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Principal Values depending on a Parameter.
1. If f(a, a) is a function of the two variables z, a, which for
certain values of o possesses a convergent integral from z=a to"
z = 4,

A
I(a) = jaf(w, o) de

is o function of « defined for those values of a. We may suppose

a, 4 independent of a ; for, if they depended on a, we could make the
o

substitution 2 =at(d—a)y,

and so0 obtain an integral with the constant limits 0, 1.

We suppose further that the values of a for which I () is defined
are infinite in number, and form =& closed s-t S; and that «, is &
limiting point of the set. Then the geueral double limit problem of
the integral calculus is: To determine the relations between

I@) = [ f@E o

and the limits of indetermination of I («) for v = a,.
It is not diflicult to show that we may without loss of generality
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suppose that the parameter is either a positive integer which tends
steadily to o0, or a continuous vartable which tends steadily to any given
value.

These problems—problems such as that of the integration of an
infinite series term by term, or of differentiation under the integral
sign—are well known and have been very frequently discussed. It
has, however, generally been assumed that all the integrals which
occur in connection with them are wnconditionally convergent. In
this paper I shall begin a discussion of some of the corresponding
problems which arise when we are considering integrals which are
only conditionally convergent, the principal values, in fact, the ele-
mentary theory of which formed the subject of my first paper.* I
shall begin with the case in which the parameter is integral.

Principal Values and Infinite Series.
2. Let S (@) =3 u, ()
]

be & series whose terms are functions of z, convergent, at any rate in
general—t.e., with the possible exception of a closed enumerable set
of points—for values of z in an interval (a, 4). Then 8 (z) is ¢n-
tegrable term by term over (a, A) if

A w (A
I S (z) dz = Ej u, (z) dz, )
a 0 Ja .
4 N AN
or J lim 3 u, (z) dn:=1imj Su, (z) d.
@ N=o 0 Now Jg O

The conditions under which this equation is true have been discussed by many
writers. We may refer especially to Dini, Grundlagen, pp. 512-530, and Osgood,
*“On Non-uniform Convergence, &c.,”” American Jour. of Math., Vol. XIX.

The question with which we are concerned at present is: Under
what circumstances is (1) true when some or all of the integrals
which appear in it are only principal values ?

3. Let us suppose, in the first place, that the interval (a, 4) is
finite, and that S (z) is integrable term by term across any part of
(a, A) which does not include a single point a (a<a<.4). Then, how-
ever small be the positive quantity e,

(r_ + J:) Sudo=3 (j:"+ j:) u, da. 1)

* «The Elementary Theory of Cauchy’s Principal Values,” Proc. L.M.S.,
Vol. xxxiv., pp. 16-40.
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Let us suppose further that
4
P j u, (z) dz
a
is convergent for every value of », and that
s (4
3 PJ u, (z) dv
0 3
is convergent. Then the right-hand side is
@® 4 ® fate
3 PJ u,,dx—gpj , d.
0 a a—e

-TE, finally, we suppose that the last term tends to zero with e, the
left-hand side of (1) will also tend to a limit, which is by definition

A o
Pj- Su, (z)de;
a O
A

A @™ @™
and PJ S, de = %PJ u, dx. (2)
a 0

()

This equation is certainly true, then, if (i.) 3u, is integrable term
by term over any part of (@, 4) not including o,

(i) F(x) = EPru,,dw

is a continuous function of 2 except at a, and

Giii) Lim {F(a—e)—F (at+e)} =0.

4. We may distinguish three cases: (i.) thatin which no one of
the individual terms u, becomes infinite at @ = «, (il.) that in which
a finite number of them become infinite, and (iii.) that in which an
infinite number of them do so. The first and last are the only cases
of importance, as in the second case we can consider the terms which
become infinite separately.

5. (i.), (ii.). In this case the symbol of the principal value on the
right of (2) of § 3 is unnecessary, ¢.e.,

4 ™ (4
P j Su,dx = EJ u, d.
a 0

0 Ja

And we may state the conditions of §3 as follows: that 3 u, is in-
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tegrable term by term over any part of (e, 4) which does not include
a, and

° [z
F(z) = EJ %, dz
0 Ja
i8 & continuous function of © except at a, and

lim {F(n—e)—=F(ate)} = 0.

6. Suppose, for instance,
4, = — 2 0L2<40)

ant!

”"
= (a<z§l),

the value of #, for 2z = a is immaterial.” Then
S@#) = L. (0<z<)),
r—a = =
except for z = a.* Also, if 0<2<a,
an+l

F(2 =..:-_._.____ = -z H
(=) :(1z+l)a"" 108(1 a)

while, if a<z<l,
oy =—[2]" Tz = 7" [
ria == [2 ] [oe= ] -3{ [l [5]0)

= log (%—l).

Thus F(z) is continuous except at a, and
F(e—e¢)~F(a+e) = 0.

1 —an
Also j u,dz = lman 1 (n>0),
o n n+1
1 »
and PI gz log 1 + zr 4, dz
0T —1t a 1 Jo

=log(17-l).

7. (iii.) The simplest case in which an infinite number of the
terms u, become infinite is that in which they all become infinite
owing to the occurrence in all of them of the same factor

Q, (z—a).
Let us suppose that  u, = Q, (z—a) v,,

where v, 18 a function of 2 which, whatever be n, has a continuous

* Here a is the a of §§ 3-5.
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derivate for all values of 2 in question.” Then, by a lemma proved in
my first paper,

PJ.:: u,dz = [‘v,’.]aﬂ‘ j‘:t:(w—a)‘n, (z—a) dz,

where —e < u < e. In particular, if

1
& (2—a) = —a’

Pj“-ﬂu,,dm = 2¢ ['v,'._l”_“.

Suppose now that |vn] <V,

for all values of x and = in ‘question, ﬁ. being independent of a and
3V, convergent. Then the last condition of §3 will certainly be
fulfilled. '

8. Let, for instance,
\
2p" CO8 nx (n>0),

L = 1, wu,=
’ COS T —CO8 a

where O<a<m, |p{< 1. Then
S(a;) ‘

and, if we may use equation (2) of § 3,

= 1—p*
(cos £—cos a)(1—2p cos 2 + p-)’

(" dz ] CO8 0z dx
—_? — L =9 " hiaiigediaiedil
(1-#9) PL (cos - cos a)(1—2p cos z + p?) -?p Pﬁcos z—cosa'
since - p[~—"’—— = 0.
oCOS T —cosa

But the left-imnd is

1=p 9 [ i +p£’ - f?.”.w.._}e__iﬂ_e.___
l—‘2pcosa+p"{ p.ol—Zycosx+1f= ptusz—cosa} . 1+p —2pcosa

r & .
= b 2 p" 810 fNa.
. ina )
And sc * cos nz dv 7 sin ne
S0 —_— .
oCOS & —C0S @ sin

To justify the use of § 8 we have ouly to observe that

2=
vy = 2% €08 Ny ——m 0 ..,
€087 —C0s &

and A thlesn < K2 [",

where K is some quantity independent of 2 and of u.

9. We have so far supposed that (u, 4) is finite and contains but
one point a across which the series ceases to be iutegrable term by
term in the ordinary way. No new point avises if (e, A) contains
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any other finite number of such points «. This is so even if 4 be
infinite ; for all the points a can he included in a finite interval
(a, 4,), and integration over (4, o) is merely an ordinary case of
integration term by term.

10. Thus, for instance,

® 1 e
Pjo 1-2pcosz+p’ a:”—u" (@>0, |pl<1)

1 e e " CO8 N ]
=iy [PL T +23p PJ S da

*—-213 sin na = — = psina ;
u(l—_p’ a(l—p*) 1—2pcosa+p*

This integral is given by De Haan (Tables, 193, 1).

11. Let us suppose now that there are infinitely many points a.
I shall confine myself at present to the simplest case; I suppose
4 = o, the points « (a;) isolated,
a<q,<a<... (lima;=w),

and Qi1 al>H ("—1 2 )

where H is a positive quantity independent of i. That is to say, I
suppose that the principal values with which we are dealing ave of
the type covered by the earlier definitions of my first paper. There
is no particular difficulty in applying similar considerations to the
more general cases dealt with by the later definitions.

I suppose, moreover, that the conditions of §3 ave satisfied over
any finite interval (u, 4,), provided A4, a;—that is to say, that
3u, is integrable, term by term, over any part of such an interval
which does not include any point «;; that

ﬁﬁg:ﬁprm@
0 a
18 2 continuous function of @, except at the points «;; and that
lein: {1'1 (u,-—-e)-—-.l"(rx,-}-e)} =0 (¢=12 ..).
Then, if  be any small positive quantity, and
Je—a;l >6 (=12, ..),

p@y4w0=P£zww. 1)
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Now let us suppose that
P [ Su,dz
Ja

is convergent ;- that is, that when = tends to o through any system
of values satisfying the above conditions the right side of (1) tends
to a finite limit independent of the particular system chosen, and
therefore independent of 8. Then # () tends to a limit, and, if

lim F(2) = EPJ u, dz,
it will follow that ¢

a

-] -]
Pj Su,dx = EPj U, dar. )
a

12. Let us apply this formula to the evaluation of

zdz

P.’.o cos az cot az Tyt {0 <a< 2a),

which, after my previous paper, we know to be determinate.

Since cotaz = _.+2 LA
¢ azr 1 a'ﬂ—n’r”
® ® © 42
Pj cuuazcotuxdz“= .I_J ‘iqi“_‘_'f_dﬁ+2a§1>j I“co&gazd:c. ,
o 1+28 " a )y 1+2° 1 o (1 +2%)(a323 —nind)

if we may use the formula. Now

P ®  alcosazdr * arm:rh: u’-:r’.Pr (_:pga::dx_}
jo (1 +22)(ad23 - n'-'rr'-') a4 n n* _[ v? 323 — 3

1I' sin ﬂa‘ll'
D." + -

Also 3 1 =—1-(coth a—l),
a

1 a*+1%nd 2a

nw . Naw
—~ 8ln

L% = 21a "‘“:l‘!f}‘:a”) (0<a<2a).
Mﬂ} o moosha
sinh a ca—1"
This result may be found in other ways. See the Quarterly Journal, 1900, p. 126.
We have still to justify our use of the formula of §11. This, as might be
anticipated, requires an argument of some little complexity. In the first place it is
clear, after §§ 3-8, that (1) of § 11 holds; and so what we have to prove is that
we can g0 choose £ that J® a?cos axdr -

i J T+ )@ —n*md)
is numerically less than any aswrned positive quuntity o, for all values of x>§, and ]
such that lz—ai]|>8 (i=1,2 ..);
and that however small be 3.

* z da:
Hence Pj coB ay cot ax — = = %r e~7coth a—
0 leat 271



62 Mr. G. H. Hardy on the [June 13.

Now this guantity is
1 J' cos ax dx nin? * cosazdr
a3+ ulnd 1+ af 4 19t J, a3 - 2
and evidently we need only trouble about the second part.
Now suppose either (N=p Tz,
a a
N T
or —+8<r<(N+})—,
a %

say the former. Then, if n< ¥,

L[N do
(N=d)ula 22— n¥n

n’n? J“

a? + 91 ) (N- e
<l g (N +dou .'.—_%_’rz‘}.
2anm 1\’ J—nu Nri+n

) 1 (a—N-3 N-}+n).
f u>N, ™
i u>J, < Zan'lrl glu—N+i JV+§+"}'

. 1 1 T
d,if n = 2 k3
G E =5 S 2 2N—-})w 2a

This last quantity can be made as small as we please by choice of ¥. Again,

yor1 Nap—n N=psan) % 3
1o, A N, =
? g{N Y—n N+&+n) 2+N12+][ 1= E(v)
b Yo
<1°g{N—.l ~N, N+
N—}-N, 2N—}
{ t 4\'+&+N,§'

which can be made as smull as we please by choice of ¥. Also

+ = lo|7
.LVl

=z 1 n—N+1% N+t+ul 2N %
3 —log ) 2 I+ 2
Nl B b{n—-l\' Y N—=f+u)  No oW
L g (NHE BYEE)
© VT 4 ‘)\r+”

which too can be made us small as we please by choice of N. Hence, finally,

I
= |
a’+ ""Ir“‘ (N-}efa

can be made as small as we please by choice of V. And s0 we need only consider

whn? p f cos az dv
a4 02 (e j)uta @362 — 00
Wae consider first the terms for which # < N': in them no Pis nceded. As «increases

from (N— p -z o cos ez oscillates, and —-—:,-I——m steadily decreases. And so, if
a*z e

(m—1%) = - is the first odd multiple of T which is > (¥=3) 7, and (N+p—-4) -
2q = a a
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is the first 0dd multiple of - which is > (n+14) =,

ﬂ:-n-- ® ' < ](N'p-nl[ll ___jd_{ _
aH-n%l (N Belo (N-ula azz._,,z,,.z )
<4_.'.!,_]og N+p4—t—7” N—t+" ;
- 2anw Ne—t—u Nep—it+n

and it follows by a slight modiﬁcntion of our previous a.rgumeut that

Nzl "‘2,,2 j"" |
T a0 J(Nopieta

can be made as small a8 we please by choico of .

There remain the terms for which # 2 V. We mu)" write them in the form
‘= " | . 3 “ - .
it ([0 mme (T e ), ()
va2+ 03 \)(N_ e ab+uw (N=j) el GT =207
The first series is . '

B 13
C codne | X+ -
s 3 _nm ; J‘(‘H)'l" CORAL 4o 3 T Z J"/h ( a) ;
¥ alwint y g u.maz+mr FRCEECR N az+(i+n)w
Now we may sumn the series
‘ cos aim
sin o

@
C2 -
N a x+(i+ll)1l’_

under the integral sign. And it iz equal, by Abel’s lemma, to

® 1 1
S;
5 {a.‘t+(|+n)1r ar+(i+l4+n)mw "
§ ' CO8 K
where S = \' win
6’

This is in absolute val Ce e

is is in absolute value < b (N |
where § is the numerically greatest of the moduli of the sums &; ; and therefore
< 5. Aud tho first serics in (1) is therefore numerically less than

Hw
8 = 1

—\‘—.

a v ad+ gt

and can be made us small as we please by choice of N,
The second series in (1) is

" cosa(x+‘—”)
@ nr @ 1,1'-" e/ a4,

% neN “"*‘"""" iaN —w2s QL F (i—’ll) "

We separate the terms which correspond to one value of # into two clusses, from
i=Ntoie2i~N,and from i = 2s—~N+1 to i = . Byunargumont similar
to that which we used when we were considering the terms for which n< N, we
can show (i.) that the series » ( © )

2z
N \3u-N+1)
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is convergent, and (ii.) that it is numerically less than a certain constant multiple of

7% 1

@«
: @vs - Nad

1 = 1 1, = 1 _1
= fvn(u—N+§)< N;r—"{2+1v2ol (’ i~N u )}

1 . 1
<}\;7T{2+2 }

which is <.

and this can be made as small as we please by choice of N.
It only remains to consider

—efta QT+ (i—n)m

i in
yva+aint L ¥ I
That this scries is convergent follows from what precedes. Also the inner sum is
tm-Nel)ula 2 n=N1l)wla g
[1,-[( Losaz . p (.osa(n:+n1r)d
N-hela GE—OT (N-u-{ulo ar

cos a (:b+’—11)—cosa(:v—ﬁ7-r)
dz

J(..-N'g) ela

0 aZ

nay [(W-N+d=la gin g
=~ 2sin 228 J AN gz
a Jy al
naw "-N
=-—2mu— z Ui,y
(k+4)els gin gz
whore v = J SINA% 0y (k>0),
“lixla @F
=% gin ax
?y = e tCde.
i atc
sl
um sin 0T
a
Now, lct Mn == = it
» n-N @ w
Then S, T o= unOytuns (g4 )+ =3 2o,
N v 0 Nek

we assume for the mument that this transformation is legitimate). Now v, as it

. . 1 .
is casy to see, deereares like ™ £ increases.  And

@ (n+ V) L
2z o= 2 {" - Suy
Ntk rik a4+ (n+1)2n? &%+ i
. "o, namw
where S, = ¥ sin -,
Nk a

and is therefore munerically less thau a eonstant multiple of
EROALLS
a4 (N4 k)2 s’

@
and, e fortiori, numerically less than a constunt multiple ot lt Hence o AE ty,
3 o
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is numerically less than a constant multiple o 7}-;. Moreover, when % is fixed, it
decrenses indefinitely as N increases. It follows that we can make
as small as we please by choice of N.—October, 1901.]

It only remains to show that our assumption as to the transformation of

o n=N . : - ‘o
3w, 2 v was justified. T pass over the proof of this, as it is not difficult, and
N oo
presents nv point of speciul interest in connexion with my present subject. I
conclude, finally, that the series

@ 7302 o (° cos azx dx

PR
P T j

223 2m2
(N=§)wfu QT =t
can be made as sinall as we please by choice of N. It follows that the use I mado at
the beginaing of this section of the formula of § 11 was legitinate.
It was really by this mcthod that Legendve und Lacroix ‘¢ verified ' Cauchy’s

formulwe

) % v di ) ‘.l
1[ coramy CE _ g S (0<u<y),

N cosbr 1422 ° coshé
. (see thoir Rapport on his ** Mémoire sur les Intégrales définies,”” Cauchy, Euvres,
Vol ..).  The preceding analysis will be suflicicut to show how little thoy had
approciated the ditticulties which it involves.#

Similarly
£ . B 0 a2 <o
r j €08 (¥ cot ax xdn,-‘ =lr r ST 0y 4 2 3 PJ L cosar gf_,-—u,
o 1—-2? o« Jp 1—2? 1 Jo (1 =2 (a*x3—2n?)

1 ©cosardy “ con ax dx

Sl P EEEE pprp [ S A E

a3 —nin? —u* o @xi— il
™ . nw . namw

= § =l gin @—-—5in--" }.

T
@¥ —nr? @ a
% 1 1 1
Algo b i (‘50t a-m),
1 a*—uncn 2a @
nw o NG
LT i MO 1 sin( )
“ sin (a—a
e Goe— o EREZE (gcacia),
1 w—ume 2a sl a
% .
wde . sin (a—a
aud so  P| cosaz cotazr . = 4n { sin ¢ cot a+ > ( )} = lmcosa.
° 1= sl a

Privcipal Values contadiing o Continnons Parameter,

13. We shall suppose now that the paramcter a is continuous,
and, in the fivst place, Lhat the rauge of iutegration («, A) and the
range of varintion of the parameter a arve finite.

We suppose, morcover, that the infinities of f (%, a) ucross which

* [Though I huve no doubt it hliglxt be simplified to some extent.—Nov. 6, 1901.]
VOL. XXXIV.—No. 768. ¥
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[ fda is not unconditionally convergent lie (for the values of z and a
in question) on a finite number of cantinuons curves z = X; (a),
which do not meet, and have at every point a definite direction
nowhere parallel to .

Uniform and Regular Convergence.

14. The principal value
A
PJ f (@, a) do 1)

will be said to be uniformly convergent 4 (3, y) if (i.) it is convergent
for every value of a in (B, v); and (ii.) we can find a pair of positive
quantities 8, €, corresponding to any assigned positive quantity o,

sach that che . _
j‘ fda;_l <o

for.all values of a in (3, ¥), every e Ze¢, and everybva,lue of & such
that a L », 2+ X 4, and 2, 2+ ¢ differ by at least 8, from any of X;;
and

'PJ fdl,|<a'

for all values of a in (B, y), and every 4 < ¢,

I muy remurk (i.) that the possibility of any of thie curves z = X;(a) meeting
x=a or @ = _1 iy excluded by the first condition, and (ii.) that the second. pre-
supposes the ﬁmt.

15. Thus, if f (=, a) = = Q, (L—-—a) (5] (a, a.)

. o . e .. - .. P
where O is a function whose derwute b is a contumous function of
both variables, x

4 :
PJ‘ F(, a) de

is uniformly convergent in (o +§, A-——f’), if0<g<é+€é<d—a.
For, in the first place, condition (i.) is satisfied.  Again
at+d atd - o ) ’
I‘I =0, (a+p, a)j (x—a) Q,,(a:—a) dw;
a=8

and however small be o, we can choose é, so that the modulus of
this is <o for all values of a in qnesbmn and every 8 < 8,
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Moreover, if a S z<r+ela—0, (or a4 d,Za<w+eZ 4),

T4e U+e
j Q, (r—a)Odz = j Q, (v) O (n+a, a)dn
x

u

t+e
<K 'r | 9, () | du (where K is a constant)
"

ute
<;I£J w| 8y () | da:
o Ju :

[

and, however small be o, §, we can choose €, so that the modulus of
this is <o for all values of # and a in question, and every €<,
Hence condition (ii.) is satisfied.

Agnin, if f(@ o) =, {x—X(«)} 0 (2, a),

where © is a function satisfying the sanme. conditions as hefore, and
X (a) is a function of a with a continnous and positive derivate,
(1) will be uniformly convergent in (i3, ¥) if

a< X(3) <X(y) < A

This follows at once if we put X (a) =3, and treat fas a fanction
of .

4 dy Al(r )
16. 'Thus (i.) PJ‘ d—L I’I Hor=a gy are unifurmly couvergentin (e + §, 4 —¢)

a—a 4 T—u
it O<t<t+t <Ad—n.

. L de * [ginl(z—a) , . ' . . )
(ii.) I’L win E.c—-a)’ I’L ;iu(;z:-:a?‘ dx are uniformly convergent in (vm+¢,

mrdr—=t),n=01, .., if0<i<t+{<m

2.
S cogaxdr . N ;
(iii.) 2 PR i nniformly convergentin (ar 4§, an 47 =¥), 0= 0, 1, ...,
o eusE—~ceusa : ' .

if O<t<l+t <m.

. o waxdr s .
(iv.) P| - CORITEL_ ig uniformly couvergent in
o COYar—cus @ . :

). - 2 ' .
(2,,; '9+E' _mr+§_£,). =12 .)
. ki

2m
. 2w +.0 Qur + 2w —0
and in (";,'_ +&, i 2"_" —E;) (»=0,1, ---)n

it 0<O<m O<f<f+i<h, O<f<fH+ir<m—b.

Agin, if f2) = a,(z—X) o(z),
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where © in a function which has a continuous derivate i—.@, and 6<X< M,
X
A
Pr sin az f(2) dz, PJ cosaz f(z)dz
a a

are uniformly convergent in any finite interval (8, 7).

17. The principal value
4
P J f(z, o) da
a

will be said to be regularly convergent in (3, y) if (i.) it is uniformly
convergent in any part of (3, y) which does not include any one of n
finite number of points aj, ..., a;, for which it ceases to be deter-
minate; and (ii.) we can find positive quantitics £, & and p;<p,
corresponding to nny assigned positive ¢uantity p,, such that

P K“"‘ £ (@, ) de

1
is uniformly convergent in
! 4 .
(ai—¢ a;+8) (=12, ..,7).

. . A-.p..
If aj =8, or a; =1y, it ig sufficient that Pj' be uniformly con-

ot
vergent in (3, B-+¢&) or (y=¢ y). 1

18. Thir case arises when the conditions for wniform convergence are violated
owing to rome of the curves £ = X; (a) mecting * =« or x = A. Then ay, .. , a.

are roots of the equations
a=Xi(a), A=2X;(a).

Sy A dr (2 -a) . -
Thus (i.) I'] poaoy I’j e dz are regularly convergent in any finite in-
) aZ—a s T—a
torval of volues of . The exceptional values of a are a, 4; if a<a, or a> 4, the
integrals are unconditionally convergent.

(ii.) I’J;é-iil %::E—--a—)’ 1']; ln_;—lnﬂ(-fz:fi:ai)) dz arc regularly convergent in any finite in-
terval of valucs of a. The exceptional values of a are 0, nr.

" cosazds

(i) PL CO82—Co8 a

O0<t<t+{<2r; but not in any interval which inclndes any of the poiuts
(25 + 1) .

c

is regularly convergent in (2w —m 4§, 2nr+n—t), if

2u
(iv.) PJ . Gosazdz (0 <8 <) is regularly convergent in any finite interval
o COS ar—cos6
. 2nmwt 0
of values of a. The exceptional values of a are g
L
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A glance at the figures may make the examples of this paragraph and § 16 olearer.
‘The thick lines are the curves # = X; (). In (iv.) they are the rectangular hyper-

holas im0
ar = 217,
2m
o
JRR S y
" 0/ IA )
L N O A 8

aj+ ¢

a;—f'

(c100) '
A,

lsin (z—a)

(i) fl@) = L, Hz=a) (i) (@) =

z—a —a pin (—a)’ 8in (z-a)’
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a
4r-8
2n
NS
0 <
. cos az . L\ _ Cusaz
@iii.) fg) =. “C° {iv.) f(z) = povppmpey s

cosx—cosa

Infinite: Limilts.
19. The principal valuo

PJ' f (z, a)dx
a

will be said to be wniformly convergent in (B, y) if (i) it is cov-

vergent for every valne of a in (B, y); and (i) we can find «

quantity A, corresponding to any assigned positive quantity o, such

that y ‘

P [ f (@ @) de
o .

is uniformly convergent in (f3, y), and

| I'_‘Af(:c, a)de| < o

for all values of a in (3, y).*

* [1t is to be obrerved that we do not demand that condition (ii.) shonld be
satiefied for all values of .f greater than a certain finite value, a8 we do in the
corresponding condition for the uniform convergence of an ordinary integral. A
similar remark applics to the definition of reguiar convergence in § 21.— October, 1901.]
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. ® 1 dz . . : e

20. Thus (i.) Pjo e r—eera g uniformly convergent in (}, w~}) if
Oct<t+l<m,

S dz . . ; © . T 3r .

(ii.) j o5 o=a) 924- o 18 uniformly ‘convergent in (E+£' -5--5') if
Dot<i+l<m

Consider (i.), for instance, .In the first place, P rN- is uniformly convergent
in (¢ 7—&). Also ' ’

P J' R i 1 dx
Ne N Jo COST—cosa 6%+ @+ 2ir)3
1 dx
= Guina 2 j {cot & (a—z) +cot ¥ @+ z)} ATy
2

])
Now L cot § (a—2) i (z+2ur)’ r ﬁ.
The second term is numerically less than

—— ]{ P
0%+ (2im)?
where /i i8 n suitably chosen constant, And the first
’
= la [mé (a=2) gy (r : 2;")2]
K’

where —a<pu<a. This, too, is numerically < - .. Finally, ,1— is less
="= ot (2t1r) sina :
than the greater of cosec{, cosec?’; and % P (12’ ; can be made as small as wo

please by choice of N. Hence ]‘j can be made < g, by choice of ¥, for all
2Nw
valuer of a in (§, #—=¢').

The uniform convergence of (ii.) may be proved in the same way. Aud by a
slight modification of rome of the arguments of my first paper we can prove
general theorems as to the nniform convergence of principul values of the forms

1’]” 4w, I,J-: c(m(w a)q,('p)rl:r, s

o COBZ—COSa

in suitably chosen intervals. But Ishall not delay over this at present.
21. The principal value
"9
Pl (@) de (1)
;e

will be said to be regularly convergent in (3, y) if (i.) it is conver-
gent for every value of a in (3, y) ;

.
(Gii.) P Lf (, a) dz

is regularly convergent in (3, y) for every finite value of A>a; and
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(iii.) we can find (1) a value of A, (2) a division of (B, y) into two
finite sets of intervals 6, n, and (3) a set of positive quantities p;,
each corresponding to an interval #;, and each less than some fixed
quantity p,, corresponding to any assigned positive quantity o, and
such that

<o

‘ Pj:f(w, a) dz

for all values of a in §, and

<o

| P { £ (@, ) de
JA-p;
for all values of a in ;.

22, We may remark that, if a;‘. v a:_l are the exceptional values of a (§17)
which correspond to any value of 4, the intervals o will be intervals of the type
(af -, u': +¢).  The number # way inerease beyond all limit with .

Tho intervals 8, %; are all to be understood as including their cxtremitics; so
that, at the point of division of 8, n;, vtk the conditions

IP( < o, ‘PJ \<o’
Jd A-p;
A

If PJ is regularly, but not uniformly, cunvergent in (8, ¥), it ceases to con-

are satisfied.

verge at all for certain values of a. But ]‘j can only be regularly convergent
a

in (B, 7) if it converges for all values of a in (8, ¥).

23. Tugorem.—If ¢ (2, @, @) s a function whose derivate o s con-
z

tinuous and of constant sign for all positive values of &, and all values of
a, a 1 question, and

lim ¢ () =0,

ras«x
the principal values

P j sinaw, o d P j COSAT () dy (a > 0)

o sinax 0 COSar

will be convergent, so lony as L 45 not an odd integer.  They will be
a

uniformly convergent i any interval (b, ¢) of values of a throughout
which this condition is satisfied, of hmy (x) =0 wniformly for all these
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values of a; and they will be regularly convergent in any interval (8, v)
- of values of « throughout which it is satisfied, if lim ¢ (x) = 0 uniformly
Jor all these valnes of a.

The first part of this theorem was proved in ‘my first paper. The
second part requires only a very slight modification of the proof there
given of the first.

There remains the third part. We consider the first of the two
principal values; and we suppose, e.g.,

O<f<gy<a

A g ane
In the first place Pj sma iy (x) da
o Sinax

is regularly convergent for any finite value of 4. Also

[ @ A
R
A (N-3)n/a (N-})nla

@ (N-Yr/a
or P + {

-y L4 ’

it (N=-1) Z be that odd multiple of T between which and A lies
2, . 2a

no multiple of I, Now
o

. au
7 am —

~ - el
i j =i j ——a—l,l/(t—b) du;
(N-3)ma « (N-3)n BINU a

and by the second part of our theorem we can make this as small as
we please by choice of N, forall values of a in question. It remaiuns to

. FA (N=3)m'a
consider J or ‘
(N—i) ma 24
Suppose B < %1[: <. < Q‘LA)I <y

The values ut,f1 are 711:, i=1F ..., k+1; and the intervals »; are of

the type (%T_S’ %+6,)'

Wetake N=1h, ¢= ¢= 31:1 (see the figure). And A—p,; = the
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value of # where a = (i—%) - meets av = (i—3)m; ie, p, = %A

=

az = (i+4)n
at = ir
------- wr = (=

:
EE az = (i—1)n
EE at = (i- 2w

7/7/7 R

A-p; £ z

Regular eonvergenee, infinite range.

As A< %, and 1.';1.', i is certainly less than p, = 2%

lies in y;, and = between (1,—-15) ~- and A—p,, aalies between (1—3) =
and

Also, if «

(A—p) (G4 3) Z - _(_/—%‘)(l:+ H .

1,41
so that i 2ir—aa >~£kz?ﬁ.:€,r> 1n
t—sg
A~ I ) x
Hence [ < vay {a—p—G-H T},
(i-3)7/a ' . (3

where ¢’ is the greatest value of |y (’L) | in the range of integration.
The least valne of  in the range is ; 3 -I, and ¢ (@) tends to zero
. - 1‘ .4

for & = oo, uniformly for all values of «. Aud

—pmi—3) < (L LY (= 4
A—pi—(—3) e (i—% i+%) (—3Hd< o
which does not increase indefinitely with 4 and ¢, Hence we can
choose A so great that w _
I’I l <e
A

throughout the intervals 5.
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The intervals 6 are of the type
(1‘.—'"' ; ) (7:_%) "

and if a lies in this interval, and z between 4 and (1.—5) —, ax lies
between (¢~%) = and (z—3%) =; so that

1
' --~— | < cosec §m.
Slll al |

(i-3) n/a 4 . r ‘
Hence | or }' ’ < cosec}ry \ (i—1) = —4l,
4 (i-3) wla i a N

where ¢’ is again the greatest value of | & (x)| in the range of in-

tegration. And it follows, as before, that we can choose 4 so great

that »
7|

o4

< a

thronghout the intervals . Hence

P( S]llal‘p( )da,

_ Yo sinax
is regularly convergent.
We may, for instance, suppose

Y(@) =2 (O<p<l), e (A>0),

1
6"
This'thémem may be extended in varvious ways. We may suppose,

e.g., that is of constant sign only after some finite value of 2 in-

E)e'
dependent of ¢ and a; or we may substitute for
sinaw  ‘cosan
sinae’  cos ax
such factors as. sin ax tan a, ' sin ax cot ax,
In these twé cases the exceptional values of 2 will be the even

integral values. :
It is to be observed that no difficulty avises with these exceptional

values, if jw ¢ (2) do is convergent. Thus, if in

P[0



70 Mr. G. H. Hardy on the [June 18,
we make @ = a, 3a, we obtain
j ¥ () da, [ (8—4sin az) ¥ (2) da;
0 0 .

and the latter of these converges or diverges with the former.

‘24, It is to be observed that a very simple transformation may
change regular into uniform convergence, or wvice versa. Thus the
substitution ax =1y transforms the principal values of the theorem
into

sin -y cos L g
1 @ _E__.Ilp(—l)dy _!_13 {w a./
o Sny al " a Tl Tcosy

which are uniformly couvergent in the interval of values of « in
question.

v (-3 ) dy,

[} a

Continnity of Principal Values.

26, Tueoren L.—If f (2, «) is a continuous function of both variables
in awy finite part of the rectangle

(ar A; Br 7)

which does not include any point of any of the curves # = X, (a), and
A
r [ f(z, a)de
Ja

s wieformly converyent <n (13, y), it will be a continuous function of
wac (3, 7).

This is true whether <1 he finite or infinite.

In the first place, suppose A finite. 'We may without loss of
gencrality suppose that theve is only one curve & = X (o) ; for we
can reduce any case to this by dividing tho vange of inlegration and
the interval (53, y) iuto a finite nnmber of parts.

We draw iwo auxiliary eavrves

=X (a)é;

in the region I extevior to these curves f(#, «) is a continuous
function of both variubles, aud therefore a rniformly continuous
function of a. Let a, be any value of a in 3, ¥); and suppose,
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e.g., that X'(a;)>0. Then,if » be a small positive quantity, and
a,+h<v,

4 A
P[ f (@, ag+-h) dm—P( f(.'v‘, ay) dx

= (j’:(’uo)—s.;. (; (aﬂ+h)+5) l—f(a:, ay+h) ~f (z, “o)] de

X (ag+h) 8 X (ag+h) +8
'( f (@, ap+h)dz — [ f (2, ap) dz
X (ag) -8 JX (ag) +8
X (ag+h)+38 X (ag) +6
I f (2, ag+h)dz—P [ f (z, o) du.
X (ag+h) -8 JX (ap) =8

Now let o be any positive quantity. We can choose & so small that

rX (a)+8
<o

’ .‘X(a)—s
for all values of a in (G, y), and ¢, so small that
J':|:+e
for all values of € £ ¢, and all values of 2, a such that 2, x4 e fall

within Bs. Then we can choose .’ so small that
X (a,+1) =X (a,) L ¢,

< %cr

and 1F @ aat )= G ) | < 5\ s

for all values of 2 in either of the intervals
a, X (a))—0; X (ap+h)+3d, 4;
and all values of 2 £ 2". And then

A

A
P L‘f (2, ag+ 1) de—D [‘f (v, q)) de| < o

for all values of 2 < A" A similar proof applies to negative values
g
of ., if ay>f3. Hence P ‘ is continuors ut a,
Ju
In the second place, let us suppose that the upper limit is.co. We

4
can choose A so that P}’ is uniformly convergent in (3, y), and
a

ol
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for all values of a in (B, v). And, since, by the first part of the
4 : .
' t.heox-em, P-[

is continuous in (8, y), we can choose %' so small that
a .

. A ) A )
PLf(m, ay+h) dw-—l:_’]a f(a:, a)de | < o

it h< ¥. Hence

‘ P ‘Eo‘f.(n:, ay+h) dw—Pj:f(m, a)) da } <o

if #< k. A similar proof applies to negative values of h. Hence

W
,I’j i8 continuous at a,
[ .

26. Thus the principal values
4 - .
P J dz _ 1 )gdze i)

0 gt 2a S d+ta
-]
dz ..
Pj = ;§=0, (ii.)
0 21—
© cosaz g
Pj Ciade == 5in ga (iii.)
o ¥*—ad 2a

are continuous in (8, ;y) if 8, 4 be any positive quantities. As a approaches zero
they tend to the finite limits

24
- O =
but they are meaniugless for ¢ = 0. And
*_cosnzdz  _  6inna (iv.)
ocosz-fcosa ) 8l a

'
if » be a positive integer ; and this is continuous in (¢ w—§') if 0<f<t+§<n;
und tends, as a approaches 0 or m, to the finite limits
um, (—)-lam,
but is meaningless for a = 0 or #.
Aguin, the priucipal valne
“ ) oyer < 2+ ol :
P J log (1 +2ac08ar +4?) ;) _ gy -1 _BMING v.)

0 l—z* l+acosa
is uniformly convergent in (—1, 1); and, for a = 1, -1 becomes
7| logdeosPhas _ oo
Jo I—u2

o o 32 .
pj !99_; WA _ g (@)
0 -

27. An interesting case is that in which an unconditionally convergeunt inte_.ul
chunges continuously into a principul value for sume specinl vulue of & parameter.
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Let us consider, for instance, the integral

J.h e f(:l:) dz, (i.)

v 142acos 2 +a?

* where f(z) is & function which has a coutinuous ‘derivate for all values of z in
question and a is positive and < 1. Then

[——- log (1 +2acos z + a¥) f(x)] log(l+2acos.z+a9)f’(a,)dx.
Now D log (1+a)? = zl—q l-—cnsz
da - 142qcosz+a® l+a l+2aco8z+a3 =

if 0<a<l; and so

1 +a)?
- - < log sec?® }z.
1+ 2acosz+a? e 4

51— -r“ log (1 + 2a cos = + 23) f (z) dx |
- Jo .

0 < log

1lence

<log(l+al I
a r

|_(" (%) | dz+ él:J.:Nlogsec?tx |f (=) | dx ;

and this can be made as siall as we please, by choice of e, for all values of g and »
in question.

i . . 1 . 4
Again, I [—;- log (1 +2a cosz+a’;f(:v)]
aa ) o F

can be made as small as we please, by dhoice_ of ¢, for all values of a in (0, 1), and
all values of % in (0, w—8) or (r + §, 2), where & is any positive quantity <, how-
ever small.  But, if 2 = o, this condition Lunnot be sn.t)sﬁed If, for instance,

f2) =1,
4asin?

_{100(1 —a)i— 1og(1_2acose+a‘-*)} ';1"‘?'{“"(""“)“}

und the value of ¢ which we have to take decronses beyoud all limit as a approaches
unity. And, in fact, sinco

Lim 5 LKA = §tan jz,
Casl 14+ 2aco82 +a®

the integrul (i.) is not convorgent when a = 1. Ifowcvcr,
1'_.[2' tan dx f(2) de

in couvorgent. Moreover, ’

|’ sing e dn

__.,l-&‘lacon'c-i-a'

== L 8= flm—) log (1 - 2acusd + a?) + )]—a]" logs (1 + 2ac08 2 + o) f(2) d.
~a -~ w4
As beforoe, the second texm can bo mado uy small as we pleaso, by choice of §, for alt

vulues of a in question.  And so can tho tirst, as it is oquul to
— Llog {(1—a*+ 4usind 43} 28/ (n +65) (—15051).
0 - -

We can choose'3, then, so small that
w6 sin 2
.- ,1l—i—Za,(..Oﬂ.v.ni-a2

j(.::)dml <e
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for all values of a between 0 and 1, and
l I’I btangz f(z)de | < 0.

n i
Hence j smz

S (@) ds

is uniformly convergent in (0, 1), and therefore a continuous function of g in thut
interval. Consequently,

l‘j tand/(2) dx_hmj 80T f(a)da. M

1+2acos z+a?

o 1+2acosz+a’

Similarly, PJ' }cot }z f(2) dz = lim j = ““;: oL )
awl —zacosw a'
P = (1 +a)/acos 4o .
j ko ta (@) dz = lim L (L ra)vacosls fia) ds, 3)
* = lim [* (1+a)vVasinla
PJ-' 3 cosecixf(z) dz = lux:x]xj T %acosz 4 el L S (@) dx. - (4)

In (1) and (3) we may substitute @, 4 for 0, 2z as limits, provided —~r<a<s,
7w <.« <3w. Similarly for (2) and (4).

28. We may expand the functions under the integral signs on the right in powers
of @, and integrato term by term.  Thus from (1) we deduce

P rﬂ dtan §s f(2) dz = lim 3 (=)tan -r' sinnx f(2) de. n
. Jo a=11 0 '
‘This is equal to 3 (=)t rl sin nz f (%) de,
1 0

if the latter serics is convergent.  Thns, if £ (2) can be cxpanded as o Fourier series,

£ . .
g+ 2 (@, cosnr + b, sin ) (0 <v<2w),
1

—ws

2 :
PJ dtan §z f(2) de = v lim 3 (=)* eaar = 3 (—=)*Vay,
0 asl | ]

if this is convergent.
E : = Hin ny
Tor instanco, S22 =
1o

} (m—2) ('0< &< ‘:!1r) H

und therefore * ttnu bz f(r=2)de =x 2(—)" -1 -!- = wlog?2
o

l'j ¢ tan ¢ dp = —wlog 2.
[

Similarly, we deduce from (2), (3), and (4) of § 27

1"“ oot bz f(z) dz'=lim 3 a» j" sin )l.’b‘f(.lf) (l;i, (2)

. asl 1 -

Pj'h isccdz f(z)dz = lim 3 (=)ran+d r' cos (1 +3}) 2 f (7) dz, ‘(3)
o a=1 0 0

P S' 1 cosec 1z f (2) de = lim £ anth ]' sin (n + 1) 2 f (2) dz. )
- asl 0
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In each of the series on the right we may put a =1 if the resulting series arc
convergeut.

29. In the same way we can establish four more general formule of which
P IJ tan § (2 —6) f (2) do = lim 3 (—)»=! o r sinn (z—0) f(2) dz
0 a=l1 0

ig typical. If, for instance,

JS(x) = cos pz, sin pz (p an iunteger), z=2¢; 08=2y,

we obtain Pj' tan (q»l—‘p) €08 2p¢ dp = (—)? wsin 2py,
: 0

'Pr tan (¢ —y) 8in 2p¢ dgp = (~)P-1acos2py.
o ;

-] o
30. Aguin, Pf 3 tan dz f (2) dr = lim °2° (—)—ta® j. sinnx f (z) dz, (1)
i as 0
if l’j sin S (2)dx
° 1+ 2aco82+a?

be uniformly convergent in (0, 1). Now it follows from what precedes that, if f(2)

. . : 2w

is continuous, I'I
0.

be so if we can so choose » that

. N 0
is uniformly convergent for any value of 2, Hence Pj. will
°

r “ gin 2 .—..... .
J.‘n-l'f'--u(,os_b*a f@)dz| < o )

for all values of a in (0, 1).
Lut us suppose, in the first place, that f (2) is positive and tends steadily to zero
for z = w. Then

“‘w . sin z Sy dz = - 10“‘ 1+ a)lj (2nm)

one 1 + 2008 % + a

a )2,

L
+ QL j ’ log (1 +2aco8 z +a?) f'(2) dz

Al

1 L1+ 2aco82 +a*
= : 1z,
24 J.‘“'l (1+a ) S(@) dx
)
Also 0 < log _t__(c;_:(:;s)a;+a (2) < logcos? §= f'(x),
and j log cos® dz f*(¥) du

is convergent. Hence condition («) can be sutisfied.
. 1
If, eg., S(x) = P
© de . = dz
t Tl =1 —\n=1_n _,,__1
Pjo ¥ unﬁzx :E:?( --lg L sunw.x --12(1+a)

..I‘J -tgl—l?i'd.‘): = w}rr. .
0 X

VOL. XXX1V.—N0. 769, G
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Similarly, Pr Ysec iz f(z)dz = liml i: (=) q'"lr cos (1 +3) z f(z)dz
o o= °

-3 (—)"j:cos(nmxf(z)dw.

if this series be convergent.

Legendre determined
: tan ax dz z cot az dz “ & 00860 6 dz
p| *An p| ZFeotazdz  p[ Zoo
_‘: Sem? ' _L Bmd ,[ 23+ m3

(considering them as ordinary integrals) by assuming that they were the limiting
values of

© _ sin2z zdz  _ PR.£
Jo 1+ 2acos 2a: + o 224 w3 ctm 4. g

§m 20z . xdu. -}
1 2a cos 2GI +a? z? + m~ elum —_ a
. _sinaz _zdz - " : e
0 1~2acos2az +ad 22 +m? (l +a) 0“"”-—4

for @ = 1. We can see now that his assumption was correct.

31, Suppose that, in (2) of § 30,

-(z)-=a:'“ 0<a<l)

. )
Th ™ —-

\en J-u cos (n+ 1) 4' o 2p (a) CO8 lmr (“ +_&)l—a

. - n 2n+1
Also jsecis =—2r 2 (=) __,__( )_'_‘,+ 1))

“ dz dz
4 1 v ly . = e n

and I.L 1 sec - 21r2( =) (2u+l)P| i (Zn+l)" =

]

—om—a . (21 Pr 1 de

o @u4+1)” ) BTT
= m-“tan 2 __(__.l:‘_-
an lar iv T+
by §§3-12. This serics is thercfore equal to
” 2 (=)

2T (o) cos-}avr 0 (;i::}‘)r'—“'

That is to say, the function |p(a) b (2( +)l) (0<a<l)
n ®

satisfies the functional equation
Yy (1—a) = ( 2 )"sin $an T (a) ¢ (a).
o
This is 2 well known relation first proved by Schlomilch, and closely connected with

the theory of Riemann’s {-function.

32. The formule of § 30 may be genoralized, as those of § 28 were in § 29. There
will be no difficulty in proving, for example, that

o 2 ® . ®
[ pov -co;?f( ) dx = Gng f sin ne L cos ndx f (z) dz,

if this series is convergent.
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If, for instance, f2)=

Gosh 3’
. jo cos 78z f (z) dzv = (ﬁ?&,'
ut
L m 1 dz 4 = . 1 dx
P = Z (=) (@2m+1
L cosdz—cos¢ coshirr = 0 (=) @+ )PL cos §z—cos ¢ a3+ (2m +1)%
PSSR ol LN
o cosh (2m + 1) §—cos ¢
Hence 3 (=) L3 sinne

§ cosh (2m + 1) G—cos¢ sin ¢ o coshnd’

This becomes obvious if ¢ = }w. It is really a formula in elliptic functions ; for,
if we write ¢ for -4, it takes the form

-3 (_)m q'znu-l . ] 1 ; qu sin 11¢

= - == .
0 1_29211191 CcOB ¢+ qim;'_’ ﬂln ¢ 0 1 +q2u

If we integrate. this from ¢ =0 to ¢ = =, observing that J"sm ne de is mor 0,

according as » is odd or even, we obtain the well known formula
6, 4 7 _ .

1+4¢? 1+9"+ ' l~-9'-’—l*—:_q°fm
(Jacobi, Fundamenta Nova, XL. b).
If we had taken ¢ = 4w,  (¥) = - L.

cosh t—cos 6’
we should have found that

. _.1____+ ;{"__... R = ( ym 2 Nnh (2 +1)(r—0) 8
corh 88 o {-cosh(2nw+6)& cosh (2nr—6) 8 } sin 9 o “sinh (2m+ 1) wd

This too becomes obvious. if ¢ = §w. It is not difficult to obtain general formulee
which include these as particular cases ; but'my present purpose is only to show
how the methods of the preceding scctions can be applied to obtain results of

interest in different branches of analysis.

3. The equations of § 30 also hold (except for certain exceptional values of a) if
1 (@) = g asy (2),

where ¢ (2) is a function whose first two derivates are continuous and of constant
sign after a certain value of z, and

§m¢(z) = 0.
® i i+w  [2e
F . smoz dz = I - $inz___ pooae
o Jzn.l+2acosz+a-f() z 2 1«9-2::;005.'¢-H:2 (@) ds,
where F(z) = ﬁ g?n“a(z+2hr) ¥ (z + 2im).

Now, provided e be not an integer, the series

250 diany (2 + %), i giam y (4 2im)

a 2
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are uniformly convergent in (0, 2=). It follows (i.) that, whatever be the value
of #, F(2) and F/(2) arc continuons in (0, 2r); (ii.) that we can choose » so great
that the moduli of F (z), F'(2) are as small a8 wo please for all values of « in (0, 27).

" H ” g
M L N TR § j“l __(1+a) F(e) ds,
Preoven o 1+2acosz+a’ v) d= 2a )y % 2acos v 4 a? &
(1+a)?
d 0 i < ] 31y,
an < logl+zaoosz+a < log sec? 1z,
H ® __ sing’ d,-l __j 1 31s | F'(2)] d
onee _L,..l+2acosx+a3f(x) vl < ogsec’}z | F'(z) | 4z,

and can therefore be made as small as we please, by choice of n, for all values of «

in (0, 1). Hence Py
Pl e e
+2accsz+a

is uniformly convergent in (0, 1).

Suppose, e.g., that f2) = qug (0<a<l)

Then PJ tan iz cosaz - ": .= 2lim3 (=) a"'[ Rin 72 oS ar ——-(-’-
0 at 0

a=11 02
hao
= .1.11»2 -1 fo-(n=-a)o 4 g-(n+a)e Co8
i3 (- e =t
= | .
Similarly, l’[ cot 42 cos ax :d”w = reoshad
Jo a4 0% =1

This agrees with the result fonnd in another way in §12. A third proof will be
found iv the Quarterly Journal, No. 125, 1900, p. 120.

Tt is not difficult to prove that

P r S 2y de
Jo l+2acos.a:+a'-‘f( )

is still continuous in (0, 1) if the conditions of §30 are satisfied, except that f(z)

has n finito number of infinities X’ none of which are odd multiples of in. In

this caie the integral is not unconditionally convergent for any value of a.

wlz

.'l?ri.v_ = 2lim ; (_)n-lanIJJ 8in N cos ax - —=.
o

Thus I’J tan Jrcosaxr [,
0 2%—0" asl 1

= {r lin: % (—-)"'1u"{cos (n—a) 6+ cos (n +¢) 9}

= mcos af tim .08 +a

. = 3w cosaé,
= 1 + 22 €080 + a? 3

@
Similarly, ]’j cot 12 cos nx - 'ii% = ~1ncos af.
. ]

This, again, agrees with § 12, and with the paper in the Quarterly Jowrnal referred
to above.
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Discontinnous Principal Values.

34. We shall now consider some examples in which the conditions
of § 25 are not satisfied.

(i) ¥ O0<a<nan,

{ sinar ady _ lﬂgiﬂha_ 1)

1o cosaz 1+2?~ % cosha’

pl| cosax xde —1n cosha @)
o Sinaxw 1+a? Z" Sinha’

‘These principal values are discontinuous for a =a. For,if we put
a = a in the first, for instance, we obtain

PJ' n'um I e = 3r taih q,
o La?
which is incorrect, the proper value being
T h
6‘.’u+ 1 *

Hence (1), which is, after §23, uniformly convergent in (0, ' < 1)
cannot he uniformly convergent in (0, 1).
Now, if € be a small positive quantity,
w
P “sin (u—€)x w d_aﬂ} PJ tan az cos e & de ? & sin e Tl
o cosax l+a 0 1+28 |, 1+

The latter integral is, as is well known, discontinnous for e = 0.
being = $we® if e > 0. And it is easy to sce that it is not uniformly

convergent in an interval inclnding e=0. For L decrenses

1+42a°

steadily after v =1, Hencg, for sufficiently. small values of e,

o4 (i+1) mfe (4n'e 4m :
xsiner 2 : 2810 %
S de = 3 > > ]' P
anfe 1+a? 2 Jinfe Jomie  Jom €' 0*

(3w

" Mt
> ( . ,) sin u du
) et e (u+ )
(8w 2
T (u ur—e .
> + ) sin u du

Jan (¢ +u*) {e +(1L+7r) }

> 1q® J's" sinn
2r (n4m)*
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a positive quantity independent of e. And, however great be 4, we
can choose ¢ so that 2n = A; and then j zawm G,w

€ A 4 14+
this positive quantity, so that the integral is not uniformly con-
vergent.

dz is greater than

] .
On the other hand, P J tan az cos ex b is continuous for e=0.

0 1+

This does not follow at once from anything which preceaes, but is
not difficult to prove divectly. For, in the first place,

i : 1z N, _ r!sgg_mcou:cd‘
PLt&nmco“w(-’” 1+m’/dn'—P,o T

is uniformly convergent in any finite interval of values of ¢ and
therefore continnous. This follows from the remark at the end of

@«
§23, since | --- df—t--g- is convergent. Moveover,
x (1+a%) -
‘ o
dz
P\l tanaxcosex -
0 x

. . . . € oy .
is continuous for ¢ =0. For, if — = ¢, it is
a

(i+1) m * n ) -
' = EPL tanxcos & (¢ +1¢m) a—:?w

P[ tan x cos?a:%?: §PI

[} ir

i cos & (w+1iw) 0033(’(:#4-7_:'—-:0} dx
—Ejo trma.{- z+imw ArtwT—a )
Now the series ’

3 {pos 8 (x+im) cosd (irtw—1x) %

1 4w T — b
is uniformly convergent in (0, ir) for any small value of §>0.
Hence we may sum under the sign of integration.
Moreover, 1t is not ditlicult to show that

2 {9@_@1‘_@ o8 d (It 7 —a) }

n x4 T —

@ S 3 —_—
=1 43 { 1 4,1 } _j sin nrd SLGT=D) 8 45 (7
ne+l

T+ nw THir  a—im 0 sin }wd
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1 (n8 sin (%vr—w) —
The last term is - ; sin 7t ——0n—— " dt, ()
7 lp wt
sm ‘2—

Now, if 0 < # < ¢, and & is sufficiently small,

. 1 \
81n T—2) %
sin (3m—2) u (0<z<3n)
sin 3w
is positive, and increases steadily as » increases from 0 to , and so
. ) _
lies betweer ir—z sin (ir—) 8
k and \
i sin 3w

b

which differ by a quantity which vanishes with 8. And, if | is the
grentest integer contained in #d, and

nd = l+p,
the modulus of (a) is less than
| o t
_ l sin (37 —x)— l+p
2 ! I sin mt —— " gt | + 1 { <L,
n o Ji-y . t nih n
| 21011 ﬂ—;b-

where C is a quantity independent of », ¢, and . Hence (1) can be
made as small as we please, by choice of u, for all values of ¢ and =
in question.

Hence 3 is nniformly convergent in the domain
1
= (0, ‘%7")1 o= (01 6o))

where 0, is any small, positive gqnantity. It follows that

PI tan 2 cos Bw (h' t‘m 3 {

cosd (@ +iw) cosd (im4m— m)}
0 o

e4ir rr—r

is & continuous function of & for § = 0. And, in fact, we find on
summing under the integral sign, since

§{0033(1 +2m) cqu(nr-&-w _’Q}:’cotm

0

that P [ tan & cos dx — de = 3.
0 &

This principal value is therefore independent of &, and changes con-
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tinuously, for 6 = 0, into
P I tanz da = }m,
0 &

as the preceding analysis shows that it should.

. sm az a,da,
Hence j
0

cos ax 1+a?
has a discontinuity of magnitude $» to the left of a = a.
Cauchy noticed the corresponding discontinuity of

w
J cosar zde
p Sinaz 1+a*’

which, if a = a—¢, is

-} o -

P]' cot az cos ev AL I TR g,

0 1447 1447
But his discussion of it cannot be consideved satisfactory. For he
assumes that the first term is continuous for e = 0. And, moreover,
he is content to accept the discontinuity of the second as a fact, with-
out in any way attempting to explain it.

35. (ii.) It is eany to prove that, if

a>1, a>0, ¢>0,

aCoRazr—cos(a—c) Az e
j (=)o By £, (1)
0 l—Zacosr-c+a- 1422 a—c¢
p * acosar—cos (r—c)z _dr _ ik"_.unna—sm(a—»c) @)
o T 1 2acoser+af  1—z® 1—2acose +a?

‘We might expect, after our investigations in §§ 27-30, to be able to puta = 1 in
these formulee, provided we introduce the sign of the principal value before (1).
But this gives

P sin (_r_r__ic)_z dv _ e

Jo sin der | 1+ 22 1—e-¢’

PJQ sin(e—ic)w dv__ jm €083 cos (a—4e)
o sinjer 123 sin 4¢ ;

hoth of which are incorrect.

The explanation of this is very simple. Tor let us consider the simplest case, in
which @ = ¢. Then
——'. - (a>1),

e

* | dx
[ acosct—1 =3
0

1~2%acoscr+ad 1+2° ¢
and the limit of this for a = 1 is 9 (é: i) A, whereas its value for ¢ = 1 i8 - }m.

. 4 acoscr—1 i
T i i d: 1.
The fact is that J 1_2“c0803+a1¢(t) % @)
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is discontinnous for a = 1 if (e, 4) include any of the points

2nmw
o

And it is easy to seo that it is not uniformly convergent. Suppose, ¢.g., ¢ =1,
4a=0, ¢ (@) =1. Then

4 -
_eoosz=1_ dx =tan-! ng
o 1—2acosz+a? a—cos§
Now tan-! Smg <g
a—co8 ¢
involves sing < tan o (a—1+ §8in2¢...);

and, however small be ¢, we can choose a value of a 5o nearly equal to 1 that thix
ineqnality is not satisfied.

The integral (i.) is, in fact, substantially Poisson’s integral, which is so important
in the theory of trigonometrical series.

[36. (iii.) XIf ¢ (v) is a function of  whose derivate ¢’ (x) is continnons, the
principal value

®(a) = Jlog( ¢) ‘?(”) dr (a<a<d, a<B< A)
is continuous for a = 8. For

& (B)-®(B—¢) = Jlog( B+‘)“3£%dx.

Now we may replace e, 4 by B.-p, B+p, where p is any small fixed positive

8-0 (A
quantity ; for the limits of J- ° [ for e = 0 are evidently both zero. And
a B+p

r r” = PJ log ( ) ¢ (1 + 8) {ly_

JB-p
“w \3du  (°
tog (1) G+ [t () # e man,

=¢(m17j

where —p< 1, <p. It is easy to see that the last integral tends to zero with e.
But the first is ) :
- e —
¢ (ﬁ)j log (n €t ¢ (B) r log (5__1) dat, ;
+el u 0 t

t+1

and the limit of this for € = 0 is -

?(a)j:iog(‘"‘) 7——¢nﬂ¢(a>

} t+1
Hence & (B—0)—(8) = 4n2p (8):
and, similarly, $(B)—¢ (8+0) = 4n%p (8).

‘We shall frequently meet with discontinuities of this kind when we come to con-
sider the differentintion and integration of principal values.— November 8th, 1901.]
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Continuity of Principal Values (continued).

37. TrroreM 2.—If f (z, a) be a continuous funciion of both variables
in any finite part of the rectangle

(aa a, ﬁ: Y)

which does not include any povnt of any of the curves x = X;(a); and
P! f (@ a) da
@

be reqularly comvergent in (B, v), <t will be a continuous function of
ain (B, v).

For, if o be any assigned positive quantity, we can determine
(§21) a value of 4, a division of (3, y) into two sets of finite
intervals 6, 7;, and a set of positive quantities p;, such that

|2 [ <o

in the intervals 6 and ! P'{ l < o
A-p
in the intervals n;.

And, if q, be any value of a in (3, y), we can choose A’ so small
that a, and ay+%’ lie in the same sub-interval. Suppose, for in-
stance, that they lie in 4;. Then

A-p;
2|
a

is uniformly convergent in ;.. And the conclusion follows as in § 25.

38. Thus PI tan az g, )
0o T

is regularly convergent in (3, v) if 0<fB<<y, and therefore con-
tinnous. Itis, in fact, = = (§30). But it is not regularly con-
vergent in (0, y). For a=0 all the curves = X, (a) recede to
infinity. And it is easy to show, by an argument similar to that
used in § 84 in the cuse of the integral

r zsinaz 5
0 l+a;’ ?
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that, however great be 4, we can alW&ys determine a positive quantity
r and a value of a such that

w0
‘ P !. ‘ >,
Ja
w
and, moreover, ' PI ! >,
A-p

for all values of p less than any fixed quantity p,.

It is obvious that (1) is, as a matter of fact, discontinuous for a = 0.

On the Haxponential Theovem for a Simply Trausitive Continuous
Group, and the Caleulation of the Finite Equations from the
Constants of Structure. By H. F. Bager. Communicated
February 14th, 1901. Received, in. revised form, November
28th, 1901.

The present note was originally presented to the London Mathe-
matical Society in February, 1901, in connexion with Mr. Campbell’s
paper, Vol. xxxirt., p. 285, and had then the purposes of suggesting
the: methodical use of a certain notation—that of the theory of
matrices—and of showing how My, Campbell’s results follow from
Schur’s determination of the intinitesimal transformations of a group
of given stincture (§ 4). Incidentally the theorem (§2) here called
the exponential theorem was fthen obtained, and it was stated
that. it would- lead to a method of finding the finite transformations
of a group of given structure. The present form of the note diffors
from the original form by the addition of a verification of this
statement, with examples (§§ 3, 5, and the latter part of §4), and u
considerable abbreviation of some parts of the paper whose uovelty
was stated to consist only in the methods employed.

L. The following notation is employed.
The diffevential equations satisfied by the functions f in the equa-
tlops 2 = f (20, a)

of a finite continuous group of n variables @, ...,2, and » parameters





