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ON CERTAIN FUNCTIONS DEFINED BY TAYLOR'S SERIES OF
FINITE RADIUS OF CONVERGENCE

By E. W. BARNES.

[Received and read March 8th, 1906.]

1. The function gp (x; 6) is defined when | x | < 1 by the Taylor's series

«?o fa+ffl'
When /3 is a positive integer the function can be derived from the case

when /3 = 1 by differentiation with regard to 6. The function

has been separately studied by the author.*
We shall therefore assume in the present investigation that (3 is not

equal to zero or a positive integer. The subsequent theory is a develop-
ment of the investigation given in the author's memoir " On the Asym-
pbotic Expansion of Integral Functions denned by Taylor's Series."t
Some of the following results were originally communicated in that paper.
On account of its length they were merely stated 1 in brief without proofs;
the complete investigation, with some extensions, is now given. I refer to
the introduction to that paper for an account of the general history and
literature of the subject.

We shall assume that G is not zero or a negative integer; in such cases
the function gp (x; Q) evidently does not exist.

We shall also assume that, in the definition of g^(x; 6),

wherein 0 < 11 {log (n+6)} | < TT.

This definition completely specifies the function when | x | < 1 and 6 is not
real and negative. In the latter case we may conveniently take

I{\og(n+d)\ = Tr

when {n-\-6) is negative. We thus arbitrarily specify at most only a finite
number of terms of the series.

* Quarterly Journal of Mathematics, Vol. XXXVII., pp. 289-313.
I Philosophical Ti-ansactions of the Royal Society (A), Vol. 206, pp. 249-297
i Loc. cit., Parts TV. and vi,
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We: use throughout I ]/(»)[ to denote the imaginary part of /(x),
B\f(x)\ denoting its real part. tThus the condition

O<|If log(ra+0)} |<Tr

is equivalent to — ir < — I {log {n+6) \ < ir.

2. I propose to establish the following propositions :—-

(1) The function gp (x; 6) has a single singularity in the finite part
of the plane. The singularity occurs at x = 1, and is not an essential
singularity.

(2) The function gp(x; 6)—gp(x;l)/xe~1 has no singularities in the
finite part of the plane, and, if | log x | < 2-7T, it admits the expansion

(3) Near x = 1, gp(x; 6) is many-valued.

(4) The function gp(x; 6)—F(l— /3)(—\ogx)p~lx~9 is one-valued near
x = 1, and in the vicinity of this point admits the convergent expansion

where £w+i(/3, B) denotes the (M-f-l)-ple Riemann £ function of equal
parameters unity.

(5) If 6 be not real, the function

the negative or positive sign being taken as 1(6) > or < 0, is one-valued
near x = 1, and has no singularity at this point.

(6) If 9 be not real and a positive or negative integer (zero included),
gp(x;Q) admits, when \x\ is very large, the asymptotic expansion

i (1. v [logts)]*-1 j (~}"(1 e v c | j
The modification of the previous theorem, when 6 is zero or a negative

integer, will be indicated.
» x'" M 1

Spence's formulae connecting the functions 2 —- and 2 ——- when
^ & m=l ml w=l X 111

n is an integer will be deduced.
It will be shown that the proposition (4) leads to the result previously

obtained when (3 = 1.
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In Part II. of the paper similar results are established for the more
general function fp(x; 6), defined, when Jrc| < 1, by the series

» xn
x(n+0)

«=o (71+Of '

when, outside a circle outside which the points n-f-0 (n = 0, 1, ..., oo) all
00

lie, xO*O admits the convergent expansion 2 br/x
r.

r=0

PART I.—The Function gp(x; 6).

8. To shew that gp{x;6) has no singularities except possibly on the
real axis between x = 1 and x= + °°, the limits included.

We have

V X — p-z V

Jo p Jo

where Gp(xz;6) =

and the integration is along the real axis.

Now, when N is large
[xz)n

n?N {n-\-0fn\
\xz\

'»(N-k)\ '

where >7V tends to zero as N tends to infinity, if k > B(—/3). Hence

o n=N

\x\
and, if . . < 1, this expression tends to zero as N tends to infinity.

1—\x\
Therefore, if \x\ be sufficiently small,

9fi(x;e)=\ e-zG^xz;6)dz.
Jo

Now, when \xz\ is large, both Mr. Hardy and I have shown that

where |P(x^)| and |$(#,?)I tend to definite finite limits as \xz\ tends to
infinity.
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r
Therefore the integral I e~"Gp(xz; 6)dz

Jo
ie finite for all values of x such that B(x) < 1. It is evidently an analytic
function of x for all such values, and therefore it represents the con-
tinuation of gp (x; 6) for all such values of x.

r
Again, if {B) denote an integral along an axis in the positive half of

Jo

r
the 0-plane, 1 (A) denoting the original integral along the positive half

Jo
of the real axis, {"(A) — P ( m

Jo Jo
•when B (x) < 1; for they differ by an integral along a contour at infinity

c
which vanishes. Therefore (B) represents the continuation of gfi {x; 9)

Jo
for all values of x for which it is finite and continuous.

By taking suitable directions for the £-integral, we see that gp(x; 6) can
be continued for all values of x such that | arg (1—x)\ < TT, and that it has no
singularities in this region. We therefore have the given theorem. The
line (1, oo) serves as a cross-cut to render the function gp(x; 6) one-valued.

4. We will now shew that the function
,9)3

has no singularities in the finite part of the plane except x = 0, and that,
near x = 1, it admits the expansion

Let 1/L be an axis from the origin within 90° of the axis to the point a,
and let L be the image of 1/L in the real axis. Then, if the integral be
taken round a Gamma function contour embracing the axis L,

where {—yY~x has a cross-cut along the axis L, and log (—y) is real when
y is real and negative, and where ap has a cross-cut along —1/L (i.e., the
negative direction of the axis 1/L), and is real when a is real and positive.
We assume that a is not real and negative.

Consider the integral
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where the contour excludes the poles log a;'+ 2mri of the subject of integ-
ration. If 6 be not real and negative, we can determine L so that it is
within 90° of the axes to the points d+n, n = 0, .1, 2, ..., oo . We have .

I f -v-1

{-yf~le~y9 2 xne~n"dy
JL n=0

N-l xn

and therefore 1 = 2 -.—1-7575+^, let us say.
»=-o (n-\-u)p

If | z | < 1, the series tends to a definite finite limit as N tends to
infinity.

Also, if \x\< 1, we shall have B{\oq,x) < 0.
If log a; lies outside the contour and |1—x\ be small, we may near

y = 0 deform the contour so that the minimum value of |1—xe~y\ is
finite and occurs when y — log £+17, where rj > 0, and so that for
other values of y on the contour we have R(y — log x) > y.

Then we shall have
I K

where \K\ tends to a finite limit as N tends to infinity and \L \ tends to
zero.

Therefore, if logic be outside the contour and 11—u?| be small, \IN\
tends to zero as N tends to infinity, provided \x\ < 1.

Hence, when these conditions hold,

Hence

For it is evident that any axis L as previously chosen is in the positive
half of the y plane, and is therefore a possible axis when 0 = 1 .

But in the latter integral the points y •=• log x + Zmri are no longer
singularities of the subject of integration : therefore we may drop the
condition that such points shall lie outside the contour of integration.
We shall assume that xe~l is completely specified, as will be the case
if we assign a cross-cut along the negative half of the real axis.

The integral (A) is evidently finite and continuous when x takes any
range of values limited by this cross-cut. It represents, therefore, the
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continuation of g^(x; 6)—gp(x; l)/xe~l for all values of x so limited.
Therefore this function has no singularities in the finite part of the
plane except the singularity at the origin due to x9~l.

5. Put y = \ogx-\-t, and suppose that | logz| is small. The integral
(A) may be written

Expand the original contour so that it includes P, a parallel to the
axis L from the point log x, and so that it also includes a circle of
radius | log x | whose centre is y = log x. Change the specification of
(—y)*~l so that it is unaltered on the contour, but has a cross-cut along
the parallel inside the contour, so that

{ - i og« -^ = (-«.-• 1 g-i>-fl-«> ns&*y
71=0 n\ \ t /

when \t\ > |logx|, and is the continuation of the function represented
by the series when |£| < |logaj|. Now close up the contour till it
embraces P, as the original contour embraced L. The integral in (A)
will be unaltered in value by these operations.

Hence

9,(x; d)-9p(x; I)/*" = - i ( - ^ | = ^ ^{-iogx-y)^ ^ = ^ dy.

(B)

If now the bulb of the contour be a circle of radius > | log x \ and centre
y = 0, and if the remainder of the contour be the double description of
that part of the axis L outside this circle, we have on the contour

where \Bn\ tends to zero as N tends to infinity. Thus the integral (B) is
equal to

x" «=o n\
,ro-fl r (_y__, e ^

27T J L 1—6

—JN (say)
1 £

X n=0 n\

SER. 2. VOI,. 4 . NO. 930 .
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where £(s, 6) denotes the simple Biemann £ function of parameter
unity.

6. Now, if r be so chosen that R(6-\-r) is positive,

r - l

fQ8-«, 6) _ J

The contour of the integral embraces the axis L and excludes the
points 2?j7r< (n =fc 0). Hence on the contour we may take the minimum
value of | a: | to be k, where k -< 2-n-.

Hence, when n is large and 9 not real and a negative integer,

n\
v n

— A —=——

where K is finite when n is very large.
The series N fl ,n

n=0 n\

therefore tends to a finite limit as n tends to infinity, provided

| log x | < k < 2TT.

Finally, therefore, if log x is defined by a cross-cut along the negative
half of the real axis, if 6 be not real and negative, and if |logx| < 2TT,

. x" >i=c

By means of the relation

; 6-1) = ^ - ^ p + ^ ( 3 ? ; 6)

we may enunciate the previous theorem with the narrower restriction
that 6 shall not be zero or a negative integer. Compare the investigation
in §9.

7. We proceed now to shew that gp(x; 6) has a single singularity in
the finite part of the plane, that this singularity occurs at x = l, and
that at this point the function branches infinitely often._ ,

We have seen in § 4 that, provided /3 be not a positive integer, |rcf < 1,
and the contour excludes the points Iogx + 2?i7rt (n = 0 ,1 , ..., oo),
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•Suppose now that the contour includes log re, but excludes the points

log x ± 2mn (>i =£ 0),
so that, if x — re1*,

I (0 + 27r)/log r—arg L \ > | ^/log r—arg L |;

then the integral is equal to

Now suppose that | J C | > 1 , and that (—logx)*3"1 is made one-valued
by a cross-cut along the axis of integration, log(—logx) being real when
log x is real and negative. The integral remains finite and continuous.
Hence the equality

' * <r^~^ [ ''" (A)
continues to hold good, even for values of x which are real and greater
than unity, provided we regard gp(x; 6) as representing the continuation
of the function defined by the original Taylor's series where | x | < l .
Hence the function gp(x;6) has no singularities on the positive part of
the real axis between x = 1 and x = GO . It has, therefore (§ 8), a
single singularity in the finite part of the plane, viz., at x = 1. Near
this point the function is many-valued.

8. We proceed now to show that, near x = 1, the function

is one-valued and admits the expansion

»i=0 X>1+

valid when - ^ < 1. We thus see that x = 1 is a singularity of
x

specifiable branching of gp(x; 6).
From the equality (A) of the previous paragraph we obtain

„_, e* (x-ir d

(—//V3-1 -i dy.

"The first series may be written
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where £n+i(@, 6) is the (?i+l)-ple Riemann £ function of equal parameters
unity defined by the integral

We have assumed that 6 is not real and negative. -
Suppose now that B(6)>0; then we may replace the contour L by

a contour C, embracing the positive half of the real axis, which now serves
as a cross-cut to make the function (—loga:^"1 one-valued.

Deform this contour till it
consists of two lines above and
below the real axis and distant
7r from it, and a line I parallel
to the imaginary axis, cutting
the real axis in a point whose
distance from the origin is > log 2 on the negative side of the origin.

Since I [log x\ lies between +7n, the point log x can always be
taken to lie within the contour.

The miniinum value of |1—e~y\ on the contour will be unity. For,
if y = (cos 0-}-* sin <f>)r, we have on the two infinite lines r sin 0 = ± TT,
and therefore cos (;• sin <p) = — 1. Hence

| l - e - ' l = V[ l -2e- r c o s * cos (r sin 0)+e-
2'"cos*] = i+<rrcos* > 1;

and on the line I e- r C 0 3*>2,

and therefore \l—e~y\> V[(2—D2] > 1.

Hence, when n is large

\ K-y ) " - 1 ! \e~y9\ \dy\< ^

where /x !> 1 and K is finite and independent of n if /3 be not a positive
integer and R($) > 0.

N-l lx Yjn —

Hence the series 2 — ^ r - ^n+i(/3, 6)
0

71 = 0

tends to a definite finite limit as N tends to infinity if | (x—l)/x| < 1.
This can be otherwise seen since the integral

)P-i e | x i |
J) 1-xe-y \x(l-e-y)] J2TT )C{ J) 1-xe-y \x(l-

will tend to zero as N tends to infinity if | (x—l)/x\ < 1.
Therefore, \iR{9) > 0 and | {x — l)jx \ > 1, and if the principal value of

{—\ogxY~x [which is such that log (—log re) is real when logic is real and
negative and has a cross-cut along the positive half of the real axis,
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|I(loga:)| being less than ir, since \(x—l)/a?| < 1] be taken,

71 — U

Thus the nature of the singularity of gp(x; 6) at x = 1 is given by

This singularity is not essential*, and is not even an infinity unless
R(ft) < 1, or ft is a positive integer, or we wind infinitely often round
the point. When ft = 0, gp(x; 6) = (1—x)'1, and the nature of its
singularity near x = 1 is given by — ar*/log x. This result, though
somewhat paradoxical at first sight, is evidently true.

9. We will now remove the limitation B {6) > 0 introduced into the
proof of the preceding proposition, and show that the theorem is true if 6
be not zero or a negative integer.

We evidently have

9li(x; 6-1) = j f t ^_f^_^ = (6-l)-p+xg^x; 6).

Hence, by the preceding theorem, if B (6) > 0,

g,to; 6>- l ) - r (1- /3) ( - logz)*- 1 *-^

For brevity put

Un+l = In+lift, 6—1), Vn+1 = £n+l(ft, 6),

, X - land z = .
x

I have elsewhere shewn! that

Vn+1 = Un+\ — Un.

[Let SN= \vn+lz
n, S'N= 2n

* It must, of course, be counted as an essential singularity if we say that log x has an
essential singularity at x = 0. Essential singularity is denned in such a negative manner that
it will probably be ultimately convenient to class such points as the one in question under another
title.

f " The Theory of the Multiple Gamma Function," Transactions of the Cambridge Philosophical
Society, Vol. s ix . , pp. 374-425, § 26.
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Then S*= 2 (2i)l+1-un)z
n = -uo+ 2 un+l(z

n-zn+1)+uN+lz
N+1

n0 T V On=0

But uN+i = vN+i+iiN = ... =
iV+l

Therefore | uN+l | < 2 | «r I + | «o I •

We have seen that, when r is large and B (0) > 0,

\vr | < Z/M
r+1,

where ju ^ 1.* Hence, when iV is large,

| uN+11 < K'N,
where if' is finite, if /3 be not an integer and E (6) > 0.

Hence, if | z \ < 1, | uN+izN+1 \ tends to zero as N tends to infinity.
But SN tends to a definite finite limit as N tends to infinity. Therefore
the same is true of S'y. Hence

And the latter series is convergent.
Now uQ = {6—l)~p. Therefore, if B(6)>— 1, and 6 be not zero,

the theorem of the preceding paragraph is valid. Proceeding by successive
stages, we shew that it is valid for all values of 9, provided 0 be not zero
or a negative integer.

10. If we compare the results of the preceding paragraphs with the
expansion obtained in § 4, we see that when x is in the immediate
vicinity of the point 1 we have the equality of the two expansions

and i
71 — 0

for each is convergent when | x — 1 | is small and equal to

gp{x; 6)-xl-Bgp{x; 1).

* The previous argument can be used to show that, when i£(0) > 0 and & is not an integer,
[ vr J tends to zero f.s r tends to infinity.
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The Case of ft = 1.

11. I have previously* shewn that, when /3 = 1,

x6g(x;0)+\og(l-x)

provided | (l—x)/x | < 1.

This result, at first sight, seems very different from that previously
obtained for general values of /3. It is now proposed to shew that as /3
tends to unity the result of § 8 leads to that just quoted.

It is necessary to introduce certain properties of (>i+l)-ple Eiemann
£ functions of equal parameters: these are taken from an unpublished
chapter of a forthcoming book by the author on Gamma Functions and
Allied Transcendents. The reader will, however, find little difficulty in
deducing them from the author's memoirs dealing with the general
multiple Eiemann £ function. +

If we put /3 = 1—e in the result of the preceding paragraph, we
obtain

g^(x; B)-T(e)(-\ogx)-<x~e = J o
 {^f g»+i(l-e, B). (A)

Now

when n+iSi (6) denotes the first (n-f-l)-ple Bernoullian function of 6 of
equal parameters unity, and •yjr'n+\(6) denotes

Aiog{rn+1(0)[,

rn+i(#) denoting the (?t+l)-ple gamma function of equal parameters
unity.

I have elsewhere shewn that|

aV),*_(0'-l)-..(e-n)
n + 1 b x (tf) - —^ .

Hence, if we expand the result (A) in ascending powers of e, as is

* Quarterly Journal of Mathematics, Vol. xxxvn., p. 308.

f Loc, cit., § 9.

:£ Transactions of the Cambridge Philosophical Society, Vol. xix., p. 431.
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evidently legitimate if e be very small, we get, on equating coefficients
o f 1^e' » fr -1V» -m

"w+ioi \V)tn=o a; +

and, on equating the terms independent of e,

g(x,d)-\-x~e\og(—\ogx)—\}s(X)x~e=:— 2f
n—o

The result of equating higher powers of e is to give us the nature of the
behaviour of functions

near x = 1.

12. The first result is equivalent to

, -9 — ""e _ 5
n=0

and is evidently true.
The second result may be written

g(x; e 9

We have then to prove that the right-hand side of this equality is equal to

.-• / / f l u y a - x ) n ( 0 - D : . ( e - n ) ( 1 , 1 , , 1
-x

Put now (x—l)jx = s ; then we have to shew, when | z \ < 1, that

Now (-r£;+1(0) =

where &(0) = ^^(0) and ^ (d)

Therefore

>/' fffl-xf f f f l d - g ) - ( n - e ) - f y i yyn+i (̂ ) — r i (0) ^ ] r (—) k±
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Using the identity (1), we see that the terms involving ^ ( 0 ) vanish
from the equality, and we have to establish that, if | z | < 1,

_ ( ! - # - • log

18. We will first shew that

M4- y (~)fc c*«+»(gSk{0)-Sk(0)

Denote the function on the left-hand side of this equality by Fn+i (0).

Then, since n+1S'o (0+1) = n+iS'o (d)+nS'o (0)

and S'M-Sf
k(0) = kSt-M,

we have

-i- «So(0)+ "|- { l-eXp ( - 0 ^

[for ,l+iSo(0+D is a polynomial in 0]

for

Now, Fn(0) is a polynomial in 0. Therefore, if

Fn(6) = 0,

we have Fn+i (0) = constant.

But, when 0 = 0 ,

Fn(6) = ^ ( 0 ) | j-+...+ ^ | + w-?o
2) (0) = 0.
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Therefore,

we have

Now

Therefore,

if

by

F1(0) =

=

=

induction,

Fn(0) =

Fn+1(0) =

0-1+1-0

0.

Fn+l(0) :

= 0.

[0)~

= 0.

Q(6)

14. We now have to shew, if | z | < 1, that

- ( ! - * ) - log

(0) .

The function on the left-hand side can evidently be expanded in a series
of ascending powers of z, if \z\ be sufficiently small, and the coefficient
of (—z)n is given by

f a * ) ' - 1 f ( 1 0 ) log ( 1 0 ) ) ,

taken round a small circle including 0 = 0, on which the subject of in-
tegration is one-valued.

Put 1—z = ey; then, when z makes a small circuit round the origin,
y will do the same, and the integral becomes

#y \dl.

Now, when y is small, y-\-log y~r admits the expansion 2 cny
n.

Differentiating, we have

2 nCnyn-l = l+ — ^ 1 +
n=i y y

Hence

and therefore cx = — Si (0),

and cn = (-)11"1 ^ l , when n > 1.

The integral is therefore equal to
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fi9y n+\
Now*

+terms which are finite when y vanishes.

Therefore the integral is equal to

k.k\ '

We thus have the required equality.

15. We proceed now to shew that, if 6 be not real, the function

the positive or negative sign being taken according as 1(6) is < or > 0,
is one-valuedi near x = 1, and has no singularity at this point.

In the investigation of § 7, we have seen that

g,(x; Q - r ( l - f l ( -

where 1/L i3 an axis within 90° of the points 6, 0 + 1 , ..., 6-\-n, ..., and
where arg (—log x)L lies between —{TT—\}S)I and (TT+\{S) I, \fr being the
angle between L and the positive half of the real axis, and ranging in
value from —TT to IT.

In exactly the same way we may prove that

2TT
y)

where 1/X is an axis within 90° of the points —6, — 0-f-l, ..., — 6-\-n,...,
and where arg (—log l/x)K lies between — (TT—<p) i and (7r+9!>)t, ^ being
the angle between A and the positive half of the real axis, and ranging in
value from — ir to TT, —log 1/x being real when x is real and positive.

In the former case L is a cross-cut for log a; to make gp(x; 6) one-
valued ; in the latter case —A is a cross-cut for logic to make g^{x~l; —6)
one-valued.

• These cross-cuts are in general not the same, but within the region
common to the two expansions it is readily seen by constructing a

* Cambridge Ftixiosopnical Transactions, Vol. xix., p . 373.

t Its aotual value depends, of course, on which branches of the original functions tvc oh.3080.
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figure that, if I (6) > 0,

arg (—log 1/«)A = arg (—log x)L + -m,

and, if 1(6) < 0, arg (—log l/x)K = arg (—log x)L — TTI.

When the final integrals are expressed by convergent series in powers of
(l—x)/x, we may rotate the cross-cuts till they coincide along an
imaginary axis ; and then, since

(-log «)rl+<—log l/^rv*3"=o

we see that gp(x; 6)-\-g^(x~l; —6)e*mfi

may be represented by a series convergent when 11—re | is small.
Therefore this function is uniform near x = 1, and has no singularity at
this point.

16. The preceding proposition indicates a close connection between
the functions gp(x; 6) and g$(x~l; —6), the former of which can be ex-
pressed by a Taylor's series when \x\ <C 1, and the latter by a Taylor's
series when | x | > 1.

We may readily shew that, when | x | > 1,

(i'-<
the — or + sign being taken according as 1(6) > or < 0, provided
(6—ri) has values which correspond to a cross-cut along the negative
half of the real axis.

For, by definition, when | x \ > 1,

where | arg (n—6) | < -K

and (6—np = (n—6pe±nifi,

according as I (6) > or <C 0.

17. We may now shew that, g^(x; 6) admits, when \x\ is very large,
the asymptotic expansion

_ y
nti x

n (6-np ^ (-xf «to n\ T(j3-n) [log ( - n ) ] n '
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provided 6 be not real, and log (—re) be defined with respect to a cross-cut
along the positive half of the real axis, being real when x is real and
negative. If the argument of log (—re) is <p (| <p | < TT), SO that

log (-re) = | log (-re) | e1*,

the argument of [log (—re)]"""1 is <p[R(fi) — l] +log j |log (—x)\ \ I(/3).

If I * | < 1,
7r(—x)sds00 xn If

9ft{x; 6) = w2 ^ p ^ p = ^ 7 Jc s i n TS(s+a)P
(A)

where the contour C encloses the origin but not the points — 1 or — 6, and
embraces the positive half of the real axis.

Let Ci be a straight contour parallel to the imaginary axis, cutting the
real axis between 0 and — 1, with a loop, if necessary, to ensure that —8
lies to the left of this contour. Then, if | arg (—x)\ < ir,

JC JCiCi

for the integral vanishes along the infinite contour which is the difference
of the contours G and Cv Hence the integral (A) taken along the contour
Gx represents the continuation of the function gp (x ; 6) for all values of x
such that | arg (—re) | < -K, \X\ having any value greater than, equal to,
or less than unity.

Suppose now that | x \ > 1, and that C2 is the contour of the figure.
Then, if | arg (—x) \ <. TT, the integral along the contour Cx will equal that
along the contour C2, and the integral along the straight parts of this con-
tour at infinity will vanish.

We shall therefore have, if j x \ > 1 and |arg (—re) | < -IT,

__ ^ < _L \ ( T)-v-e ( v)~

In obtaining the final integral we have employed the transformation
s = — y—6. The values of (6—nf correspond to a cross-cut (—6 to
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— oo) parallel to the real axis. In the final integral 7r/sin TT (y-\-6) has no
poles within or on the contour of integration. It is therefore represented
by the summable divergent series

n=o n\ \sin

on the contour, and, in fact, over the whole of the ?/-plane dissected by
lines passing from the zeros of sin ir (y-\- 6) away from the origin to
infinity.

Therefore, by a proposition proved in my original memoir,* this
integral may be represented by the asymptotic series

2-7T n=o n\ Vsin i

where | Jy [log(—x)\n~p+l \ tends to zero as | log (—x)\ tends to infinity;
and this series is equal to

-V ( V1

(—x)-9 2
V1 / ir \
- I )
! \simrd)nto n! \simrd) T{j3-n)[log(-x)f-^+1 w

where [log (-x)] n~^ = exp {(n-/3) log [(-x)]},

where, when log(—x) is specified, arg {log(—a;)} lies between ± IT, and is
zero when log (—x) is real and positive.

We thus have the given expansion.
We notice that, when R(6) < 1, the series (1) gives the asymptotic

expansion near | x | = oo of g^(x; 6). When B(6) > 1, let v be the
integer next greater than R(0). Then the asymptotic expansion of
gp(x) 6) is

l V series (1).

18. From the previous theorem we see that, when \z\ is very large
and 6 is not real, we have the asymptotic equality

/ _ \ (n)

(-x)e *=o

the — or + sign being taken as 1(6) > or < 0.

* rhilosophical Transactions of the Royal Society (A), Vol. 206, pp. 249-'J97, § 5.
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Changing x into 1/x, we get the asymptotic expansion of g (1/x ; 6) at
the origin. The relation (1) holds when | log (—%) | is very large, that
is, whether \x\ or l/|a;| be very large. It is easy to verify that the
preceding formula remains unchanged when we change x into 1/x and
6 into —0.

The series (1) becomes convergent when we multiply the general term
by 1/n! : it is therefore what I have elsewhere* proposed to call an
asymptotic series in log (—x) of the second order, similar to the well
known series for \ogT(z-\-a) when \z\ is large.

19. When fi is a positive integer and 6 is not real, the previous
investigation will hold.

But now the asymptotic series (1) is replaced by the finite series

{—xf «=o n

for this series is the residue of ———.—-r-F̂  at s = — 6. Thus, when
sin ITS (s+0r

0 is not real and /3 is a positive integer, we have the absolute equality

/ IT \(U)

x)]^-1 "-1 {~)n Vslnl^j
( - ^ a-0 n\ T(J3-n) [log (-x)~]n'

20. We must now investigate the asymptotic expansion of g^(x; 6)
when 6 is real.

In this case difficulties arise from the fact that the specification of
{s-\-6)~p when s is real and less than —6 is arbitrary. We have (§ 1)
adopted the convention that in this case we will take arg(s+#) =-{-TT.
We must therefore take a cross-cut from —6 to — <» inclined at a small
angle to the real axis and work with the contours of the modified figure
<p. 804).

We see that, if |arg(—x)\ < ir and | r c | > l , and if 6 be not zero
•or a positive or negative integer,

the contour C" being derived from the part of the contour C2 which

* " A Memoir on Integral Functions," Fhil. Trans. Roy. Soc. (A), Vol. 199, pp. 411-500,
§ 32.
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encloses —6 by the transformation s = — (y+d), so that C embraces
an axis from the origin which lies above the real axis and is inclined
at a small angle to it.

We obtain the same result as before for the asymptotic expansion
of this integral. And this is to be expected, since the terms of

for which n<.— 6, are, when \x\ is large, of order less than that of
any term of the asymptotic expansion.

21. Consider next the case where 0 is a positive integer.
If we put 6 = p, we now obtain

gtte ;$ = - £ ' ., l tf - ^- f (-ti-v-H-y)-* fc^-
»=i f ( j ) -»r 2-Trt )c J miiry

dy,

the accent denoting that the term corresponding to n = p is to be
omitted from the summation.

On the contour C we have the summable divergent expansion

+ 5 (^Y .
sin Try n=i Vsin TTX) S=O n !"

Therefore the integral gives rise to the asymptotic series
(/i) / \n-l -I

n\

We therefore have the asymptotic expansion

. [log (-a)? I /_
""" Xv nto \si]

\n- l

sin TTXJz=0 n\ r(l+/3—n)[log(—x)]n'
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22. Suppose, finally, that 0 = p, a positive integer, and that ft ir
a positive integer.

The result just obtained becomes the actual equality

CO J

gfi{x;p) = — 2' — -
«=i xn(p—nY

irx^ (
xp »=o Vsin TTX/ xss0 ?i! T (1+/8—n) [log (—a)]* *

Suppose now that 0 = 1.
Then, if we put

Pfi(x) = 2 n"^«
71 — 1

so that Pp(x) is one of the series which Leau makes fundamental in his
researches, we have

Also

Now we know that, when |a;| is small, we have the expansion

Hence ( .vX ) = 1 (when n = 0)
Vsin 7TX/ 8=0

= 0 (when n is odd)
o2m—1 1

= (2m)! 2,,t_2 Sa« (when n = 2wi).

Hence, if /3 be even,

= iSl mSi j/3 — 2m)! 28m~2 " ;

and, if ft be odd,

p (z)_p ( i_\ - Dog(-*)? ^ D o g C

SER. '2. VOL. 4 . NO. 9 3 1 .
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These are two little known formulae due to Spence, and quoted by
De Morgan.*

23. As has been suggested in § 11, it is evident that we may apply
the preceding methods to series of the type

|
n=o

where k is a positive integer. We have merely to write /3-fe for /3 and
expand the various functions of B in ascending powers of e. The analysis
will evidently be laborious.

When k is not restricted to be an integer, but is any complex quantity
of finite modulus, the function may be expressed by the contour integral

j _ r
2TH J (s+0)psin7rs

And this in turn, as in § 17, can, when \x\ > 1 and |arg( —a;)| < -K, be
expressed in the form

_ ? [log (6-n)f 1 f Dog(-y) ]M-s) - ' - '
uti xn(d-nf 27TtJc simr(y + d){-y)fi y

provided 0 be not real.
If Elog(—x) > 0, the integral is convergent. Thus the function

hp(x) has no singularities outside a circle of radius unity except possibly
on the line (1, + co). .An asymptotic expansion in the neigbourhood of
this singularity at infinity can be obtained.

We can also shew that x = 1 and x = <x> are the only singularities
of the function.

PART II.—The Function fp(x; 6).

24. We proceed now to obtain analogous theorems for the very general
function /pGc; 6). This function is defined when \x\ < 1 by the expansion

S xn
x(n+9)

«=o (71+6)

* De Morgan, Differential and Integral Calculus (1842), p. (i,)9, Formulae I. and I I . In the
notation of De Morgan
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where outside a circle of radius l<. fx, where JJL is the least of the quantities
|w+0| , n = 0, 1, 2, ..., oo, x(x) admits the absolutely convergent ex-
pansion a j

i-̂ 'o xr'

As before, we assume that /3 is not a positive integer, and we make
the further restriction that it shall not be zero or a negative integer.
Such limiting cases may be dealt with by more elementary methods, or by
applying the calculus of limits to the formulae which arise.

25. We will first shew that, when \x\ < 1, fp(x; 6) can be written in
the form •*,

We have fAx;B)= 2 x11

n - 0

Now, for values of r greater than an assignable quantity B,

\br\<l'r,
where I' = l-\-e, and e may be as small as we please.

; bR+rHence < £\ \(n-\-d)p+li\\?i-\-d\r

11 li CO ]!>'

< \{n+6f+*\ - i 7'

lf

R

Therefore fp {x; 6) = XQ br gp+r(x;9)-\- JR,

where 1J"'< Jo

Thus |J"je| tends to zero as R tends to infinity if |a;| < 1.
We thus have the theorem stated.

26. We will now shew that fp(x; 6) has no singularities except possibly
when x lies on the positive part of the real axis between 1—e (e > 0) and
+ °o.

Suppose that Fp{x; 6) denotes the integral function

- awxP*+fl)
«=o n\{n+df

x 2
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Then I have shewn, in my fundamental memoir,* that, when B(x) > 0,

where \J(x)\ tends to a definite finite limit as \x\ tends to infinity.
And, when B(x) < 0, Ffi(x; 6) = (—x)l~9Jx{x), where I is the radius of

convergence of x(y)> and where |/i(^)j is at most finite when \x\ tends to
infinity.

As in § 3, we may therefore show that

fp(x;e) = [
Jo

The integral may be taken along any axis for which B (z) > 0 and
B[(l —x)z~\ > 0. We thus obtain continuations of fp(x; 6) which are finite
and continuous for all values of x such that |arg (1—x) | < tr.

We thus have the given theorem, which is true for all values of /3 of
Unite modulus.

27. We will now show that, provided (3 be not an integer, and if
B(d)>0, and if 6 lies outside the circle of convergence of

x i
provided < 1,

Mx; » - ( - S

The contour of the integral embraces the axis to 1/6, ivhich is the cross-cut

which makes (—loga;)^1 one-valued.

If | x I < 1, we have, by § 4,

fp(x;d)= iQbrg^r{x;e)

provided B (6) > 0, and provided the contour of the integral excludes the

* hoc. cit., § 1, Part V., §§ 31 and 36.
t The reader will, of course, not confuse thia function with the logarithmic derivates of the

multiple gamma function considered in §§ 11 et seq.
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poles y — log x ± Q,mn (n = 0, 1, 2, ..., <x ). Hence, if 11 {log x \ | < ir,

r=0

=J'r(1 LJo L
where now the contour of the integral includes logs, but not Io
( > i = 1 , 2 , . . . , o o ) .

In this equality (—logaj)^+r~1 has its principal value with respect to a
cross-cut along the axis of integration. And the first series converges if
| —log a; | is finite. The second series is therefore convergent if | —log a: |
be finite and I x I < 1.

28. We will next shew that, if the contour of integration embraces the
axis to 1/0, and if B(6) > 0 and \6\> I. the integral

• 0 -L \Ji !J) X Jjd

tends to a definite finite limit as B tends to infinity.

«> h ( J / V T C I R—r)

Evidently 2 ——-Un o{ • — *(y).

an integral function of y.
Also, if k be an integer such that B(3-\- k) > 0, we have

Hence |#(y)|< 2

If, now, k be sufficiently large, \br+k\ < "̂"+/>:, where I' = l+e, and e
is a positive quantity as small as we please.

Therefore

a polynomial in [ l* l

Therefore the integral (2) tends to a definite finite limit under the con-
ditions assigned. Therefore under these conditions we obtain from (1)

fp(x',6)- I ? ; V
r=0
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Provided log x is inside and log x + 2mrt (n=fcO) is outside the contour,
and provided (—log x)^1 has its principal value with respect to the axis oi
integration, the integral remains finite and continuous when \x\ > 1, pro-
vided | —log x | is finite. Thus, under these limitations coupled with B (6) > 0
and \0\ > I' > I, we obtain a continuation of fp{x; 6) when \x\ > 1.

It is obvious that, by taking B {&) sufficiently large, we may find an
infinite number of lines in the positive half of the //-plane which may
serve as axes of integration and cross-cuts for (—log x)1*'1. For instance,
if B (0) > I', the positive half of the real axis will so serve. We are not
limited to the particular cross-cut chosen if B(d) be very large.

29. Consider now the integral in the formula (3). It will be equal to

2 ^
u=0 X

where fn+1{fi; 6) =

and JN = —v H> y-—&- Y- —- — dy.
2TT JI/0 1—xe y Lc(l— e U)J

By deforming the contour embracing 1/d, so that it consists near the
origin of the contour figured in § 8 and further away embraces a parallel
to the axis of 1/9, we can ensure that upon it the minimum value of
1—e~y | is fx, where /x = 1—e, and e is > 0, but as small as we please.

Then evidently | JN \ tends to zero as N tends to infinity, if

The series 2
n=0 X

is therefore absolutely convergent under the same limitation.
We therefore have, if \(x—l)/x\ < 1,

*; 0>-<->og O " . - ^ | , £ § ¥ $ = || 0

If {—logx)p~l, qua function of log x, have a cross-cut along the axis to 1/0,
we have proved the formula under the limitation B (6) > 0 and 16 \ > I' > I.

And, if B {6) be sufficiently large, we may take the cross-cut for
(—logx)*3"1 to be in an infinite number of positions in the positive half of
the y plane.

30. From the previous theorem we deduce at once that fp(x; 6) has,
when B(0) is sufficiently large, a single singularity in the finite part of
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the plane. This singularity occurs at x = 1, and is specifiable.* It
is a multiform point, and near it fp(x; 0) behaves like

^(-.og,)-*-r5o£sin

To establish these results the reader has merely to recall § 26, and to

notice that the condition \(x — l)jx\ < 1 is equivalent to B(x) > £.

31. We give some further theorems before we remove from the previous
theorem the condition that B{6) must be positive and sufficiently large.

We will first shew that, if B{6) > 0, and if 0 have any value of finite
modulus such that the points 6-\-??i (m = 0, 1, 2, ..., oo) lie oittside the
circle of convergence of x(x)> and if n be finite,

r=0

If \6\>l'>l and 12(0) > 0 ,

" r - o

| o (say).

Now (-rfn+i(s , 0) = 2 (-)fcM+1^^">(0) f (« -* , 0);

and, if fi be not an integer and 0 be not equal to 0, — 1 , —2, ..., each of
the multiple I functions is finite.

Hence the series 2 &r£«,+i(/3+r, 0) tends to a definite finite limit as
r=0

B tends to infinity, provided series of the type

2 br£(P+r-k,€) (k = 0, 1, .... n)

are convergent. But when B(fi-\-r—k) is very large and positive

where L is finite and independent of r, and /x is defined in § 24.

* See the note to § 8.
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The series are therefore convergent if n> V > I, where /J. is the
minimum value of |0+?^| (m = 0, 1, 2, ..., oo).

This will appear again, and we prove the theorem by considering the
integral JR.

Divide up the contour of integration into two parts :—(1) a circle of
radius less than unity round the origin; (2) the double description of the
axis of the contour outside this circle.

On (1) the subject of integration is finite, and can be made as small as
we please by sufficiently increasing B.

On (2), if we choose k so that B(J3+k) > 0, we have, if r > k,

\T(J3+r)\>K(r-k)\

where K is finite, non-zero, and independent of r.

T Ky" < (Z#ly | )* i™

Hence the modulus of the integral along this part of the contour tends to
zero as B tends to infinity, provided |0| > V and B{6) > 0.

We thus have the given theorem.

32. We will next shew that, if R(6)>V>1 and
x

c,e)-x-9 i
r=0

• By the result of § 28, the function on the left-hand side of this equality,
which for brevity we will denote by P(x), is, if B(d) > I' > I, equal to

where the contour of integration embraces the positive half of the real
axis and includes log x.

This integral may be written

N-l

= JQ br j T ^=^fn+i( /3+r , 6)+JN (say). (1)

Evidently \JN\ tends to zero as N tends to infinity if < 1 .
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Again, as in § 8, with the contour there employed,

} Q) I

where h is finite and independent of r and n, and e > 0.

Hence JT(lH-e)

—j

71 = 0 X"

where K is finite, if | (1—x)/x\ < 1.
Hence, if B(6) > Z'(l+e), the first series in (1) tends to a definite finite

limit as N tends to infinity.
We thus obtain the given theorem.

33. We may now shew that the theorem of § 30 is valid for all values
of 6 provided 6-\-m (vi = 0, 1, 2, ..., oo) lies outside the circle of con-
vergence of

If R(6) > V, where V > I, and | (x — l)/x | < 1, we have

Hence

2
r=0

2 &rr(l-/8-r)(-loga;)'J+r-1

r=0

Now 2 //a_1\p+r is convergent and equal to * _ ff if 0—1 lies

outside the circle of convergence of

* The analysis may be made formally rigorous by coupling § 32 (2) with the results of § 9.
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CO CO

Also, if 2 br(ur-\-vr) and 2 hrur are absolutely convergent under any
CO

assigned limitations, then will 2) brvr be convergent under the same

limitations. For
00 CO V.

1R I M r I = 2R I briVr + Vr — itr) I < ,2 . {I br(tlr + Vr) | + | 6rMr | f ,

and the latter series can be made as small as we please by sufficiently
increasing B.

Hence, if (0—1) lies outside the circle of convergence of x(x)>
R(Q) > I' where I' > I, and |(1—x)jx\ < 1, the series

is absolutely convergent and equal to

hte;6-l)-x1-9 2
T 0

Continue this process indefinitely, and we see that the theorem of § 30
is valid for all values of 6 provided Q-\-m (m = 0,1, 2, ..., oo) lies outside
the circle of convergence of

34. Finally, let us consider the result of applying the process of § 17
to the function fp {x; 9).

Assume that the points 6 + n, n = 0, 1, 2, ..., oo all lie outside the
circle of convergence of xW-

If the contour C of § 17 do not enclose any part of the circle of radius
I and centre —6, we evidently have

Mx.,6) = - L f ' (
JP 2TTI )C si

when | x | < 1.
If, now, | arg (—x) | < TT, the integral will vanish when taken round an

infinite contour for which B (s) is greater than a finite negative quantity.
Hence, if the contour Cx of § 17 have, if necessary, a loop to ensure

that the circle round —6 lies to the left of the contour, we have

* f
)Ci a l i i vl

The latter integral is valid for all values of | x | provided | arg (—x) | < -K ;
and therefore represents the continuation of fp (x; 0) over the whole plane,
except this part near the positive half of the real axis. We thus again
arrive at the theorem of § 26.
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If now the contour C2 of § 17 include the circle of radius I round —6,
we see that, when |arg(—ar) | < -K and \x\ > 1, fp{x; 6) is equal to the
integral along the contour C2. The integral along the straight parts of
the latter contour tends to zero as these move away to infinity.

Under the assigned limitations we therefore have

The contour C embraces the real axis and encloses within its bulb the
circle of convergence of x(—£/)•

85. The equality is true when (3 is an integer. In this case C may
be replaced by a contour just outside the circle of convergence of x(~2/)«

In either case we see that the final integral in the equality (1) is equal
to (—x)l'~eJ(x), where, if V > I, \J(x)\ tends to zero as \x\ tends to
infinity. We thus get a superior limit to the asymptotic value of
fp(x ; 6) when | x | is very large and /3 is or is not an integer.

The problem of obtaining a complete asymptotic expansion for fp (x; 6)
when | z | is large evidently depends upon the consideration of the singu-
larities of x(y) within its circle of convergence. The reader will compare
the similar property, of Fp(x; 6) when B(x) < 0, which was established in
my original memoir.

[Note added May, 1906.—

The first author to consider simple cases of the series which we
investigate in the present memoir was William Spence, whose Essay on
the Theory of the Various Orders of Logarithmic Transcendents was pub-

00

lished in 1809. Spence considered series of the type 2 n~rxn, where r
*• " •*• 7 1 = 0

is an integer, and by a process of induction obtained the continuation of
such series when |sc |> 1.* This essay, so rare, that no copy is to be
found in the library of the University of Cambridge, seems to have been
almost entirely forgotten. Such series were also considered by Lambert,
Legendre, Abel, and Kummer, among others.

Abel considered such series in two papers. The first paper, + " Somrna-
tion de la S6rie 2 <f>(n)xn

t- ..., <f>(n) e"tant une fonction algebrique

* Loc. cit., p. 45.
t (Envren Completes, 1881, T. n. , pp. 14-18.
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rationnelle de n" has several points of interest. Abel considers explicitly
(p. 16) the function gp(x; 6) where /3 is a positive integer; and obtains
(p. 18) a rudimentary form of the formula*

G(x; 0) =

In the second papert " Note sur la fonction \js (x) = 2 xu/n2," he attains
u=l

anew several of Spence's results. Both papers were first published
posthumously by Holmboe in 1839, and are evidently mere sketches.

But the modern theory of such series is largely due to Leau, I whose
work, closely associated with the investigations of Hadamard,§ Borel,||
andFabry,*! led to the investigation of series of the type 2g{l/m)xm where
g {t) is holomorphic at the origin.

Then came Le Koy,** to whom appear to be due the theorems (1) and
(3) of § 2.

My own developments were largely completed before I saw Hardy's+t
paper. Subsequently my attention has been called to Lindelof's+I mono-
graph, and to another paper by Hardy. § § In the former will be found series
such as occur in theorem (2) of § 2, and in the latter an equation similar
to (A) of § 7. Nothing in the second part of the present paper appears to
have been anticipated. But BO rapid is the development of the subject
that it is difficult to assign priority to respective authors, and almost
impossible to state that any investigation is new in all its details.]

* See the author's paper, Quarterly Journal of Mathematics, Vol. xxxvn., p. 294.
t Zoc.cit., pp. 189-193.
+ ZiouviUe, Ser. 5, T. v. (1899).
§ Ibid., Ser. 4, T. vra. (1892).
|| Acta Mathematica, T. xxi. (1897) ; Lionville, Ser. 5, T. n . (1896).
H Annales Scientifiques de VEcole Normals Supe'rieure, Ser. 3, T. xm. (1896) ; Liotiville, Ser. o,

T. iv. (1898); Acta Mathematica, T. XXH. (1899).
*• Annales de la Faculte des Sciences de Toulouse, S?r. 2, T. n . (1900).
+t Proc. London Math. Soc, Ser. 2, Vol. 2, pp. 401-431.
++ Le Calcul des Residus (Paris : Grauthier-Villars, 1905).
§§ Proc. London Math. Soc, Ser. 2, Vol. 3, pp. 381-389.


