On the Geometrical Meaning of a Form of the Orthogonal Transformation. By M. J. M. Hılı, M.A., D.Sc., F.R.S., Professor of Mathematics at University College, London. Received and read May 9th, 1895.

The orthogonal transformation in space of three dimensions has been put by Lipschitz in a publication entitled Untersuchungen über die Summen von Quadraten, published at Bonn, in 1886, into the form

$$
\left.\begin{array}{rr}
x+\nu y-\mu z= & X-\nu Y+\mu Z \tag{1}\\
-\nu x+y+\lambda z= & \nu X+Y-\lambda Z \\
\mu x-\lambda y+z= & -\mu X+\lambda Y+Z
\end{array}\right\}
$$

where the new axes X, Y, Z are derived by a right-handed rotation through an angle θ from the old axes x, y, z, the constants λ, μ, ν being defined thus:

$$
\begin{equation*}
\lambda=\tan \frac{1}{2} \theta \cos \xi, \quad \mu=\tan \frac{1}{2} \theta \cos \eta, \quad \nu=\tan \frac{1}{2} \theta \cos \zeta \tag{2}
\end{equation*}
$$

where ξ, η, ζ are the direction angles of the axis of rotation.
The object of this note is to point out the geometrical meaning of the equations (1.).

Draw a sphere whose centre is at the origin O, cutting the axes of x, y, z at $x ; y, z$; the axes of X, Y, Z at X, Y, Z; the axis of rotation at I.

Draw great circle arcs perpendicular to $I_{x}, I X$ at x and X, respectively, meeting at A.

Then the first of equations (1) is obtained by projecting the coordinates of any point in the two systems along $0 A$.

Let the direction angles of $O A$ with regard to $O x, O y, O z$ be $a, \beta, \pi-\gamma$; so that in the annexed figure a, β, γ are all acute
 angles.

T'o find the direction angles of $O A$ with regard to $O X, O Y, O Z$ imagine the figure rotated about I until $I X$ coincides with $I x$; then z 2
A moves to a point D, so that

$$
x D=x \Lambda .
$$

Let $y A$ cut $z x$ at F, and $y D$ cut $z x$ at E. Then the spherical triangles $a: E D, a F A$ are equal in all respects. Therefore

$$
\begin{gathered}
B D=A F \\
y D+y A=\pi
\end{gathered}
$$

therefore

$$
y D=\pi-\beta .
$$

In like manner

therefore

$$
z D+z A=\pi ;
$$

Hence the direction angles of $O D$ with regard to $O x, O y, O z$ are $a, \pi-\beta, \gamma$.
Hence the direction angles of $O A$ with regard to $O X, O Y, O Z$ are $a, \pi-\beta, \gamma$.
The next step is to express a, β, γ in terms of θ, ξ, η, ζ.

$$
\tan \frac{1}{2} \theta \sin \xi=\tan A I x \sin x I=\tan x \Lambda=\tan a ;
$$

therefore $\quad \cos a=\left(1+\sin ^{2} \xi \tan ^{2} \frac{1}{3} \theta\right)^{-\frac{3}{2}}$,
$\cos \beta=\cos A y$
$=\cos A x \cos x y+\sin A x \sin x y \cos A x y$
$=\sin a \sin I x y$
$=\frac{\sin a}{\sin \xi} \sin \xi \sin I x y$
$=\frac{\sin a}{\sin \xi} \sin \left(\frac{\pi}{2}-I_{z}\right)$
$=\cos a \frac{\tan a}{\sin \xi} \cos \zeta$
$=\cos a \tan \frac{1}{2} \theta \cos \zeta$,
$\cos \gamma=-\cos (\pi-\gamma)=-\cos A z$
$=-(\cos A x \cos x z+\sin A x \sin x z \cos A x z)$
$=-\sin a \cos \left(\frac{\pi}{2}+I x z\right)$
$=\sin a \sin I x z$
1895.]

$$
\begin{aligned}
& =\frac{\sin a}{\sin \xi} \sin \xi \sin I x z \\
& =\frac{\sin a}{\sin \xi} \sin \left(\frac{\pi}{2}-\cdots y\right) \\
& =\frac{\sin a}{\sin \xi} \cos \eta \\
& =\cos a \tan \frac{1}{2} \theta \cos \eta
\end{aligned}
$$

therefore $\cos a: \cos \beta: \cos \gamma=1: \tan \frac{1}{2} \theta \cos \zeta: \tan \frac{1}{2} \theta \cos \eta$

$$
=1: \nu: \mu .
$$

Now, projecting the coordinates x, y, z, and then X, Y, Z of any point P along $O A$, it follows that

$$
x \cos \alpha+y \cos \beta+z \cos (\pi-\gamma)=X \cos a+Y \cos (\pi-\beta)+Z \cos \gamma
$$

therefore

$$
x+\nu y-\mu z=X-\nu Y+\mu Z
$$

which is the first of equations (1).
The second and third equations can be obtained in like manner.

A Property of Skew. Determinants. By M. J. M. Hill, M.A., D.Sc., F.R.S., Professor of Mathematics at University College, London. Received and read May 9th, 1895.

It has been shown by Professor Cayley that the orthogonal transformation could be expressed thus
where

$$
\left.\begin{array}{r}
x_{1}=a_{1,1} y_{1}+a_{1,2} y_{2}+\ldots+a_{1, n} y_{n} \\
\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \\
x_{n}=a_{n, 1} y_{1}+a_{n, 2} y_{2}+\ldots+a_{n, n} y_{n} \tag{3}
\end{array}\right\} .
$$

