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Principal Values depending on a Parameter.

1. If f(x, a) is a function of the two variables x, a, which for
certain values of a possesses a convergent integral from x = a to
x = A, -A

1 («) = /(»» a)d*

is a function of a defined for those values of a. We may suppose
a, A independent of a ; for, if they depended on a, we could make the
substitution

x = a+(A — a) y,
and so obtain an integral with the constant limits 0, 1.

We suppose further that the values of a for which I (a) is denned
are infinite in number, and form a closed s>-t S; and that «0 is a
limiting point of the set. Then the general double limit problem of
the integral calculus is : To determine the relations between

and the limits of indetermination <f J ( " ) fur <» = au.
It is not difficult to show that we may without loss of generality
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suppose that the parameter is either a positive integer which tends
steadily to <x>, or a continuous variable which tends steadily to any given
value.

These problems—problems such as that of the integration of an
infinite series term by term, or of differentiation under the integral
sign—are well known and have been very frequently discussed. It
has, however, generally been assumed that all the integrals which
occur in connection with them are unconditionally convergent. In
this paper I shall begin a discussion of some of the corresponding
problems which arise when we are considering integrals which are
only conditionally convergent, the principal values, in fact, the ele-
mentary theory of which formed the subject of my first paper.* I
shall begin with the case in which the parameter is integral.

Principal Values and Infinite Series.

2. Let S (x) = 3 un (x)
o

be a series whose terms are functions of x, convergent, at any rate in
general—i.e., with the possible exception of a closed enumerable set
of points—for values of x in an interval (a, A). Then 8 (x) is in-
tegrable term by term over (a, A) if

f 8 (x) dx = I [A un (x) dx, (1)
Jo 0 J a

CA N CA N

lim % un (x) dx = lim 2 un (x) dx.
J o JV-a> 0 JV=oo J n 0

The conditions under which this equation is true have been discussed by many
writers. We may refer especially to Dini, Grundlagen, pp. 512-530, and Osgood,
" On Non-uniform Convergence, &c.," American Jour, of Math., Vol. xix.

The question with which we are concerned at present is: Under
what circumstances is (1) true when some or all of the integrals
which appear in it are only principal values ?

3. Let us suppose, in the first place, that the interval (a, .A) is
finite, and that S (x) is integrable term by term across any part of
(a, A) which does not include a single point a (a<a<-4). Then, how-
ever small be the positive quantity e,

a—t CA v a, JO / fa—« CA \

-t- 2«,l(fe = 2 + )uHdx. (1)
a Ja + e/ « 0 \ J O Ja + e'

* "The Elementary Theory of Cauchy's Principal Values," Proe. L.M.S.,
Vol. xxxrv., pp. 16-40.

or
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Let us suppose further that

Ja
dx

is convergent for every value of n, and that

» fA
2 P I un (x) dx
o Ja

is convergent. Then the right-hand side is

2 JP I ti,,rfcc—2 JP I W,,£?*B.
0 Ja 0 Ja-«

If, finally, we suppose that the last term tends to zero with e, the
left-hand side of (1) will also tend to a limit, which is by definition

f A m
P I 2 «i, (x) dx ;

Ja o
f A m m CA

and P 2 undx = 2 P\ undx. (2)
Ja o o J a

This equation is certainly true, then, if (i.) 2«,, is integrable term
by term over any part of (a, A) not including u,

Ja

is a continuous function of x except at a, and

(Hi.) lim {F(a-e)— F(a + e) } = 0 .

4. We may distinguish three cases: (i.) that in which no one of
the individual terms un becomes infinite at x = «, (ii.) that in which
a finite number of them become infinite, and (iii.) that in which an
infinite number of them do so. The first and last are the only cases
of importance, as in the second ease we can consider the terms which
become infinite separately.

5. (i.), (ii.). In this case the symbol of the principal value on the
right of (2) of § 3 is unnecessary, i.e.,

fA „ . CA

P\ ^undx-%\ u,,dx.
Ja o o Ja

And we may state the conditions of § 3 as follows: that 2 un is in-
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tegrable term by terra over any part of (a, .4) which does not include
a, and

F (a;) = 2 I tin dx
o Ja

is a continuous function of x except at a, and

lira {F(<,-e)-F(a + e)} =0.

6. Suppose, for instance,

= -?--, (a<x<l);

the value of «„ for x = a is immaterial. Then

S(x) = — - (0<*< 1),
x— a — ~

except for x = a* Also, if 0 < x < a,

o («+1) «
while, if a<x<l,

_=log ( !-£-);

«Jo

Thus J'(x) is continuous except at a, and
.F(rt_e)_.F(,M.6) = 0.

Also [lundz = ±~—— (»J>0),
Jo » » + l

and P f - ^ - = log - — 1 + 2 f «,,rfa:
Joa:-" « l Jo

= ,„*(!-,).

7. (iii.) The simplest case in which an infinite number of the
terms «„ become infinite is that in which they all become infinite
owing to the occurrence in all of them of the same factor

Qv(x—a).

Let us suppose that «„ = Qv (x—a) vn,

where vn is a function of x which, whatever be n, has a continuous

* Here a is the a of {§ 3-5.
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derivate for all values of x in question. Then, by a lemma proved in
my first paper,

P \\ndx = [v'u
Ja-e

where — e <. fi <. e. In particular, if

fi,,(aj—a) =

+ f
Jo—e

x—a

Suppose now tha t | v'n \ < Vn

for all values of x and n in question, Vu being independent of x and
2FN convergent. Then the last condition of §3 will certainly'be
fulfilled.

8. Let, for instance,

where 0 < a < w, \p\ < 1. Then

, 2»" cos nx , A.
«„ = 1, «„ = — (n > 0),

cos 3—cos a

(COS £ —COS a)(,l — 'lp COS X + p-Y

and, if we may use equation (2) of $ 3,

a_ifli»r (h~ «=2i»»i>r~—*—.
Jo (cos # —cos a)(l — 2//cosa: + ̂ >3) i J0cosa; —cosa

since

J 0
dr.

cosa; —coso
But the left-hand is

ax
1— 2pce» a+p* i Jo 1 — '2p COS x+p* J0r:osa. — cos a j l+p- — 2p cos a

= -—• 2j»" sin Ma.
sin a i

, , „ f" cos nx dx n sin «a
Ana so r I = - .

Jo cos x — cos a sin a

To justify the use of § 5 we have only to observe that

vn = 2tf" cos nx —~—a --,
cosa; —cos a

and \vu\a+,< E\p\",

where ATi.s some quantity independent of x and of M.

9. We have so far supposed that (a, -4) is finite and contains but
one point a across which the series ceases to be integrable term by
term in the ordinary way. No new point arises if (a, A) contains
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any other finite number of such points «. This is so even if A be
infinite; for all the points a can be included in a finite interval
(a, .4,), and integration over (-4,, co) is merely an ordinary case of
integration term by term.

10. Thus, for instance,

T-ir^ i T ^ - i ( a > 0 > \P\<1)

o 1 — Zpcosx-tp* x1—«l

sin na = - -

* — «

ir p sin a
—p ) 1 a(l—yr) l—zpco&a+p*

This integral is given by De Haan (Tables, 193, 1).

11. Let us suppose now that there are infinitely many points a.
I shall confine myself at present to the simplest case; I suppose
A = 00, the points a (a,) isolated,

a< a1<a3< ... ( l ima , = 00) ,
im<X>

and ain—ai > H (i - 1, 2, . . .),

where If is a positive quantity independent of t. That is to say, I
suppose that the principal values witli which we are dealing are of
the type covered by the earlier definitions of my first paper. There
is no particular difficulty in applying similar considerations to the
more general cases dealt Avith by the later definitions.

I suppose, moreover, that the conditions of § 3 are satisfied over
any finite interval (a, -4,), provided Ax =£ «<—that is to say, that
2«» is integrable, term by term, over any part of such an interval
which does not include any point «,; that

11,, dx

is a continuous function of x, except at the points «,; and that

lim {F(ui~e)-F(n, + e)} =0 (i = 1, 2, ...).

Then, if B be any small positive quantity, and

\x-a,i>a (* = i , 2 , . . . ) ,

F (x)-F (a) =F[ 2 «„ dx. (1)
J«
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Now let us suppose that

P f $uHdz

is convergent; that is, that when x tends to oo through any system
of values satisfying the above conditions the right side of (1) tends
to a finite limit independent of the particular system chosen, and
therefore independent of 8. Then F ^x) tends to a limit, and, if

/.CO

lim F (%) = 2 P 1 «„ dx,
Ja

it will follow that
peo poo

P 2«14c?a; = S P una*. (2)
Ja Ja

12. Let us apply this formula to the evaluation of

P \ cos ax cot ax x (0 < a < 2a),
Jo l + x

which, after my previous paper, we know to be determinate.

Since cot ax =. —+22 • ?* „ «,,
ax i

xdx _ 1 f* cos ax dx _ • p (w ^a cos ax dx
l + a;s a Jo 1+a;2 i

if we may use the formula. Now

D f °° x1 cos ax dx I f f * cos ax dx

or + HIT' (_ a a )

CD 1 1 / I \

AIBO 2 ——v~i =" — ( c o ^ a )»
i a- + n-n3 2a \ a /

n-ir . nair
_„ 8111

I 8-inh (°"fl) (0< a< 2a).
2 sinh a2 =

i a- + nV 2a sinh a
, T „ f°° . xdx , ( „ ,, sinh {a—«) ) w cosh a
Hence P I COS ax cot aa; = in J c-n coth a r\ [ =» —, r •

Jo 1+*- 3 .̂ sinh a ) ^ " - 1

This result may be found in other ways. See the Quarterly Journal, 1900, p. 126.

We have still to justify our use of the formula of § 11. This, as might, be
anticipated, requires an argument of some little complexity. In the first place it is
clear, after §§ 3-8, that (1) of $ 11 holds ; and so what we have to prove is that
we can so choose £ that ,•» r s c o s ax rfr,

? ) x (l + a.-2)(aV--«V)
is numerically less than any assigned positive quantity a, for all values of :c>{, and
such that | x_a. | > s (» = 1, 2, . . . ) ;

aud that however small be 5.
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Now this quantity is

I f 0 0 cos ax dx J ' V p fx

a2 ~+»Vj* ' 1 + x 7 " a«T«V L

and evidently we need only trouble about the second part.

Now suppose either (Ar— \) — < % < —- — 8,
a a

say the former. Then, if n < N,

[June 13.

if n>N,

and, if n = If,

2a«7r ° I - Y - i - « -V «• 4 + M ) '

< - - l o g ] • • -f -—•f C;

< — l

a5 (2 iV- 2o

This last quantity can be made as small as we please by choice of JV. Aijain,

which can be made as small as we please by choice of iV. Also

which too can be made as small as we please by choice of N. Hence, finally,

can be made as small as we please by choice of j \ r . And so we need only consider

5 "3ir8 P [ ^H?x'I*
o" + « V - J(JV-1) ,>a a?J? — ri-ir-

We consider first the terms for which »<N: in them no Pis needed. As x increases

from (JV— i)-—, coswa; oscillates, and —-—-— steadily decreases. And so, if
a a':x7—>i'n2

(m-k) — is the fust odd multiple of — which is > (Ar-*) * , and (A"+/>-i)--
« 2a — o a
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is the first odd multiple of ~ which is > (m + i) —,
2a u

N.-^-n N+p-k + n) '

and it follows by a slight tnodiilcation of our previous argument that

I V
can he made as small as we please by choico of N.

There remain the terms for which u ^L N. We may write thorn in the form

Arer + M'w? \ J ( A T - 4 ) W / . OC + «JT J(Ar-j)w/.i ax — nw I

The first series ia

C U H " a i
A> a-' + H-V^ ^ J ( i i ) ' ca? + »'w AT a a + « V AT j W 2 rta; + ( i + n) v

Now we may sum the series
cos uiir

2 sin V _
A1 aa; + (* + n) w

under the integral sign. And it is equal, by Abel's lemma, to

where St = 2 ̂  ' - - .

This is in absolute value < • -• • - — •,

where S is the numerically greatest of the moduli of the suma Hi ; and therefore
S

< — . And tho first series iu (1) is therefore numerically less than
Hit

nnd can be made us small as we please by choice of N.

The second series in (1) is

„, cos « | x + — )

k 1 -v"V2 I i>p - - A 'La,.
Wo separate the terms which con-o-Kpond to one value of n into two OIUHSCS, from
» <=> N to i -" In — N, and from i = 2/J —JV+ 1 to i = oo . By un argument similar
to that which we used when we were considering the terms for which n < JV, we
can show (i.) that the series » / » \

- A T + I /
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is convergent, and (ii.) that it is numerically less than a certain constant multiple of

« 1

which is <± 2 * < 1 | 2+ S f -^"- ) 1

< ~JLT~Z {2 + 2 } JNrr ( i « J

and this can be made as small as we please by choice of N.

I t ouly remains to consider

i S L'Z j P\ x dx I.
jv a"2 + ?*V2 L iv J-w/2a aa;+(i —«)ir J

That this series is convergent follows from what precedes. Also the inner sum is

r K»»-*•! ) - / • COB gx dx _ p H»-**»)»/- c06fl(a; + «ff) rfa;

L J(W-i)W« ax—nir J(Ar-»-i),/« OJ;

Jo aa;
rf*

= —2 sin ^ ^ 2 «*i
a o

whon.

Jo a;t;

Now,

Then

let

2 M,,
A"

;i-A"

2 Vk = uN
u

v/ir Hin —
a

to CD

... = 2*»* 2 «,,
0 iV**:

wo assume tor tliu inumcnt that this transformation is legitimate). Now v*, us it

is easy to tsce, decreases like — as k increases. Aud

iV+* " .V+i

, c, " na-n
w l i e r e <5>,, = Zs KUI •,

.v+* a

aud is thoiot'itro numerically less than a constant multiple of

O- + ( i \ r+A)2 7T-'

and, a fortiori, numeriually less than a constant multiple ot , . Hence t>* 2 un
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is numerically less than a constant multiple of -•-. Moreover, when k is fixed, it

decreases indefinitely as Nincreases. I t follows that we can make

2 Vk 2 «„
o JV+A

as (small as we please by choice of iV.—October, 1901.

I t only remains to show that our assumption as to the transformation of

2 •'/» 2 vt waB justified. I pass over the proof of this, as it is not difficult, and
N 0

presents no point of Hpecial interest in connexion with my present subject. I
conclude, finally, that the series

°° »3"2 p C" cos ax dx

can be made as small as toe please by choice of N. I t follows that the use I mado at
the hogiiraing of this section of the formula of § 11 was legitimate

It was really by this method that Legendve and Lacroix " verified " Cauchy't*
'formula) .*, , ,

,t f COR ax* dx . cosh a ,„ ^ . . .
1\ — = tir—--— (0 < a < o), ... ;

J 0 c o s ^ 1.+ *" cosh b s = . —
(see thoir Itapport on his " Momoiro sur les Integrales definies," Cauchy, (Euvres,
Vol. *.). The preceding analysis will bo sufficient to show how little thoy had
appreciated the difficulties which it involves.*

Similarly
7, fx , xdx 1 -n C cos ax , , n if. Df" *2 cos «.c dx
1\ cosaxcotax - = P dx + 2a2,P\ ;,--— .

Jo 1—*' « Jo 1-3- 1 Jo (1— x')[a-x2—w-ir8)
cos ax dx . ., ,

Also 2 - — L , --, = -l- ( cot a - - -),
1 a—n-ir- '2a \ a /

2 -..
1 a- —i

and so T\ cos «* cot ax - ' ' '• = %ir | sin « cot a +
Jo 1 I

%ir | sin « cot a + ;
1 — .<- I Hina

Principal Values contaiuiny a Ouutiniious Parameter.

111. Wo shall suppose now that the parameter u is continuous,

ami, in the first placo, that the range oi: integration (a, A) and the

range of variation of the parameter a are finite.

We suppose, moreover, tha t the infinities of / (a;, a) across which

* [Though I have no doubt it might be simplified to some extent.—JVbv. 6, 1901.]

VOL. XXXIV.—NO. 7G8. F
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jfdx is not unconditionally convergent lie (for the values of a; and a
in question) on a finite number of continuous curves x = X, (a),
which do not meet, and have at every point a definite direction
nowhere parallel to x.

Uniform and Regular Convergence.

14. The principal value

\A (1)

will be said to be uniformly convergent in (/3, y) if (i.) it is convergent
for every value of a in (/3, y) ; and (ii.) we can find a pair of positive
quantities 80, e0 corresponding to any assigned positive quantity <ry

such that .
I f.e+e

< a

for. nil values of a in (/3, y), every e <.e0, and every value of x such
that a <. x, x-\-e<. A, and x, x + t differ by at least 8,,. from any of X( •,

f .Vi+6

fdx i < a

for all values of a in (/3, y), and every 5 <, ?0.

I may remark (i.) that the possibility of any of the curves x = Xi(a) meeting-
x = a or :e — A i.s excluded by the first condition, and (ii.) that the second .pre-
supposes the first.

IS. Thus, if f(x, a) = O, (x-a) Q (x, a),

. ' • 3 e • ' • • • .

where 8 is a function whose dei'ivate —- is a continuous function, of
both variables,

' f(x,a)dx

is uniformly convergent in (a-f £, A—£'), if Q<£<£+£'< A—a.

For, in the first place, condition (i.) is satisfied. Again

Ca+6 fo+«

V I = 9^ (a-f/i, a) I (x—a) Qv{x—a) dx ;
Ja-8 Ja-fi

and, however smalkbe <r, we can choose <50 so that the modulus of
this in <a for all values of a in question, and every 5 <.S0.
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Moreover, if a <.x<x-\-e<_a — Bo (or u-i SU:<.a'<;i'4-e^A),

Cx+t Cn+t
Qv (x—a) 0 dx = ft, («) G (« + a, a) dn

Jr. J«
f« + e

<: jfCI | Ov (u) | dn (where Kis a constant)
J«

< -— I win,, (u) I dn :

and, however small be a-, 80, we can choose e(> sc» that the modulus of
this is <o- for all values of u and a in question, and every «<,€„.
Hence condition (ii.) is satisfied.

A^ain, if f (x, a) = Llv {x — A"(u)} 0 (a-, a),

where 6 is a function satisfying the same conditions as before, and
X (a) is a function of a with a continuous and positive derivate,
(1) will be uniformly convergent in (/3, y) if

This follows at once if we |>ut X(a) = /J,'and t reat /as a function
f /J.

1 (i. Thus (i.) P [ d-~, r \ -(* ~— d.v are unifonnly couvergont in {a + {, A -{')
Jn X — a )„ X — u

»<{<f + £ <A — a.

(ii.) r[" dx , 1J[" l.^nlx^a\lx are unifonnly convergent in («*• + {,
Jo sin (x-a) Jo sm(A--o)

+ ir-{'), » = 0, 1, ..., if 0< |<4 + {'< rt.

(iii.) i"| <O(?"' ' ' .. jj! uniformly convergent in (nrr + l, nn + ir — t'). n = 0, 1, ....
Jo COS;*: — COS a

0 < | < { + {'<7r.
(IV.) r\ - -— is uuifonnly convergent m

J o COMO.S —COS 0

j ir+.0 ,. 2;jir + 2ir—fl ,

if O<0<TT, 0 < { < | + £'<e, 0<{1<(1 + |i<7T-e.

Again, if /(*•) = nv(x-X) &(x).
F 2
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where 0 io a function -which has a continuous derivate —, and a < X < A,

{ A (A

sin axf[x) dx, P cos axf(x) dx
a Jo

are uniformly convergent in any finite interval (fi, y).

17. The principal value
rA

P\ f (x, a) dx

will be said to be regularly convergent in (/?, y) if (i.) it is uniformly
convergent in any part of (/5, y) which does not include any one of a,
finite number of points a[, ..., o'., for which it ceases to be deter-
minate; and (ii.) we can find positive quantities £, £ and Pi<p,,
corresponding to any assigned positive quantity jo,,, such that

CA-Pi
P\ f(x,a)dx

Jn+Vi

is uniformly convergent in

W - f t o J + O ( i = l , 2, . . . , r ) .

CA-Pi

If a[ = /3, or a'r = y, it is sufficient that P be uniformly con-

vergentin (/3,/3-hf) or ( y - £ y ) .

18. ThiR case arises when the conditions for uniform convergence are violated
owing to somo of the curves x = Xi (a) meeting x = » or x = A. Then oj, .. , a'
are roots of the equations

a~Xi(a), A=Xi(a).

—--, F\ -v — ' dx are regularly convergent in any finite in-

\nx — a )„ x — a

torval of vnlues of o. The exceptional values of a are a, A; if a < a, or a > A, the
integrals are unconditionally convergent.

(ii.) 2M --•• -* , l'\ ^in (g~q) ffx arc regularly convergent in any finite in-
J0eiu(.i;-o) Jo Pin (x-a)

terval of values of a. The exceptional values of a are 0, nit.

(iii.) P\ — • -"—— is regularly convergent in ('2»ir — v + t, 2nn + ir—{'), if
Jo cosa; —co8a

{ + { '<2JT; but not in any interval which includes any of the points

(iv.) P\ ^psnx x (o<0< w ) is regularly convergent in any finite interval
Jo cosaJJ-eoHfl

of values of a. The exceptional values of a are ..LlLir-.
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A glance at the figures may make the examples of this paragraph and § 16 dearer.
'Che thick lines are the curves x = Xt (o). In (iv.) they are the rectangular hypcr-

holac 2H7r±0
ax = -—.

Uniform convergence, finite range.

X

Aa+p A-p P

Regular convergence, finite rauge.

A

x — a x — a
(ii) fix) = —- lei2 (x~*)

' i ( ) ' i ( * ) '
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COS flX-

cos .r —COM a' cos or—cos 6

19. The principal value

Infinite Limits.

Cf(x,a)<lx

will he said to be uniformly convergent in (/3, y) if (i.) it is con-
vergent for every value of o in (jti, y); nnd (ii.) we can find »
quantity A, corresponding to any assigned positive quantity o-, such
that

P /(M)A
Jo,

is uniformly convergent in (/i, y), and
>
/ (aj, a) dx < <r

for all values of a in (/3, y).*

* [It is to be observed that we do not dcninnd that condition (ii.) should be
eatiphed for all values of A greater than a certain finite value, m we do in the
corresponding condition for the uniform convergence of an ordinary integral. A
similar remark applies to the definition of regular convergence in { 21.—October, 1901.]
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20. ThuB (i.) P[ - .*? ifl Qnifomjy convergent in ((, * - { ' ) if
Jo cos x - cos a 0" -*- x* J ° \s> s /

O< {<{ + £'< ir.

^ ) * % • i

Consider (i.), for instance. In the first place, Py is uniformly convergent

JM. if Jo cos a; —cos o 6* + (x + 2i(x + 2in)2

»7r)a

Now f" /* f" (*"
Jo 'fl2+(o: + 2i1r)2 Jo J 2 .

The second term is numerically less than

where 7i" is a suitably chosen constant. Ami the first

where - o < n < o. This, too, is numerically < Finalhr, is less
~" ~ 02 + (2tir)2 pin a

X \

than the greater of coseo{, cosecf'; and 2 -j-^9-.-.5 can he made as smnll as wo

please by choice of iV. Hence i ' j can be made < <r, by choice of JY, for all
J'iXw

values of a in ({, » — {*).

The uniform convergence of (ii.) may be proved in the name way. And by a
slight modification of some of the arguments of my first paper we can prove
general theorems an to the uniform convergence of principal values of the forms

rf - — <P (*) **, P I / —; ••(*) <**> •••.
Jo cos x—cos o Jo cos (.r - o)

in suitably chosen intervals. But I shall not delay over this at present.

21. The principal value

P\ f(x,*)dx (1)

•will be said to be regularly convergent in (ft, y) if (i.) it is conver-
gent for every value of a in (ft, y) ;

(ii.)

is regularly convergent in (ft, y) for every finite value of A > a; and
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(iii.) we can find (1) a value of A, (2) a division of (/?, y) into two
finite sets of intervals 6, rj, and (3) a set of positive quantities pf,
each corresponding to an interval rjh and each less than some fixed
quantity p0, corresponding to any assigned positive quantity o-, and
such that c<n

P\ f(x, a) dx
J A

for all values of o in 6, and

n

f (x, a) dx

< <r

< <r

for all values of a in r .̂

22. We may remark that, if aj\ ..., a,'! are the exceptional values of a ($17)
which correspond to any value of A, the intervals rj will be intervals of the type
{af — {, a* + {')• The number r may increase beyond all limit with A.

Tho intervals 6, rji are all to be understood as including their extremities; so
that, at the point of division of 9, T;,-, both the conditions

•r 1 ,
are satisfied.

If i3 is regularly, but not uniformly, convergent in (£, y), it ceases to con-

verge at all for certain values of a. But P can only be regularly convergent
Ja

in {ff, y) if it; converges for all values of a iu (0, y).

23. THEOREM.— / / \j/ (x, a, a) is a function whose derivate -— is con-
ax

tinuous and of constant sign for all positive values of x, and all values of
a, a in question, and

Hm if, (,r) = 0,

the principal values

n [ s in ax , , v , „ fm cos ax , , N 7 , <-.,.±> i ... xj/ ĴUJ ax, 1 I y (x) ax (a > U)
Jo Sin ax Jo CO8CUB

will be convergent, so long as — is not an odd integer. They will be
a

uniformly convergent in any interval (1>, o) of values of a throughout
which this condition is satisfied, if Hm \p (x) = 0 uniformly for all these
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values of a; and they will be regularly convergent in any interval (/3, y)
of values of a throughout which it is satisfied, if lini ij/ (x) = 0 uniformly
for all these values of a.

The first part of this theorem was proved in my first paper. The
second part requires only a very slight modification of the proof there
given of the first.

There remains the third part. Wo consider the first of the two
principal values ; and we suppose, e.g.,

0<ft<y<a.

In the first place P [* -I™-® d, (a?) dx
Jo smaxT

is regularly convergent for any finite value of A. Also

-co /-co rA

P = P
. A J(iV-J)Tr/a J(tf-J),r/a

or P +
J }A

if (N—%) — be that odd multiple of —• between which and A lies

no multiple of —. Now
ft

. au
sin

j(N-$)n;a n J (^_j) „ ism«. \ o

and by the second part of our theorem we can make this as small as
we please by choice of JV, for all values of a in question. It remains to

)"A /"(A'-J)i

or
(iyf-JJir.'o )A

Suppose ft < —'-

A. %T%

The values a,- ai:e - , i'• = h, ..., k + l; and the intervals 17, are of

the type

We take IV = 7c, £ = $'= ~ (see the figure). And A —», = the
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§ 1

A " i—?t

Jleguinr convorgenoe, infinite rnntre.

As A < -^, and i>.k, p{ is certainly loss than p{) = --=. Also, if

lies in rjh and aj between (*—•|)-^- find /I— p15 «r»: lies between (i—^)
and

l^ ^ ,V _ n.r ^ ? i± 117r >
4 8

SO that -I* >, in - ax > *6-~ {**> iTr.
1 8

Hence I < \/2 «/»' ] 1̂—£>,—(i— -̂)
J(£-J)n;al (.

where </f' is the greatest valne of | ij/ (x) \ in the range of integration.

The least valne of ,r in the range is >. . ^4 , and \\i (x) tends to zero

for x — co, uniformly for all values of o. And

which does not increase indefinitely with A and i. Hence we can
choose A so great that

< ar

throughout the intervals »;,-.
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The intervals 8 are of the type

75

and if a lies in this interval, and x between A and (i — ̂ ) —, aaj lies
between (i — ̂ ) 7r and (i — £) 7r; so that

sin
^. cosec

I f(*-J)W» I [A
Hence or <

I iA ' IJ(i-J)Wa
cosec

I

(i—I) A\,

where ij/' is again the greatest value of | \1/ (x) | in the range of in-
tegration. And it follows, as before, that we can choose A so great
that r«>

P\ <<f

J A
throughout the intervals 6. Hence

P -.-•-•/» (a*) ax
J 0 sin cue

is regularly convergent.

We may, for instance, suppose

This theorem may be extended in various ways. We may suppose,
,*\.

e.gr., that ^-- is of constant sign only after some

dependent of a and a; or we may substitute for

.gr., that ^-- is of constant sign only after some finite value of a; in-

sin ax cos a.v-
sin ux' cos ox

such factors as sin ax tan nx, sin ox cotaai, . . . .

In these two cases the exceptional values of — will be the even.
integral values.

It is to be observed that no difficulty arises with these exceptional

J'oo

4> (x) dx is convergent. Thus, if in

T, f°° sin ax , , s ,
]* sin ux
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we make a = a, 3a, we obtain

r"> /-co

I 4> (x) dx, I (3—4 sin8 ax) \p (x) dx;
Jo Jo

and the latter of these converges or diverges with the foi'mer.

24. It is to be observed that a very simple transformation may
change regular into uniform convergence, or vice versa. Thus the
substitution ax = y transforms the principal values of the theorem
into

. a a
co S i l l - J / . M COS ?/* )j, t
0 sin y \ a / a .' 0 cos y \ a

which are uniformly convergent in the interval of values of a in
question.

Continuity of Principal Values.

25. THEOREM 1.—If /(?•, a) is a continuous function of both variables
•in any finite part of the rectangle

(a, At ft, y)

which does not include any point of any of the curves x = X, (a), and

F[Af(xta)dx
Ja

is uniformly convergent in (/>, y), it will be a continuous function of
u iu (/3, y).

This is true whether -I bo finite or infinite.
In the first phiuo, suppose A finite. We may without loss of

generality suppose that there is only one curve x = X («) ; for we
can reduce any case to this by dividing the i-angu of integration and
tho interval (/J, y) into u finite number of parts.

Wii draw two auxiliary curves

in the region Its exterior to these curves f(x, «) is a continuous
function of both variables, and therefore a r.niformly continuous
function of a. Let a0 be any value of a in </), y) ; and suppose,
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e.g., that X'(ao)>(). Then, if h be a small positive quantity, and

P\ f (*, «o+^) dx-P ( / (re, o0) (2s
J a J «

/rX(a0)-S [A v

I f(^,"a+h)dx — \ f (x, a0) dx
J Jf (OQ) — & J X (a0) + 8

+

rA'(ao+ft)+5 M . .
+ P\ f (x, a0 + h) dx—P\ f (x, oQ) dx.

J X (ao+h)—S JX{ao)—S

Now let o- be any positive quantity. We can choose c so small that
rx(a)+&

for all values of o in (/3, y), and e0 so small that

for all values of €<.€Q and all values of x, a such that a;, x+€ fall
within Iis. Then Ave can choose h' so small that

and | / (x, a0 H-

for all values of a; in either of the intervals

a, X(u0) — o; X(aa + h) + <), A;

and all values of h <. h'. And then

< a

for all values of h<.li. A similar proof applies to negative values

of h, if «o>/3. Hence P is continuous at a.,.

In the second place, let us suppose that the upper limit is.oo . We
CA

can choose A so that P is uniformly convergent in (/3, y), and
Ja

\P
J A i
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for all values of a in (/J, y). And, since, by the first part of the
rA • • • • " - .

theorem, P is continuous in (/3, y), we can choose ti so small that

(A [
\ f(x,ao + h)dx-P\
Jo J

if h <. h\ Hence

-p[ f(x,aQ)dx
Jo

if h<_h'. A similar proof applies to negative values of h. Hence
r

1' I is continuous at a0.
Ja

26. Thus the principal values

. = J lo
3 2a 2 - a 3 2a

(i.)

are continuous in (/3, 7) if j8, 7 be any positive quantities! As a approaches zero
they tend to the finite limits

liut they are meaningless for a = 0. And
r* cos ux dx_ Biii_«o

J0cosa; — i
(iv

cos a sino
if n be a positive integer ; and this is continuous in ({, ir — (') if 0 <{<{ + {'< ir ;
and tends, as a approaches 0 or ir, to the finite limits

Mir, ( — )"- l«ir ,

but is meaningless for a = 0 or ir.
Again, the principal value

p f K ' O t ^ o p i H + fi9) dx = T r t a n - ' - ^ - f - (v.)
J(, 1—«- 1 +acos«

is uniformly couvorgunt in ( — 1, 1); and, for a = 1, — 1 beuomes

27. An interesting case is that in which an unconditionally convergcut inte^^a
changoj continuously into a principal value for some special value of a parameter.
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Let us consider, for instance, the integral

where f(x) is a funotion which has a continuous dorivate for all values of x in
question, and a is positive and < 1. Then

*= f - ~ log (I + 2a COB a; + a-)/(x) T + * + _•» P + € log (I + 2a cos x + a 2 ) / (x) dx.

Now ? log '^TJLL = 2 - - - ? — 1 - « » * > 0

Da l + 2acos;c + a2 1 + a 1 + 2a cos a; + a8 =

if 0 < a < 1; and so

0 < log -—}±±*£—- < log sec* \x.
1 + 2a cos x + a8

_L T * * log (1 + 2a cos x + x*)f (x) dxHence

and this can bo made as small as we please, by choice of t, for all values of a and $
in question.

Again, T " ^ " lo= ^ + 2 ° C0K * + a a ^ ^ ) " ] ' e + " I
cau be mude as small as we please,, by choice of e, for all values of a in (0, 1), and
all values of x in (0, it—S) or (ir + 8, 2w), where 5 is any positive quantity < it, how-
ever small. But, if x = TT, this condition cannot be* satisfied. If, for instance,

and the value of c which we have to take decreases boyoud all limit as a approaches,
unity. And, in fact, since

, . HMI X , , ,

lim -— ., = i tan ^x,
a.l 1 + 2a cos X + a-

Ihe integral (i.) is not convergent when a = 1. However,

in convergent. Moreover,

['*''..... Hin* f(:v)dx
J._a 1 -*-2aCos.i; + a-

= -}• {/(IT + S) - / ( T T - S ) }log(l - 2acos8 + a2) + ^ - f"*'lo{f (1 + 2acoax + a')f(x) dx.

As beforo, tho second term (uin bo made aa small as we pleaso, by choice of 8, for ull
values of a in question. And so can the first, as it is equal to

- ••- log {(1 - a ) - + 4a sin3 JS) 28/(^ + 68) (-l<$< 1).

2a l J - =

We can choose 8, then, so email that
w»* sin a; -•/ \ j I

:J {*) dx\ < <r
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for all values of a between 0 and 1, and

Hence [*" *™1 ,f(x) dx
Jo l + 2ocosa; + a-

is uniformly convergent in (0, 1), and therefore a continuous function of a in that
interval. Consequently,

P [** i tan \xf[x) dx = Km f ' — j l L ? — /(») dx. (1)
Jo . a-i Jo 1 + 2aeos.t + a2

Similarly, P f * cot *a; f(x) dx = lira f" — Hmx ,/{*)<&. ('2)
J - , u-i J_w 1 - 2a cos.-t; + o"

P f* * sec **/(*)<*, = lim f" ( L + ^ i ? * **/(») A, (3)
Jo a-i Jo 1 + 2acosa;+ aJ

/(*)«&. (4)

In (I) and (3) we may substitute a, A for 0, 2a- as limits, provided — JT<«<» ,
•n < A < Sir. Similarly for (2) and (4).

28. We may expand the functions under the integral signs on the right in powers
of o, aud integrate term by term. Thus from (1) we deduce

P ("* J tan \xf(x) dx = lim 2 ( - ) ' " 1 «" I"* siu>«••/(*) d£- (!)
Jo o-i i Jo

This is equal to 2 (-)"" ' f e\nnxf{x)dx,
i Jo

if the latter series is convergent. Thus, if f(x) can lie expanded as a Fourier series,

«0 + 2 («« cos nx + bH sin H.C) (0 < .i: < 2ir),

P ['' J
a tan ix/(x) dx = ir lira 2 (-)"• ' ««o" = 2 (-)"-1 «„,

Jo aai l '.

if this is convergent.

For iustaueo, 2 - - - - - = i (TT-X) (0 < x < 2w) ;
l n

and therefore I ^ tan %x . $ (ir — x) dx = ir 2 (— J""1 — = n log 2,

Jo
Similarly, we deduce from (2), (3), and (4) of § 27

P I" £ cot ix/(x) dx = lim 2 a" (" sin nxf(.v) dx, (2)

P[* $*GC$zf{z)dx = lim 2 (-)"an+* ["' cou {/i + .̂ ) a;/(x) dx, (3)
Jo " "-1 ° Jo

P [' i coneclzf(x) dx = lim 2 an*4 [' sin (« + i) xf(x) dx. :(4)
J - . " — I 0 J - ,
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lu each of the series on the right we may put a «• 1 if the resulting series aro
convei'geut.

29. In the same way we can establiuh four more general formulas of which

P (**J tan£ (x-6)f(x) dx •= lira 2 ( - )" - ' o" f* sin« (x-B)f(x) dx
Jo " «•! 1 Jo

is typical. If, for instance,

f(x) = aa&px, sin px (p an integer), x = 2$, 0 = 2^,

we obtain P [ t a n {<p — \|/) cos 2p<p d<f> = (—)»ir s i n 2p\fi,
Jo

p f t a n {<p — ̂ )t
Jo

30. Again, p[ \tu.u%xf(x) dx = lim 2 (-)"~l a" f sinnxf(x) dx, (1)
Jo « = l l Jo

. j . ,, |'x sin :t; », . ,

bo uniformly convergent in (0, 1). Now it follows from what precedes that, ify*(a)
is uniformly convergent for any value of n. Hence P will

ii Jo
be so if we can so choose w that

".>'8m?..—-if(x)dx

for all values of a in (0, 1).

Lot us suppose, in the first place, that/(a.) is positive and tends steadily to zero
for x- = oo . Then

2of ' /"*Jo,lr I + Jacosa.

+ — i l ob' (1 + 2o cos a; + a?)/(a;) dx
2« Jj,,T

2oJ-.,i» ( l+«) '

Also 0 < log L + ^ - ^ ^ + f V ^ ) < l«tf cos" **/(*•),

)
•»

Ipgcos2^a;yv(.i.) <te

is convergent. Hence condition («) can be sutisfied.

Ifi «-^-, / (* ) => p

P f 4 tan \xd-x- = lim 2 (-)""1 a" f" sinnx ^ = lim o * .

Jo * a = i i Jo x . . i 2 ( l + a )
./ — - dx = ^ir.

Jo *
VOL. XXXIV.—NO. 709. (1
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Similarly, P [ J sec \xf{x) dx = lim I ( - )» «»+* f cos (» + $) x/(x)dx
Jo °*1 ° Jo

= 5 (-)-["•
0 Jo

COS

Jo
if this series be convergent.

Legendre determined
pfxt&naxdx pCa x cot ax dx p f" x ooseo ax <to

Jo *s + « i 4 ' Jo *2 + »»a ' Jo *3 + »n2

(considering them as ordinary integrals) by assuming that they were the limiting
values of « • «ax ~ JX

Jo 1 + 2a cos 2aj; + a- x* + m* * c2""1 + a'

sin lax x dx
]-2aCOs2ax+~o:l :a? + tifi

f* sir
Jo l - 2 a c o

xdx K e°M

-2acos2aa; + o8 xt + m* 2(i + o) ^'""-
for o = 1. We can see now that his assumption was correct.

in. Suppose that, in (2) of § 30,

Then fcos(« + i)a;--
J " x"

o (2« + l)« Jo a;3-l a.-"

o (2«+l)«*
by {§3-12. This series is therefore equal to

- <» I — \»
•[ j - i • .

2 T (rt) cos \a-ir o (« +1)1" "

That is to say, the function ty(a) = 2 --—-— (0 < a< 1)
o (2M + 1)"

Hatisfies the functional equation
ty (1 -a) = ( - V sin \an r (fl) ^ (a).

This is a well known relation first proved by Schliimilch, and closely connected with
the theory of Riemaim's ^-function.

32. The formulae of {30 maybe generalized, as those of § 28 were in \ 29. There
will be no difficulty in proving, for example, that

f°° 1 2 °> f"

Pi f(x)dx = -.— 2 6in«<f> I cosnSx/(x) dx,

if this series is convergent.
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If, for instance, f(x) = 1— ,
cosh \nx

r* 1
I cos nSx/tx) dx = .
Jo coshnS

But
> f" \ d± ;

 4 . 1 (_)». ,2m + 1) P f * *L..
Jo cos5*—cos ^ cosĥ TM? ir o Jo cos 8a;—coŝ > *s + (2«» + I)2

= 22-. .-- - - A - i
o cosh (2m + 1) 8 —cos <p

H e n c e | ( ~
o cosh (2m + 1) 8 — cos^ sin <p o cosh»8

This becomes obvious if <p = -JIT. I t is really a formula in elliptic functions ; for,
if we write q for e-', it takes the form

5 ( —)"'72mfl 1 % <7"8inn<f>
o 1 — 2q'im * • cos </> + y4<" •2 sin <f> o 1 + ?'2"

If we integrate this from tp <= 0 to <p = ir, observing that | - -—* rf<^ iB ir or 0,
Jo sin <p

according as « is odd. or even, we obtain the well known formula

(Jacobi, Fimdamenta Nova, XL. 6).

If Aye had taken </> = Aw, (.r) = — -,
co»h.c—ccsfl

we should have found that

i , | f I i } = 2 - 2 (-)« 55*L(?»» + i J d ^ e
h 88 o (.coah•(2mr + 9)S cosh (2MTT- ©) 8 j ein 0 o sinh(2«»+l)irSco«h 88

This too becomes obvious if 0 = j^r. I t is not difficult to obtain general formula1

which include these as particular cases ; but my present purpose is only to show
how the methods of the preceding sections ran be applied to obtain results of
interest in different branches of analysis.

33. The equations of } 30 also hold (except for certain exceptional values of a) if

where ty (x) is a function whose first two derivates are continuous and of constant
sign after a certain value of x, and

lim \p (x) = 0.

where J?1 (*) = 2 *?" a(x + 2iv) ty (x + 2»w).

Now, provided a be not an integer, the series

o 2
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are uniformly convergent in (0, 2ir). I t follows (i.) that, whatever be the value
of n, F(x) and F(x) arc continuous in (0, 2TT) ; (ii.) that we can choose n so great
that the moduli of F{x), F (x) aro as small aB wo please for all values of x in (0, 2TT).

Moreover, f' J2H* F(x) dx - - 1 f log - J
' Jo l+2aCOS* + a2 W 2aJ 0

 8 1 +1 + 2aCO8.i; + as

and 0 < log L\±?l! < log Bec» -kr.
I + 2a COS X + a2

Hence I f -—-- — =/(*) <fc < - - P" log see?** | F(x) | dx
I J2,,, l + 2ocosa; + as 2oJ0

 J

and can therefore be made as small as we please, by choice of n, for all values of a
in (0, 1). Hence . .

P I ft »\ A

is uniformly convergent in (0, 1).

Suppose, e.g., that /(a?) = xcfs<tl (0<fl< 1).
X" 4* v"

Then P tan ix cos ax-- -'• - = 2 lim 2 ( —)""1o" sin nx cos ax
Jo ** + •» - i i Jo «? + <

Similarly, / ' cot %x cos ax
.'o

This iigrees with the result found in another way in § 12. A third proof will be
found in the Quarterly Journal, No. 12f), 1900, p.' 120.

Tt is not difficult to prove that

I + 2a cos x + a2

is still continuous in (0, 1) if the conditions of § SO are satisfied, except that / (* )
has a finite number of infinities X' none of which aro odd multiples of ^w. In
this rase the integral is not unconditionally convergent for any value of a.

Thus P f tan U-cos ra xdx-n = 2 lim 2 ( - ) " - 1 o " P f sin nx cos ax --*—•
Jo * » - • - - i i Jo * 2 - 0

= £w lim 2 (-)""1«"{cos (»—a) 0 + cos (» + a) 8}

= ir cos ad lim — — - •= *ir cos a8.

Similarly, 1' cot ±x cos «ar -^-^- = — xv cos n0.
Jo * 8 - 0 3

This, again, agrees with § 12, and with the paper in the Quarterly Journal referred
to above.
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Discontinuous Principal Values.

34. We shall now consider some examples in which the conditions
of § 25 are not satisfied.

(i.) If 0 < o < a,

•pi sin CUB xdx j sii\h a ,»
Jo cos are 1 + x* ^ cosh a '

T> [ cos ax xdx i cosh a ,-,.
r I — - - = w7T - ; • • - . \£i)

J 0 sm ax 1 •+• x' smh a
These principal values are discontinuous for a = a. For, if we put
a = a in the first, for instance, we obtain

T, [M x t a t i ax , i
I ~\ ~ i = %K

which is incorrect, the pî oper value being

Hence (1), which is, after § 23, uniform^ convergent in (0, a'< 1)

cannot be uniformly convergent in (0. 1).

NOAV, if e be a small positive quantity,

w f™ sin (a—e) x xdx D f" , xdx f* x sin era ,
F \ v ' - , — i = r t a n ax cos (X ; —I , ;-«•••••

Jo cos arc 1+ar Jo 1+ar Jo 1+re3

The latter integral is, as is well known, discontinuous for e = 0.
being == ̂ e~e if e > 0. And it is easy to see that it is not uniformly

convergent in an interval including e = 0. For -•—; deoresisos
1 -+-rc

steadily after ,i- = 1. Hence, for sufficiently small values of e,

I xsince 7 *. lv ' ' ^ j • _ I nsinn ,I „ dx — i > > -s — dn
J Sir/t 1 + '»•'" « J in-./e J 2ir/e J 2rr « + «"

> \ (-., „ — •, — , —'—^5 I s i n u dn

irOtHuir-c8) . ,
' . sm u du

Si l l 76 ,
.an,

in (n + v-y
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a positive quantity independent of e. And, however great be A, we

can choose e so that -— = A; and then ~ — r <&c is greater than

this positive quantity, so that the integral is not uniformly con-
vergent.

On the other hand, P I tan ax cos ex Z^—T, is continuous for e = 0.
Jo

This does not follow at once from anything which precedes, but is
not difficult to prove directly. For, in the first place,

t> P . / I x \ j rif00 tan ax cos ex ,
P tan ax cos ex [ •) ax = P —— rr—ax

Jo \ » 1+rcv Jo aj(l+ar)
is uniformly convergent in any finite interval of values of e, and
therefore continuous. This follows from the remark at the end of

§23, since f" - ,?X—9

is continuous for e =

f" dxP 1 tan x cos £x — =
Jo «

Now the series

is convergent. Moreover,

_. f00 , dxP 1 tan ax cos ex
Jo *

0. For, if — =
a

2 P = 5

: 2 1 tana ]
Jo <•

J, it is

P I tan 05 cos 5 (a; + iV) - - -.
Jo x+™

$ (X + iv) CO8 5 (i7T4-7T —» "̂  {

2 f c ° - ^ (a> "t ̂ ^ _ c ° s ^ (in + TT — x) )
i (. .u-fiTr iir-\"ir — x j

is uniformly convergent in (0, \ir) for any small value of 3>0.
Hence Ave may sum under the sign of integration.

Moreover, it is not difficult to show that

*. f COS S (x + in) COS H (iir-\-ir— ,r") )
•M \ . • " • " • • - - - • — - — - . - - y

n (. aj-t-t7T t7T-J-7T—If )

= _L- + i \_1_ + 1 ._\ _ f sinml""".Cfc-li tf. (1)
x + nir n + \ Lx + in x — in) Jo sin^7ro
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! rns sin ($*•-«) —
The last term is - I sin nt dt. (a)

2n

Now, if 0 < u < 2, and $ is sufficiently small,

sin

is positive, and increases steadily as u increases from 0 to h, and so
lies between j - n. \ s

•KTT — X -I S i n I-K-7T — X) 0
4 OTirl \ A '

KVVlW t ,

which differ by a quantity which vanishes with $. And, if I is the
greatest integer contained in nS, and

nS = l+p,

the modulus of (a) is less than

| - n ,\*
2 I fl . . ^ ' n

I I sin 7r£ — c
n | J i _ i . j t

| s i n ^ T r -

where G is a quan t i ty independent of n, t̂ , and ,r. Hence (1) can be
made as small as we please, by choice of n, for al l values of 8 and x
in question.

Hence 2 is nniformly convergent in the domain

where £0 is any sma l l positive quant i ty . I t follows t h a t

•n f . T dx l ^ j 5 C cos ̂  (x 4- iw) cosS(i7r4-w—x) 1 ,
P I t an a; cos fix— = I tana: 2, ] J—r '- 7-

v- \ ax
Jo x ,'o o (. X-\-IK nr-\-Tr — x )

is a continuous function of h for 2 = 0 . And, in fact, we find on
summing under the integral sign, since

£ C cos h (x + iir) cos 5 (/V 4- TT—re) ") ,
0 (. a + tTT ITT -f 7T X )

/•CO ,

that P I tan JC cos fix — = 4T.

Jo «
This principal value is therefore independent of 3, and changes con-
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tinuously, for 5 = 0 , into

P I tan x — = ^rr,
Jo x

as the preceding analysis shows that it should.

Hence P f" sin ax .*.*»,
Jo cos as; 1-f.i;

has a discontinuity of magnitude %* to the left of a = a.
Cauchy noticed the corresponding discontinuity of

xdx
P

ô
which, if o = a—€, is

I C0S aX

Jo sin ax

f°° , ajrfoj f resin ere 7
I COt O03 COS €X •• ; — I • , - (IX.

Jo l + « Jo 1 + J C

But his discussion of it cannot bo considered satisfactory. For he
assumes that the first term is continuous for c = 0. And, moreover,
he is content to accept the discontinuity of the second as a fact, with-
out in any way attempting to explain it.

35. (ii.) It is easy to prove that, if
o > 1, a > 0, e > 0,

f" qcos ax — cos(n — e).;; rfx _ . e " . . .
Jo 1—2ocosr.c + a2 l+x" a — c-e>

' p f" a cos ax — coe\ (a- — c) x _^x__ _ , a sin a — sin (a — e) ,^\
Jo 1 — 2o cos r.t-+ as 1 —a"- 1 — 2a cos e + a2

We might expect, after our investigations in §§ 27-30, to be able to put o = 1 in
these formulre, provided we introduce the sign of the principal value before (1).

But this gives » MnjflL-lMff- / ? ! . = _ » J L l
Jo sin ic.« l 2 i

„ f"1 sin (ff — £c) a; _rf:r _ _ , cos_(ff —

Jo s i n g e r 1—x* sin ^Jo

both of which are incorrect.

The explanation of this is very simple. For let us consider the simplest case, in
which a => e. Then

«coB«-l ..' J*
Jo l-2acosca; + oaJ o l -

nnd the limit of this for a = 1 is v •• • , whereas its value for o =» 1 is - \ir.

The fact is that fA —IS^JITA... <p (.r) dx (i.)
) a l - 2 a c o 8 C * + a a T V '
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is discontinuous for o = 1 if (a, A) include any of the points

2»ir

And it is easy to see that it is not uniformly convergent. Suppose, e.g., <; «= 1,
a = 0, <p (.r) = 1. Then

f* _o cos . r - 1 , , sin £
Jo 1 —2acos# + ai a —cos{

•vr L i s i n £Now tan- ' *-- < a

a — cos {

involves sin { < tan a- (a — 1 + £ sin2 (...) ;
and, howover small be {, we can choose a value of a so nearly equal to 1 that thin
inequality is not satisfied.

The integral (i.) is, in fact, substantially Poisson's integral, which is so important
in the theory of trigonometrical series.

[36. (iii.) If <f> {*) is a function of x whose derivate <p' (:»:) is continuous, the
principal value

f f M ' *Mrf* (a«x<A, a<fi<A)

in continuous for a — 0. For

A * = & Vlog ( -*=&. V £&dX

ft + p, Avhere p is any s

quantity ; for the limits of | , 1 for e = 0 are evidently both zero. And
Jn J/9 + p

Now we may replace a, A by 3 — p, ft + p, Avhere p is any small fixed positive

| 1

where — p < «i < p. I t is easy to see that the last integral tends to zero with e.

But the first is

J o \U + f I M Jn \t+ 1 / t

and the limit of this for « = 0 is

*.(*)£ tog ( ^ ) 9 S »-
Hence • (/3 - 0) - * (0) = Jjrfy (6):

and, similarly, * ($) - * (0 + 0) =. £w2<f> (fl).

We shall frequently meet with discontinuities of this kind when we come to con •
aider the differentiation and integration of principal values.—November 8th, 1901.]
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Continuity of Principal Values (continued).

37. THEOREM 2.—If f (x, a) be a continuous function of both variables
in any finite part of the rectangle

(a, a, /3, y)

which does not include any point of any of the curves x — Xf (a); and

r
P f(x, a)dx

be regularly convergent in (ft, y), it toill be a continuous function of
a in (fi, y).

For, if o- be any assigned positive quantity, we can determine
(§21) a value of A, a division of (/3, y) into two sets of finite
intervals 0, r/,, and a set of positive quantities jp<, such that

in the intervals 0 and
JA-p

in the intervals >;,.

And, if a0 be any value of a in (/3, y), we can choose h' so small
that n0 and «„+&' lie in the same sub-interval. Suppose, for in-
stance, that they lie in T/,-. Then

CA-Vi

Jo

is uniformly convergent in »/,. And the conclusion follows as in § 25.

38. Thus P 552i2 dx
'o

, f tan ax ,dx
Jo *

is regularly convergent in (/3, y) if 0</3<y, and therefore con-
tinuous. It is, in fact, = \* (§30). But it is not regularly con-
vergent in (0, y). For a = 0 all the curves x = X{ (a) recede to
infinity. And it is easy to show, by an argument similar to that
used in § 34 in the case of the integral

x sin ax ,
j - - . ax,

lo 1 + rc
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that, however great be A, we can always determine a positive quantity
r and a value of a such that

cp
JA

and, moi'eover, f
)A-Vfor all values of p less than any fixed quantity p0.

It is obvious that (1) is, as a matter of fact, discontinuous for a = 0.

On the Exponential Theorem for a Simply Transitive Continuous
Group, and the Calculation of the Finite Equations from the
Constants of Structure. By H. F. BAKER. Communicated
February 14th, 1901. Received, in-revised form, November
28th, 1901.

The present note was originally presented to the London Mathe-
matical Society in February, 1901, in connexion with Mr. Campbell's
paper, Vol. xxxm., p. 285, and had then the pui^poses of suggesting
the methodical use of a certain notation—that of the theory of
matrices—and of showing how Mr. Campbell's results follow from
Sclmr's determination of the infinitesimal transformations of a group
of given structure (§4). Incidentally the theorem (§2) here called
the exponential theorem was then obtained, and it was stated
that it would lead to a method of finding the finite transformations
of a group of given structure. The present form of the note differs
from the original form by the addition of a verification of this
statement, with examples (§§ 3, 5, and the latter part of § 4), and a
considerable abbreviation of some parts of the paper whose novelty
was stated to consist only in the methods employed.

1. The following notation is employed.
The differential equations satisfied by the functions/ in the equa-

tions ,. , 0 N

a. = ti (A a)
of a finite continuous group of n variables ajlt ...,#„ and r parameters




