg(x).
R S S D s (i
Also zlw"(l—n)’g e T—DF .z L x)‘

Now we know that, when |z| is small, we have the expansion

T + % ¥ Tn,.._l SQ" 1‘2"‘
sin 7z n=1 92
where S2" 121» + 2.!11, + 32u + e
. \™
Hence ( - ) =1 (when n = 0)
sin 7/ 20
=0 (when 7 1s odd)
221:1. 1_1
= (2m)! = Sen  (when 7 = 2m).

Hence, if B be even,

l) [log( z ]ﬂ _ v)\ﬂ‘ [log (_:Z,)]p—‘hu 92m—1__1 .
.Pﬁ(x)+PB (Z B' w1 (3_2,"1/)! 22,,"_2 Ag'_’m N
and, if B be odd,
_ 1 [100(—7;)]5 k(B D[log (—a) -2 22—t —1
Py@)— Py () =— Rl T s Lo 2 T S
SER. 2. vVOL. 4. No. 931. X
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These are two little known formul@® due to Spence, and quoted by
De Morgan.*

28. As has been suggested in § 11, it is evident that we may apply
the preceding methods to series of the type
. - % z"{log (n+6)}*
g (@) 'n§0 (n+0F
where % is a positive integer. We have merely to write 8+4-¢ for 8 and
expand the various functions of B in ascending powers of e. The analysis
will evidently be laborious.
When % is not restrieted to be an integer, but is any complex quantity
of finite modulus, the function may be expressed by the contour integral

1 [ [log(s+O] 7 (—a)ds
A7t Jc (s+6)? sin s ’

And this in turn, as in § 17, can, when |z|> 1 and |arg(—z)| < 7, be
expressed in the form

_ § [og@—mF _ 1 J [log (=) I r(=2)~*° ,
w=1 *(O—mn)? 27 )¢ sinw(y+6)(—y)P y

provided € be not real.

If Rlog(—z) > 0, the integral is convergent. Thus the function
lig(z) has no singularities outside a circle of radius unity except possibly
on the line (1, 4+ ). .An asymptotic expansion in the neigbourhood of
this singularity at infinity can be obtained.

We can also shew that * =1 and z = o are the only singularities
of the function. '

Part IL.—The Function fz(x; ).

24. We proceed now to obtain analogous theorems for the very general
function fg(z; 0). This function is defined when |z| <1 by the expansion

Q 2" x(n+06)
n=0 (n+0)*

* De Morgan, Differential and Integral Caleulus (1842), p. (39, Formule I. and II. In the

notation of De Morgan
on=1_1

-Zu-‘.’ i

28" = ne
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where outside a cirele of radius ! < i, where u is the least of the quantities
[n+6], n=0,1,2, ..., ©, x(x) admits the absolutely convergent ex-
pansion

ibas

8|

0

r

As before, we assume that B is not a positive integer, and we make
the further restriction that it shall not be zero or a negative integer.
Such limiting cases may be dealt with by more elementary methods, or by
applying the calculus of limits to the formule which arise.

25. We will first shew that, when |z| <1, fs(x; 6) can be written in
the form »
2, 0egpar(@; O).

We have  fal(z; 0) = 1-.2 z b, - bpiv )

oo T E e -

{ R
1 =0 ’ 11‘2:-:
Now, for values of » greater than an assignable quantity R,
|0, < I,

where !' = l+¢, and ¢ may be as small as we please.

2 bR+r = < l,R+T
S T
Hence 21 QP < r§l [(n+6)P+E|[n4-6]"
IR w
< Tr o S
l71£+1

>0

< [F o =0y
R
Therefore falz; 6) = 1_.330 brggsr(@; O)+Jp,

where || < s 2] 1
I neo |(n+6)ﬂ+ltl (lu_l,)-

Thus |Jz| tends to zero as R tends to infinity if |z| < 1.
We thus have the theorem stated.

26. We will now shew that fg(z; 0) has no singularities except possibly
when x les on the positive part of the real axis between 1—e (e > 0) and
+ .

Suppose that Fg(z; 0) denotes the integral function

7} SC7LX(1L+9)
n=0 n!(n-4+0)F"
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Then I have shewn, in my fundamental memoir,* that, when R (z) > 0,

e&J (x)
e

Fg(z; 0 =

where |J ()| tends to a definite finite limit as |z| tends to infinity.

And, when R(z) <0, Fslz; 0) = (—x)'~°J,(x), where ! is the radius of
convergence of x(y), and where |J,(?)| is at most finite when |z| tends to
infinity.

As in § 3, we may therefore show that

N

fe@; 0) = j e > Fy(zz; 0) de.

0

The integral may be taken along any axis for which R(2) >0 and
R[(1—2)z] > 0. We thus obtain continuations of fg(z; 6) which are finite
and continuous for all values of 2 such that |arg (1—2) | < =. '

We thus have the given theorem, which is true for all values of 8 of
tinite modulus.

27. We will now show that, provided B be not an integer, and if
B(©) >0, and if 0 les outside the circle of convergence of x(x), and

provided |x7—1‘ <1,
_ _ 2, loga T _ § @—1)
fﬁ(@', 0)_( IOg (E)l 9 2} 9F(1—,8) rgo b FL(,B:F—)@ = n—o .'l)n+1 \b‘".u (,8, 9)
JA-0) e~ v
@) b.y"
$ =
W= % Ty
The contour of the integml embraces the axis to 1/6, which is the cross-cut
which makes (—log @), one-valued.

If |z| < 1, we have, by § 4,
fﬁ(x; 0) = 'I'EO ba‘Qﬂ«&r(J:; (J)

= 3 LABnb (e 7 gy,

1—ze™?

wheret Va1 (B, 0) =

and

provided R (6) > 0, and provided the contour of the integral excludes the

* Loc. cit., § 1, Part V., §§ 31 and 36.
t+ The reader will, of course, not confuse thi> function with the logarithmic derivates of the
multiple gamma function considered in §§ 11 et seg.
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poles y =logz+2nm (n =0, 1, 2, ..., ). Hence, if |I {logz}| < =,

falz; 6) — E 0, T (1—B—7)(—log x)t+—1p-¢

= zr(l—,B—;-)b,.j _gir €Y
_20————271_ (=) l—xe ——=dy, (1)

where now the contour of the integral includes log z, but not log 4 2nw:
=12 ..., o).

In this equality (—log )#*"~! has its principal value with respect to a
cross-cut along the axis of integration. And the first series converges if
| —log z| is finite. The second series is therefore convergent if | —log z|
be finite and |z| < 1.

28. We will next shew that, if the contour of integration embraces the
axis to 1/6, and if R(6) > 0 and |0]|> [, the integral

tI‘(l—,B)E g 0L, T(A—=B—v)(—y)pti-t g

o ot Ta—8) — 2)

tends to a definite finite limit as R tends to infinity.

Evidently go b"(—!/]?".({(_e—)@—-l)

e (y),
an integral function of y.
Also, if k be an integer such that B(3+%) > 0, we have
|B+k+7|>r

‘T B by + 1 s briry t*
o L@+ " [BB+D)...B+k)|r=0 »r
If, now, & be sufficiently large, |b,.x| <I'"**, where ! = I+¢, and «
is a positive quantity as small as we please.
Therefore

Hence |® y)|<2

3 R i y 13 Ty
|® ()| < a polynomial in |y |+ 113(/3+1)I....I(ﬂ+k)|el vl,

Therefore the integral (2) tends to a definite finite limit under the con-
ditions assigned. Therefore under these conditions we obtain from (1)

fo(@; 0)—720 b, T'(1—B—7)(—log w)flzr 1,0

=‘1‘;;'8)5( Y E () 1 _ydy ®)
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Provided log z is inside and log .+ 2nw (n5£0) is outside the contour,
and provided (—log x)f,;l has its principal value with respect to the axis of
integration, the integral remains finite and continuous when |z| > 1, pro-
vided | —log z|is finite. Thus,under these limitations coupled with B (6) >0
and |6| > ' > I, we obtain a continuation of fs(z;6) when |z|> 1.

It is obvious that, by taking R (9) sufficiently large, we may find an
infinite number of lines in the positive half of the y-plane which may
serve as axes of integration and cross-cuts for (—log £)*~%. For instance,
if R(0) > U, the positive half of the real axis will so serve. We are not
limited to the particular cross-cut chosen if R (6) be very large.

29. Consider now the integral in the formula (3). It will be equal to

N-1 n
n=0 (xx'w]i) Vrue1(8;5 6) +Jw
o lF(l—ﬁ) eV
where Va1 (8;6) = TJIIO( yF- lq’(./)mdy
. = tI‘(l—B)J (=i B@e
a'nd J'A - 271‘ 1/0 l_xe—y [1: (1_6 J)] dJ

By deforming the contour embracing 1/6, so that it consists near the

origin of the contour figured in § 8 and further away embraces a parallel

to the axis of 1/6, we can ensure that upon it the minimum value of

1—e7?|is u, where u = 1—¢, and € is > 0, but as small as we please.
Then evidently |Jy | tends to zero as N tends to infinity, if

|@—1/z|<1l—e

The series E @—Lr Yrns1(8; 6)

’Il+l

is therefore absolutely convergent under the same limitation.
We therefore have, if |(z—1)/z| <1,
™ 3 bellogaz)y 5 @—=1)"
SiI] 7I'B r=0 F<B+7) n=0 ”'+l
If (—logz)?~!,qua function of log z, have a cross-cut along the axis to1/6,
we have proved the formula under the limitation B(6) >0 and || > ' > 1.
And, if R(0) be sufficiently large, we may take the cross-cut for
(—log x)*~! to be in an infinite number of positions in the positive hali of
the y plane.

fale; 6)—(—log x)F~1z~° VY1 (B; 0).

30. From the previous theorem we deduce at once that fz(z; 6) has,
when R(6) is sufficiently large, a single singularity in the finite part of
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the plane. This singularity occurs at x =1, and 1s specifiable.* It
s a multiform point, and near it fz(x; ) behaves like

T - (loga:*
sin-rrﬁ( log z)*~*2™* 2:o IN(CENSN

To establish these results the reader has merely to recall § 26, and to
notice that the condition |[(z—1)/z| <1 is equivalent to R (z) > 3.

81. We give some further theorems before we remove from the previous
theorem the condition that E (6) must be positive and sufficiently large.

We will first shew that, if E(0) > 0, and if 0 have any value of finite
modulus such that the points O0+m (m = 0,1, 2, ..., ®) lie outside the
circle of convergence of x(x), and if n be finite,

V(B0 = T b:bunn (B4, 6).

If |6]>>1and R(6)>0,

ra-—
’ #’n+1(18;9) = ‘_(2____718)5” (— y)ﬁ 1@(?/) (1 —_/)n+1
R 1 F(l —» b, ’__ -8

—9

2 8-1 m bry e—y@
+_—zsimﬁj( W T@n A=y W

R-1 -
= ‘r§0 by §n+1 (JB+T’ 9) +JH (S&y)-

_ » =k +2)
Now (=)*6an(s,0) = = (—)"%,,—(6) $(s—Fk, 0);

and, if B be not an integer and 6 be not equal to 0, —1, —2, ..., each of

the multiple ¢ functions is finite.
R-1 -
Hence the series 20 b, Cur1(B+7, 6) tends to a definite finite limit as

R tends to infinity, provided series of the type
>§0 b€ B+r—k 0 (=0,1,.., 10

are convergent. But when R(B8+4r—&) is very large and positive

|EB+r—Fk, )| <u "L
where L is finite and independent of 7, and u is defined in § 24.

* See the note to § 8.
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The series are therefore convergent if >0 >1 where u is the
minimum value of |0+m| (m =0, 1, 2, ..., ®).

This will appear again, and we prove the theorem by considering the
integral Jz.

Divide up the contour of integration into two parts:—(1) a clrcle of
radius less than unity round the origin ; (2) the double description of the
axis of the contour outside this circle.

On (1) the subject of integration is finite, and can be made as small as
we please by sufficiently increasing E.

On (2), if we choose k so that B(84+k%) > 0, we have, if »> £,

ITB4+n|>K@r—h)!
where K is finite, non-zero, and independent of 7.

o br?/r (l' Iy DR iyl
D vl
2 TEE) “ER—m°

Hence the modulus of the integral along this part of the contour tends to

zero as B tends to infinity, provided |6| > ' and R(6) > 0.
We thus have the given theorem.

Hence

82. We will next shew that, of R(@) > ' > and l%ll <1,

f5(®; =2~ 2, 8, T(1—B=1)(—log ap+

— 34,3 620

r=0 n=0 22"+1

§n+1 (B-" T, 0)

" By the result of § 28, the function on the left-hand side of this equality,
which for brevity we will denote by P(z), is, if E(6) > V' > {, equal to

IF(l—ﬁ)j _
o —y)f e (y)

dy

1—ze™ ¥

where the contour of integration embraces the positive half of the real
- axis and includes log .
This integral may be written

N-1 —vé N
it SV R Sl B)j‘ PG T y{m(f_el_,,)} 2

n=0

@« N-1 —_
= 2,6 3 6@+ 04+ 7x (o). )

Evidently |Jx]| tends to zero as N tends to infinity if

x;ll.( 1.
z
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Again, as in § 8, with the contour there employed,

I 1) =11 [ -1 k(l4e)
[£0ir B+7, 8] < L—T—ljl(—y)’“ Wle¥|dy < ’7,,—(1-% (2)
where k is finite and independent of » and 2, and ¢ > 0.

< Kateo
(RO

[ 1 f—
Hence Eo i ,M) Curr B+, 6)1
where K is finite, if |(1—x)/z| < 1.
Hence, if B(0) > I'(1+¢), the first series in (1) tends to a definite finite
limit as N tends to infinity.
‘We thus obtain the given theorem.

83. We may now shew that the theorem of § 80 is valid for all values
of 0 provided 64+m (m=0,1, 2, ..., ) lies outside the circle of con-
vergence of x(x).

It R(6) > ¥, where I’ > [, and |(z—1)/z| < 1, we have
x(0—1)

fﬁm6—4)=(6 DB+@ﬁ@;®
= zl-¢ _ B+r=1 X(e 1)
= Z 0. T(1—B—1)(—log z)** +(0 1)5
+'r§ﬂ brn— "+1 §u+1(18+) 6)
Hence

Jow; 0—1—a1 ? b.I'(1—B—7r) (—log z)p+!

X———(@“’ 1)12+ s b, L S {—&B+r, 0—D+&e B+, 0—1} & ,,j)

=004 3 4 [~G@+n0-

n — 1)+l
+ % GGt 0—n {21

Z

= >((9(?—_]_.)]2+ ',-5::0 b,- \_(6:1153+'+ 2 (17:'+11) §n+l (ﬁ+7', 6_1)]*

b, , x(6—1)
Now T)_,O a1 is convergent and equal to O=1F if 6—1 lies

outside the circle of convergence of x ().

% The analysis may be made formally rigorous by coupling § 32 (2) with the results of § 9.
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L]

Also, if Eo by (u,+v,) and Eo b,u, are absolutely convergent under any

assigned limitations, then will ,Z,brv. be convergent under the same

limitations. For

S

ERlbr.v,] = TZ‘,R[b,.(u,+v,—-u,)| < ,E/: 100 tv) |+ | brar|},

and the latter series can be made as small as we please by sufficiently
increasing R.

Hence, if (6—1) lies outside the circle of convergence of x(z), and if
B0 > ! where I’ > [, and |(1—=z)/z| < 1, the series

SRt L N S ST

r=0 e 0 wn+l

is absolutely convergent and equal to
fo@; 6—1)—2'~? X b.T'(1—B—7)(—log z)P*"~L.

Continue this process indefinitely, and we see that the theorem of § 30
is valid for all values of 6 provided 8+4m (m = 0,1, 2, ..., ©) lies outside
the circle of convergence of x(z). '

84. Finally, let us consider the result of applying the process of § 17
to the function fa(z; 6).

Assume that the points 6 £ n, n =0, 1, 2, ..., © all lie outside the
circle of convergence of x(z).

If the contour C of § 17 do not enclose any part of the circle of radius
l and centre —6, we evidently have

m(—2) x(516) ;¢
Jolz; 0) = pre jg sin ws(s+40)

when |z | < 1.

If, now, |arg (—z)| <, the integral will vanish when taken round an
infinite contour for which R (s) is greater than a finite negative quantity.

Hence, if the contour C; of § 17 have, if necessary, a loop to ensure
that the circle round —@ lies to the left of the contour, we have

o= L[ w2 x6+0)
, Jola; 6) = 2—7;jcl sin s (s+0)# ds.

The latter integral is valid for all values of |z | provided | arg(—z)| < =;
and therefore represents the continuation of fg(z; 6) over the whole plane,
except this part near the positive half of the real axis. We thus again
arrive at the theorem of § 26.
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If now the contour C, of § 17 include the circle of radius I round —86,
we see that, when |arg(—z)| < 7 and |z|> 1, fz(z; 6) is equal to the
integral along the contour C,. The integral along the straight parts of
the latter contour tends to zero as these move away to infinity.

Under the assigned limitations we therefore have

oy — 2 x(=nt+6) 1 5 T (—=2) """ x (=)
Sowi O == % esmr G Y D

n=1 g (0—n)®  2m
The contour C’ embraces the real axis and encloses within its bulb the
circle of convergence of x(—).

85. The equality is true when B is an integer. In this case C' may
be replaced by a contour just outside the circle of convergence of x (—).

In either case we see that the final integral in the equality (1) is equal
to (—z)"~°J (z), where, if I' >, |J(z)| tends to zero as |z| tends to
infinity. We thus get a superior limit to the asymptotic value of
fa(@; 6) when | z| is very large and @ is or is not an integer.

The problem of obtaining a complete asymptotic expansion for fz(z; 0)
when |z| is large evidently depends upon the consideration of the singu-
larities of x (y) within its circle of convergence. The reader will compare
the similar property of Fg(z; 6) when E (z) < 0, which was established in
my original memoir.

[Note added May, 1906.—

The first author to consider simple cases of the series which we
investigate in the present memoir was William Spence, whose Essay on
the Theory of the Various Orders of Logarithmic Transcendents was pub-

lished in 1809. Spence considered series of the type EO n~"z", where r

is an integer, and by a process of induction obtained the continuation of
such series when |z|> 1.* This essay, so rare, that no copy is to be
found in the library of the University of Cambridge, seems to have been
almost entirely forgotten. Such series were also considered by Lambert,
Legendre, Abel, and Kummer, among others.

Abel considered such series in two papers. The first paper,t *“ Somma-
tion de la Série :Eo ¢z, ..., ¢ (m) étant une fonection algébrique

#* Loc. cit., p. 45.
t Fuvres Completes, 1881, T. 11., pp. 14-18.
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rationnelle de n,” has several points of interest. Abel considers explicitly
(p- 16) the function gg(z; 6) where B is a positive integer; and obtains
(p. 18) a rudimentary form of the formula*

G; 0 =T O)(—p4e 3 10 08

In the second papert *“ Note sur la fonction - (z) = 2 «"[n%” he attains

anew several of Spence’s results. Both papers were first published
posthumously by Holmboe in 1889, and are evidently mere sketches.

But the modern theory of such series is largely due to Leau,} whose
work, closely associated with the investigations of Hadamard,§ Borel,ll
and Fabry,€ led to the investigation of series of the type Zg(1/m)z™ whare
g (t) is holomorphic at the origin.

Then came Le Roy,** to whom appear to be due the theorems (1) and
(3) of § 2.

My own developments were largely completed before I saw Hardy’stt
paper. Subsequently my attention has been called to Lindeldf’s}! mono-
graph, and to another paper by Hardy.§§ In the former will be found series
such as occur in theorem (2) of § 2, and in the latter an equation similar
to (A) of § 7. Nothing in the second part of the present paper appears to
have been anticipated. But ¢o rapid is the development of the subject
that 1t is difficult to assign priority to respective authors, and almost
impossible to state that any investigation is new in all its details.]

* See the author’s paper, Quarterly Journal of Mathematics, Vol. xxxvm., p. 294.
t Loc. cit., pp. 189-193.
1 Liouville, Sér. 5, T. v. (1899).
§ Ibid., Sér. 4, T. vim. (1892).
|| Aeta Mathematica, T. xxx. (1897); Liowville, Sér. 5, T. 11. (1896).
9 Annales Scientifiques de I Ecole Norinale Supérieure, Sér. 3, T. xm. (1896) ; Liouville, Sér. 5,
T. 1v. (1898) ; Acta Mathematica, T. xxm. (1899).
** Annales de la Faculté des Sciences de Toulouse, Sir. 2, 'T'. 1. (1900).
+ Proc. London Math. Soc., Ser. 2, Vol. 2, pp. 401-431.
tt Le Caleul des Résidus (Paris : Gauthier-Villars, 1905).
§¢ Proc. London Math. Soc., Ser. 2, Vol. 3, pp. 381-389.



