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1. The derived series of Fourier series may themselves be Fourier
series. They then require no special consideration. In the contrary case
the series of which they are the derived series may be associated with a
particular type of function, e.g. with a function of bounded variation; or
the function of which we have the Fourier series may not be known to
have any particular properties, except in the neighbourhood of a particular
point.

I have already had occasion to point out that the derived series of
Fourier series of functions of bounded variation possess some of the pro-
perties of Fourier series. I propose to illustrate the interest of these
series further.

But besides these series, which possess such properties in the whole
interval of periodicity, there are trigonometrical series, scarcely less im-
portant, which possess the properties in question, or closely analogous
ones, if not in the whole interval, at least in a portion or portions of it.
These series are got by differentiating the Fourier series of functions
which in such portion or portions of the interval of periodicity are more
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or less highly specialised, while they may be perfectly general in the rest
of the interval.

It is easy to give examples. The derived series even of such Fourier
series as 2?*"1 cos WE and 2ft""1 sin ME, do not converge ordinarily, but do-
so when summed by the method of Cesaro, index unity, throughout the
whole of the completely open interval of periodicity from which the origin
is excluded, and converge in the manner in question precisely to the differ-
ential coefficients of the functions with which these Fourier series are'
associated.

We notice further that, if we continue to differentiate these Fourier
series we obtain trigonometrical series which, in the completely open in-
terval in question, always converge to the correspondingly higher differ-
ential coefficient provided only the index of the Cesaro summation
employed increases by unity at each successive differentiation.

These are comparatively trivial illustrations of a general theory. Two
main cases present themselves, according as we may, with propriety,
regard the derived series considered as associated, in the sub-interval
or intervals to which it is restricted to converge, with a function, or not.
If the Fourier series from which our series is got by derivation p times is
associated with a function which in the interval in question is a p-th
integral, and accordingly possesses almost everywhere in that interval &
p-th differential coefficient, this p-th differential coefficient may with pro-
priety be regarded as associated with the j^-th derived series. We might
then conveniently call such a p-th derived series a restricted Fourier series.
Mutatis mutandis we are then able to enunciate for restricted Fourier
series almost all the theorems which hold good for Fourier series; the
chief difference is that we must employ Cesaro convergence index p, if the
process of derivation has been employed p times, and that we must be
careful to restrict their application to the sub-interval or intervals for
which the p-th differential coefficient exists.

But besides these derived series there are derived series which cannot
be said in the same sense to have a function associated with them. We
already had a simple example of such a series. It is the series whose
general term is cos nx, and is accordingly the derived series of the Fourier
series of a function of bounded variation, whose differential coefficient is
everywhere negative unity, except at the origin, where it is -f-oo; but it

. is not convenient to regard this differential coefficient as associated with
the series. More generally there may be no p-th differential coefficient,
and yet the £>-th derived series may, in some sub-interval, possess many of
the properties of Fourier series.
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It is convenient then to consider separately these two classes of derived
series, and I propose to do so in the present communication.

In the course of the argument, which is based on reasoning analogous
to that I have already employed in a previous communication, I require
certain theorems with regard to the convergence of the Fourier series, and
I take the opportunity of giving new tests for the convergence of a Fourier
series.* These tests enable me at the same time to give a more general
form to the tests for the Cesaro convergence of a Fourier series, also con-
tained in the previous communication to this Society just referred to.

The main object of the paper is, as the title states, the convergence of
the derived series of a Fourier series. This includes also the discussion
of its uniform convergence, and occasion is taken to prove for ordinary
Fourier series one or two elementary theorems in a somewhat simpler
manner than usual. As an illustration of the use of uniform conver-
gence, certain theorems which I have given in earlier communications are
then extended to restricted Fourier series.

One of the fundamental results obtained is the property that the con-
vergence of a Fourier series at a point, and the Cesaro convergence, t
index p, of its p-th derived series at a point, depend merely on the form
of the function in the neighbourhood of the point, and that this property
only just holds in general. In other words, if we replace the convergence
of the Fourier series by Cesaro convergence A;—1, where k < 1, or the
Cesaro convergence (Cp), by Cesaro convergence (C, p — l+k), the inde-
pendence in question ceases in general to exist. I have thought it worth
while in this connection to prove one or two additional theorems. In the
case of the Fourier series, if the function has bounded variation elsewhere
than at the point at least, and in the case of the p-th derived series, if a
corresponding restriction holds, the index of convergence may be reduced.

It appears, however, that the primary question for investigation with
respect to the convergence of the p-th. derived series of a Fourier series is
its convergence in the Cesaro manner index p. In fact it is for this index
and no lower one that the convergence at the point x depends only on the
nature of the function in the neighbourhood of the point considered.
Furthermore, it is for this index, and no lower one, that tests for conver-
gence of the usual type exist. We may almost say that the concept of

* The most important case of these tests is that in which the function of bounded varia-
tion which occurs in them is an integral. The test, in the form which it then takes, has
been already published in a communication I have recently made to the Academie des.
Sciences.

f See the second footnote to § 7, below.
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Cesaro convergence, index p, is naturally associated with trigonometrical
series which are the p-th. derived series of Fourier series.

Again, when such a series does not converge {Cp), it may still, in cer-
tain cases, be employed just as if it did do so.

The question naturally suggests itself whether, if instead of differ-
entiating, we, integrate, there are analogous results. I have thought it
relevant to the matter in hand to give the simple and easily obtained
theorems in this connection. It will be seen that, if we integrate a
Fourier seriesp- times, the trigonometrical series thus obtained.necessarily
converges in the Cesaro manner, index —p (minus p), everywhere.

What happens if, instead of starting with proper Fourier series, and
differentiating and integrating them, we start with the derived series of
Fourier series of functions of bounded variation ? As already pointed
out, these more general series behave in some respects exactly like Fourier
series ; from our present point of view, however, they behave almost like
Fourier series, the difference being precisely analogous to that between a
closed and an open interval. We find that the same theorems hold, pro-
vided only the index of Cesaro summation be increased by a positive
quantity k, as small as we please. Here, as elsewhere in our theorems, we
mean by {C,p-\-h) not merely that the index is p-\-k, in the ordinary
sense; .it is only necessary to suppose that any kind of Cesaro convergence
of positive type, logarithmic or otherwise, is superposed to the (Cp) con-
vergence, for the theorems to hold. Indeed all that is necessary is that
the superposed operation should be such that, when performed on Sn, the
typical term of a sequence for which 2S.» is bounded, the result, is
zero.

This result illustrates the fact that, if the p-th. derived series (in par-
ticular if the first derived series), of the Fourier series of f(x) is to con-
verge at the point x with a lower index of convergence than the normal p
(or in the particular case unity), the function/(x) must have special pro-
perties elsewhere than in the neighbourhood of the point x; in the
case of the theorems just considered the reduction of the index is almost
unity.

The question naturally arises as to whether the reduction unity itself
may not be secured by a suitable condition with regard to the behaviour
of f{x), and in particular the important problem suggests itself as to
whether the first derived series of a Fourier series may not in certain
cases converge ordinarily, without being a Fourier series. The answer to
this question is icertainly in the affirmative. We can indeed give three
important classes of Fourier series for which such ordinary convergence is
possible, though not customary. These are
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(1) The allied series of Fourier series, not themselves Fourier-series.

(2) Pseudo-Fourier series, that is trigonometrical series whose co-
efficients can be expressed in the Fourier form as absolutely convergent
integrals, without the associated function possessing an absolutely conver-
gent integral.

(3) More generally trigonometrical series whose coefficients can be ex-
pressed in the Fourier form as non-absolutely convergent integrals, such
as Harnach-Lebesgue integrals, or what I have called Y-integrals.

As to the first of these classes, I have on various occasions given tests
for the ordinary convergence of an allied series. These tests merely in-
volve assumptions with respect to the nature of the associated function of
the Fourier series in a sub-interval of the interval of periodicity, and by
no means presuppose this function to have such properties in the whole
interval as to secure that the allied series is also a Fourier series, whatever
restrictions we impose with regard to a particular sub-interval.

As an instance of the second class, a pseudo-Fourier series which at
the same time comes under the head of the first class, we have

2 (sin nx) /log n,

which is the derived series, as well as the allied series, of a Fourier series,
and converges everywhere without exception although not itself a Fourier
series.*

Conditions of space and time have prevented me on the • present
occasion from discussing the derived series of the allied series of a Fourier
series,, but it should be noted that these are derived series of Fourier
series. In fact the allied series itself of a Fourier series, though not
in general a Fourier series, is as remarked above always the first
derived series of a Fourier series, namely that of the function

— I [F{x+u)— F(x—ti)~\ cot iudu,
IT Jo

where F(x) is an integral of the function f(x), associated with the Fourier
series, to which our series is allied. Consequently the allied series oi the
Fourier series of a function f(x) may be treated by the methods of this
paper.

We thus see, for example, that this allied series converges (Cl) at the

* Its coefficients bH are expressible in the Fourier form, the coefficients a,, are all zero
and are only expressible in the Fourier form if Cauchy's principal values be utilised.
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point x if the function

g{u) — — [F{x+u+v)—F(x—u+v)—F(x+u-v)+F(x-u—v)]dv

has bounded variation.
Again, the allied series of the Fourier series of a function which in at.

sub-interval of the interval of periodicity has its square summable, is a.
restricted Fourier series of the first class, whose associated function has<
its square summable in its region of existence. Or yet again, the allied'
series of a restricted Fourier series of Class 1 is a restricted Fourier series
of a similar type, but of Glass 2.

It may be remarked in the same connection not only that the allied!
series of the Fourier series of an integral is itself a Fourier series, from
which our result that the allied series of a Fourier series is the first.
derived series of a Fourier series was deduced, but that the same is true-
of the allied series of the Fourier series of a function of bounded variation,,
so that the allied series of the first derived series of the Fourier series of
a function of bounded variation is itself the first derived series of the-
Fourier series of a function of bounded variation.

Moreover, the allied series of the Fourier series of a function of
bounded variation converges almost everywhere, not merely in the ordinary
way, but even in the Cesaro manner with any negative fractional index:
h > — 1. On the other hand, the allied series of the Fourier series of an
integral converges almost everywhere (C, — 1).

However, besides these theorems so obtained we have others precisely
analogous to the theorems of the present paper. They are related to
them in the same way as the tests for the convergence of the allied
series are to the corresponding tests for that of the Fourier series. I
have, however, as already stated, thought it advisable not to enter into
these matters on the present occasion.

2. We shall first consider various conditions for the convergence of a.
Fourier series. (§§ 2-9.)

We shall require the following formula :—

1 [n d= 2n) fa.[coi'%x(1-~COBnxftAx)dx—2an, (D-

f(x) being the even function associated ivith the Fourier series 2a(lcos nx..
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This is easily proved as follows :—

\rCina,) = C f f naos nx)f(x)dx

C(n cos nx)f{x) dx= I
J

[n d
— \ — C (sin nx) f{x) dx

Jo dx

1 ("* d= — \ -=- [cot \x — cosec^ cos (n-\-%)x]f(x)dx

1 [" d— —̂ l -T- (cot ire — cot ix cos wa; — sin nx) f(x)dx,2?t Jo ax

which becomes at once the right-hand side of (1).
Since by the Theorem of- Riemann-Lebesgue a» has the unique limit

zero, it follows from (1) that, in considering the limits of C(nan), it is only
the integral on the right-hand side of the formula (1) which need be re-
tained.

Hence it immediately follows that the limits of C{nav) are independent
of the form of the function f{x) except in the immediate neighbourhood of
the origin, since, e being any small positive quantity,

(1 — cos?w;) -=- cot hx and cotiz
dx z

lie between fixed finite bounds when x lies in the interval (e, 7r) and n in-
creases indefinitely, so that our integral from e to IT is the sum of two
integrals, of which the first

r - I (1 — cos nx) f{x) -=- cot \x dx

vanishes in virtue of the factor l/2?i, and the second

\ £ cot %x fix) sin nx dx
Je

vanishes by the theorem of Riemann-Lebesgue.

3. In considering the limits of G{nan), we may further change cofc %x
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into Ijh.c in the formula (1), which accordingly becomes

T, -, r,, v r , 1 [e d /l—cosnx\ .. . , ._.
Lt *7rC(na,,.)= Lt — — )f(x)dx, 2

„->•» n-+n n Jo ax \ x )

where e is as small a positive quantity as we please, independent of n.

Indeed since

— — cottar — -z— (1—cos nx)
n dx \ " -hx]

= — (1 — cos nx) T~ I cot ix— -T- ] +s in nx cot A.r — —̂ ,

which is the sum of two terms, the first of which is the product of l/« into
a bounded function of x and n> and the second the product of sinnx
into a bounded function of ;r, for values of x in the closed interval (0, e),
we see that the difference of the two integrals in (1) and (2) is the sum of
two integrals, of which the first vanishes uniformly in virtue of the factor
l/?i in the integrand, and the second by the theorem of Riemann-Lebesgue,
when n increases indefinitely. This proves the formula (2).

4. We can now prove the following theorem :—

THEOREM.—IfZaaCOsnx is the Fourier series of cut even function f(x),
then Lt C(na,,) = 0,

n—>K

provided

(i) f{x) is simply discontinuous at the origin, and

.. 1 (x

(ii) — I |^[x/(a;)]| is a bounded Junction of x in a certain neigh-
x Jo

bourhood of the origin.

In fact, in virtue of the condition (i). we may change the lower limit of
integration in the formula (2) from zero to p = ZPir/n, where P is as
large an integer as we please, n being correspondingly larger. To prove
this let us write tin for x ; f(t/?i) will then be bounded and have/ (+0) for
limit as n increases indefinitely. We may therefore multiply by the

bounded function -=- ( j , and integrate term-by-term. This gives

1 f d /l — cos)ix\ , , , T , [Ww
 x... x d / I — cos £

— -T~[ )ftx)dx= L t f(tn) — [ —
a )udx\ x JJ

 n-*<» Jo dt\ t

dt
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We thus have

Lt ^C(nan)= Lt \ f(x) ± I1'™* nx) clx = Lt [ xf{x)fq%(x)dxt

, . . 1 — COS913" 1 ("'• 1 —COS?IX 7where qn{x) = 5 \ q clx.* nx1 n ),. x3

Now, by the condition (ii), xf(x) must be a function of bounded varia-

tion ; for | d[xf(xj] | is the total variation °f xf(x), and is, by the condi-

tion (ii), bounded.
We may therefore integrate by parts, and write

r ~v f
Lt l7rC{nan) = Lt xf(x) qn(x) — qn(x)d[xf(x)].

n—>-s> n—>x L Jp Jj)

Now

Therefore

Lt %;
n—>x

< Lt - i
Jp X

where = 1 \d [xf(x)] | .
Jo

But, integrating by parts,

J f«
a;"2 n \_ x2 Jv

 n Ji

where B denotes the upper bound of — | d[xf(x)] \ , which, by the con-
x Jo

dition (ii), is finite. Letting n increase indefinitely, the right-hand side of
the last relation approaches 3/J/2P7T. Hence

Lt
f(p) + SB

2Pir

Since, by (1), f(p) remains bounded as n increases indefinitely, and P
is as large as we please, the right-hand side of the last relation is as small
as we please, which proves the theorem.
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5. Hence we have the following theorem on the convergence of a
Fourier series.

THEOREM.—If, as h approaches zero, %[f{x-\-h)+f(x — h)] has
1 f'a unique limit C, and y- | d[h jf(x + h)+f (x—h)\~\ \ is a hounded

function of h in a certain neighbourhood surrounding the point h = 0,
however small this neigkhourhood may be, then the Fourier series of f{x)
converges to C at the point x.*

Since

2 [f(x-t~u)-\-f(%—u)'] ~ 2 (ar cos rx-\-br sin rx) cos ru,

we only have to replace the function f(x) by the even function of u,
$[f(x-\-u)+f(x—u)\, to reduce the problem to that of an even function
having a unique limit at the origin, and to replace the point x by the
origin. We shall therefore only need to prove the theorem for the case
x = 0, / being an even function.

Now writing

.9,, = a r f a2+. . .+a / ( , C(nau) — (a1+2a2-f- ...

we have sM—C(naH) = (s1+sa+...+s«-1)/?i. (3)

Now, by the preceding theorem (§ 4), C{nan) has the unique limit zero,
when n increases indefinitely. Also, since f(x) is bounded in the neigh-
bourhood of the origin, by hypothesis, and approaches a unique limit
f(-\-0), the Fourier series converges when summed in the Cesaro manner,
index unity, so that the right-hand side of (3) also approaches a unique
limit. Thus, by (3), sn approaches the same unique limit, that is, the
Fourier series converges at the origin. This proves the theorem.

COR. 1.—If 2[f(x-\-h)-\-f(x — h)]->C, as h->0, and in a certain
neighbourhood of h = 0 loe have

%[f(x+h)+f(x-h)] = j h ^

where -r- \ \g{t)\dt is a hounded function of h, the Fourier series of
it Jo

f(x) converges to C at the point xA

* The enunciation of this theorem was made by me to the Soci^te Helvetique des
Sciences Naturelles, in August of the present year, at Schuls in the Engadine.

| This was stated and proved by me in a recent note in the Comptes rcndus.
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COR. 2.—// \\J{x+n)+f{x—ujf]-> C, as it->0, and, in a certain
neighbourhood of u = 0, the function of u

has bounded derivates, then the Fourier series of f{x) converges to C at
the point x.

For in this case the conditions of Cor. 1 are satisfied, g{t) being any
one of the derivates of $u[f{x-j-u)-\-f(x—u)]. This corollary is, in fact,
identical with the first corollary in the case in which g (t) is a bounded
function of t.

The first condition imposed shows that the second condition of this
corollary is equivalent to the hypothesis that the derivates of

$[f(x+u)+f(x-u)l

witli respect to u, when multiplied by u, should be bounded functions of u
in a certain neighbourhood of u = 0.

Using the more general theorem that a function whose derivates are
absolutely integrable (summable), and finite except at a countable set of
points, is the integral of its derivates, we have the following also:—

COR. 3.—If %[f{x-\-u)-\-f(x—u)~\->C, as u-*0, and, in a certain
neighbourhood of u = 0, the derivates of the function of u

i[f(z+it)+f(x-u)]

are, when multiplied by u, absolutely integrable, and, except possibly at a
countable set of points, finite, then the Fourier series of f(x) converges to
G at the point x.

6. Remembering that the Fourier series of f(x) converges (Cp) at the
point x, if that of

U(x + t)+f(*-t)dt = f %[f(x+ut)+f(x-ut)-]dt
Jo

converges (C, p — 1), we get the following additional corollaries :—

COR. 4.—The Fourier series of fix) converges (Cl) at the point x if
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0i(+0) exists* and

?6 JO «• Jo

zs a bounded function of u in some interval containing u = 0. The
Cesaro sum of the series is then fa (+0).

COR. 5.—The Fourier series off(x) converges (C2) at the point x, if
<f>2(+0) exists, where

w=—r fa^dt = r
M Jo Jo J

1
joand

=
J

i (
o I Jo

is a bounded function of u in some interval containing u = 0. The
second Cesaro sum of the series is then <p.2{-j-O).

COR. 6.—The Fourier series of f(x) converges (Cp) at the point x, if
exists, where

1 (u

= 1 I ••• I i[f(x + utltci...tp)+f(x-utlt.2...tp)]dt1dt.2...dtp,
Jo Jo Jo

* The condition that (j>, (+ 0) should exist is, of course, the same as that

\
o

should have a differential coefficient at it = 0, and the same remark applies to (pp (+ 0) and
f" <pp-] (t) dt. These conditions given above may be compared with the less general conditions
Jo
of similar form given on p. 267 of The Convergence of a.Fourier Series and its Allied Series,
in the second line of which " index p " should read " index (p + *)•"
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1 [u

and if — 1 | <pp^{u)du \, that is
u Jo

t^ ••• <p)+/G»—utxt2... tp)']dtldt2... dtp-i\ dtp,I 1 ••• I
Jo Jo Jo

is a hounded junction of u in some interval containing u = 0. The p-th
Cesaro sum of the Fourier series off(x) is then <pp(-\-0).

7. With regard to the preceding theorem (§ 5), it should be noticed
that a considerable extension is possible if we use the notion of Cesaro
summation with negative index.

Denoting the ordinary partial summation of a Fourier series by sn and
the Cesaro partial summation, index minus one, by tn, we have by a defi-
nition which naturally suggests itself

nss = U<j+-K (1)

and therefore tn = nsn— (n—1) sn_i = sn-i+n (s/t—s,t_i)

= sti-\-\-n(an cos nx-\-hn sin nx); (2)

CO

where f(x) ~ ^ao+ 2 (an cos nx-\-bn sin nx),

and therefore

CO

~UY\ ~ ^«o+ 2 (an cos ?ix+ba sin nx) cos ?irt.

'We see therefore, from (2), that tti and sn have the same limit at the point
x, or the same limits, provided the coefficients of the derived series of the
Fourier series of the even function

converge to zero.
lu particular, using the theorem of Riemann-Lebesgue, and the

generalisation of it which I have recently given,* we have the following

* This theorem was given in its original form by Riemann, " Ueber die Darstellbarkeit
einer Function durch eine trigonometrische Reihe ", 1854, Ges. Werke, p. 254, and states
that, if / (x) has a Riemann integral, the coefficients of its Fourier series an and bn converge
to zero, as n -*• oo . The extension to any summable function was given by Lebesgue, 1903,
Annales sc. de Vicole norviale sup., Ser. 3, Vol. xx, quoted in Hobson's Theory of Functions
of a Beat Variable, p. 674.

In other words, the theorem of Riemann-Lebesgue states that the coefficients of the derived

srcn. 2. VOL. 17. NO. 1315. P
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results:—

The Fourier series of an integral converges (C, — 1) everyiohere to
that integral.

The Fourier series of a function of bounded variation converges every-
iohere (C, k—1),* where k is any positive quantity whatever.

8. We can then assert that (1) the question of the convergence (C, k — 1),
where 0 < k, depends only on the nature of the function in the neigh-
bourhood of the point considered, provided the function be known to be a
function of bounded variation outside this interval; also (2) the argument
we have used, involving as it does such quantities as ljn to the first power
only, and therefore still applicable when the index is k, where 0 < k,
shows that, so far as the neighbourhood (0, e) is concerned, C(nan), that is
(Cl)(nan), may be replaced by (Ck)(nan), where 0 < & < 1. Thus we
have the theorem that the conditions of the theorem of § 5, or of any of

series of the Fourier scries of an integral converge to zero. The generalisation of this theorem
which I have given recently in a paper " On the Order of Magnitude of the Coefficients of a
Fourier Series ", presented to the Royal Society, is as follows :—The coefficients of the derived
series of the Fourier series of an even function of bounded variation converge to zero, when the
convergence is taken in the Cesaro vianner, index unity, and tlwse of an odd function of
bounded variation converge in the same manner to 1/v times the jump of the function at the
origin.

* The definition of Cesaro convergence, index k—1, here adopted, may, in the first in-
stance, be taken to be that explained in my paper, already cited, from these Proceedings,
Vol. 10, p. 264, the Cesaro summations with negative integral indices being first defined. The
reader will have no difficulty with these latter ; he merely has to repeat the process involved
in equation (1) above. The definition so obtained is necessarily equivalent, for values of the
index between 0 and —1, to that devised by Knopp and Chapman for such values, in this
sense, that, if a series converges (C, k — 1) in their sense for all such values of the index, it
will converge (C, k — 1) in my sense, and conversely.

With regard to Cesuro convergence of positive index, I assume tacitly here as elsewhere
the known equivalence of the various definitions hitherto proposed for such convergence, and
employ them indifferently, as the circumstances of the demonstration may render con-
venient.

Two remarks should be made about the theorem in the text:—In the first place, this
theorem is an immediate consequence of the classical result that the coefficients of the derived
series of the Fourier series of a function of bounded variation are bounded, provided we make
use of a general theorem in the arithmetic theory of series (which is, however, more difficult
than would be otherwise necessary), namely one given by Hardy and Littlewood in these Pro-
ceedings, Ser. 2, Vol. 11, p. 462, Theorem 37. In the second place it should be remarked
that we may assert the truth of the theorem when the expression " converges (C, k — 1)" is
interpreted in the still larger sense in which Cesaro convergence of any positive type is super-
imposed, in the manner explained in the footnote to my paper already quoted, on the CesJkro
convergence, index —1.
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its corollaries, ensure not only the convergence of the Fourier series, hut
its convergence (C, k—1), provided only f{x) is in addition a function of
bounded variation in the part of the interval of periodicity outside the
neighbourhood of the origin mentioned in the conditions.

We have thus two important cases in which the Fourier series con-
verges (C, k — 1), where 0 < k.

(1) When f(x) has bounded variation in the whole interval of
periodicity.

(2) When (i)f{x) has bounded variation in every interval not contain-
ing the point at which the convergence is considered, while at the point
itself f{x) has a unique limit, or at least fix-\-u)-\-fix—u) has a unique
limit, as u^>0, and in addition (ii)

\ [ \ d{it[fix+u)+fix-u)-]]-I
U J

is a bounded function of u in the neighbourhood of u = 0.

This is a remarkable extension for (C, k—1) of Dirichlet's theorem,
properly generalised, and bears the same relation to this generalisation
that de la Vall6e Poussin's condition does to Dirichlet's original test.

If we require the condition (ii) to hold throughout the interval of
periodicity, we have corresponding results. For, in an interval not contain-
ing u = 0, the condition (ii) only has a meaning when fix) has bounded
variation ; and conversely, if fix) has bounded variation, our condition
fulfils itself.

9. The following test for the convergence of the Fourier series of fix)
is slightly more general than that commonly employed.* It requires that

fix4-2M) —fix -2u)—K
u

should be absolutely integrable in an interval containing the origin, K
being a suitable constant.

In fact, denoting by sn the n-th partial summation of the Fourier series
oifix), we have, by the usual formula,

1 f̂77

sn = — 1 [fix-\-2u)-\-fix—2>u)~\ cose6 u sin(2;i+1) udu.
IT Jo

* Hobson's Theory of Functions of a Real Variable, pp. 680,681; where, however, it is
assumed that f (x + 2u) +/(x—2u) has, as u ->0, a unique limit which is the constant K.

p 2
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1 f'*
Also Lt — Kcosecu sia(2n-\-l)udu = %K.

? i -» oo 7T Jo

Now in consequence of our hypothesis,

—2u)-K u
u sin u

is absolutely integrable in some interval containing the origin, and is
therefore absolutely integrable from 0 to ^ir. Therefore, by the theorem
of Riemann-Lebesgue, when we multiply by sin {%i-\-l)u and integrate
from 0 to ^7r, we get a value which vanishes as n-+ « . That is, by the
above, _ . , T.

Lt sn—%K = 0,
n—>»

which proves that the Fourier series of f{x) converges to %K.

10. It is well known that the convergence, or mode of oscillation, or
more precisely the nature of the upper and lower functions, of a Fourier
series at a point depend only on the nature of the function in a portion of
the interval of periodicity as small as we please containing the point. Corre-
sponding to this fact in the ordinary theory, we have the following
theorem.

THEOREM.—The upper and lower functions of the p-th derived sevies
of a Fourier series at a particular point depend only on the nature of the
function associated with the Fourier series in a neighbourhood enclosing
the point, as small as we please, provided the summation of the series is
performed in the Gesaro manner, index p.

We will first prove this theorem for the first derived series.
Writing

iin(t) = i-f cos £+.. .+cos (n—l)t = ^-cosec^sin (n—

and C(un) = («1+wa+...+«»)/?& = (1—cos nt)j2n(l—cos t),

we have evidently -jr C(un) = C K- (««)),

that is,

~[(l-cos^)/2;i(l-cosO] = C[-sin^-2sin2^-...-(n

(1)
x ow \ [/ (*'+1) — fix—t)] ~ 2(br cos rx — ar sin rx) sin rt. (2)
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We may therefore multiply both sides of the relation (2) by the continuous

function -z- C%(un), and integrate term-by-term. Thus

2 T \J(x-\-t)-f(x-t)] jt[a-cosnt)l2na-cost)-\dt

= 2 I (6rcos rx—ar sinrx) sin rt[C{—sin t—2 sin It—...
J-jr

— (n— l)sin(?i— l)t]dt.

Now 1 sin rt sin st = 0, unless r =• s, in which case it is equal to ir.
J-ir

Therefore the right-hand side of the last equation becomes
— 7i-C {(Jbxcosx—<z1sinz) + 2(62cos2a; —a2 sin 2x) + ...

-\-(n—1)[_bn-i cos(w+l) x — c^-i sin (n—l)x]}.

Thus, denoting by vtl(x) the n-th Cesaro partial summation of the derived
series of the Fourier series of /(#), we have

.±-\ (3)

The integrand in this last integral is an even function of t, so that the
integral is twice the same integral from 0 to TC. Hence, in order to prove
the theorem enunciated in § 9, it is only necessary to prove that the same
integral from e to tr, where e is any small positive quantity, vanishes when
n increases indefinitely;

XT d r/i JM/I *\i n sinnt (1—cosnt) sin t ...
N o w _ l ( 1 _ 0 O B n < ) / a _ e o B f l = _ _ _ _ ( 1 _ e M C , • (4)

Thus our integral is the difference of the two integrals obtained by multi-
plying the two terms on the right-hand side of (4) by \J{x-\-t)—f(x — t)~]/n
and integrating from e to ir. The first of these two integrals is zero by
the theorem of Riemann-Lebesgue, since

\J(x+t)-f(x-t)-]l(l-cost)

is absolutely integrable in the interval considered. The second term on
the right of (4) is numerically less than 2/(1—cose)2, so that the second
integral vanishes in virtue of the factor 1/n.

This proves the theorem for the first derived series.
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11. Whenj? is greater than unity, we proceed as follows to prove the
theorem of § 10.

Using the generalisations of the sine and cosine discussed by me in
an earlier paper,* so that

(1)

we have,+ denoting by (Cp)[Sn(x)] the Cesaro ??-th partial summation of
index p of our series,

m=l

(x + tln)+f(x-tln)]dt

(2)

where, integrating by parts,

ICC 7

0 £t
. (8)

Now t~v~lCv+i vanishes when t is infinite, and [F(x-\-t/n)—F(x — tjiiji]
is zero when t is zero. Therefore the square bracket expression disappears,
and we are left with the integral on the right alone.

Differentiating with respect to x, we may differentiate under the sign of
integration, as will be seen by the following reasoning. Let us write G(x)

for 1 F(x)dx. Then, since F{x) is continuous, it is the differential co-
Jo

* " On Infinite Integrals involving a Generalisation of the Sine and Cosine Functions,"
1912, Quarterly Journal, Vol. 43, pp. 161-177

t Loc. cit., p. 177.
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efficient of G(x). Hence, as h->0,

[E(x+h+tln)-F(x+t/n)]dt

Cx+t/n

= n[G(x+h+tln)-G(x+tln)-

f(£)d£=\ f(x + t/n)dt,
x JO

and the convergence is bounded, since the bounds of the incrementally
ratio of G(x) are the same as those of F{x).

By a known theorem,* therefore, if g(t) is any function of bounded
variation in the infinite interval, with zero as its unique limit when
t -> co, we may introduce the factor g(t) on each side under the sign of
integration, and replace the upper limit of integration by infinity. Thus
we have

if00 f00 •
Lt -f g (t) [F(x+h+tin)—F(x+tjn)\ dt = \ g (t) f{x+t/n) dt,

7i-*0 'I Jo JO

that is £• \ g(t) [F{x + t/n)] dt = f g (t)f{x-\-t/n) dt,
dx Jo Jo

and hence also

4- f g{t)[F(x + tl7i)-F(x-tl?i)]dt = \ g(t)[f(x+tln)-j(x-tln)-]dt.
dx Jo Jo

It remains therefore only to show that if we put

g{t) = 1 [t->-'Cp+1(t)] = - (P + l)t-P-*Cp + l(t) + t-*-1 Cp(t),

g(t) vanishes at infinity, and is a function of bounded variation in the
whole infinite interval, to justify the statement that we may differentiate
under the sign of integration in (1).

That g (t) vanishes at infinity is at once evident from its expression in
terms of Gp and Cp+\; that it is a function of bounded variation in the

* W. H. Young, "The Application of Expansions to Definite Integrals", 1910, Proc.
London Math. Soc, Ser. 2, Vol. 9, § 10, pp. 475-477.
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whole infinite interval may be, for instance, proved by differentiating it,
which gives

g'(t) = {p-{-l)(p^-2)t~p~3 Cp^i(t) — '2l(p-\-l)t~p~2Cp{t)-\-t~p~l C31_i(O,

and shows at once that g'(t) is summable in the infinite interval, whence
g{t) is a function of bounded variation in the whole infinite interval,
provided that p ;> 1.

We have therefore, from (3),

dl r r -, d
j — I '*\_J v**- i "I'v J v" — "/"'/J JJ.\" ^ j i + i / " " \p ^& •••/> v*-)

which is of the same form as I, n~f,(t p~1Cf
J,+i) taking the place of

t~v~1Cp+\ as the multiplier of f(x-\-tln) and/(a?—tjn) in the integrand.
We may therefore repeat the process, provided p is sufficiently large ;

for one differentiation we had to have p^-l, for two we must have p^ 2,
and so on. Thus, finally,

dxr ~ ^
(5)

Using Leibnitz's theorem for the expansion of

we get, since, apart from a numerical factor,

§ 4 = nr£f(x+tln)+{-)*f(x-tln)'] 2 Art-^-'Cr,At)dt, (6)
CLX' J o r=(j

or, say, ~ = 2 AA Kr(t)dt, (6')

axv
 r=o Jo

where, since Gr+\ = — Gr-i + tr~ll{r—1)!,

Kr(t) = - t-*Kr-i(t)+n>[f{x + tln)+(-)'f{x-tln'] r*-2 /(r- l)! . (7)

Now what we have to show, in order to prove our theorem, is that
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dPI
-rrj} is independent of the form of f{u), except for a small interval of
values of w enclosing the point u = x. That is, we have to show that, if
we change the lower limit of integration in (6), or (6'), from zero to ne, the
integral vanishes in the limit, when n -> oo; it will therefore be sufficient

r
to show that this is the case with the individual integrals j Kr{t) dt.

Jne

Now, by (7), this will be the case, provided it is true for

r
I t-2Kr-2{t)dt, and for
Jne

[ n*[f{x+tln) +(-Vf(x-t/n)]r*"2dt
Jne

= "M [f(x+u)+(-)pf(x-u)-]u-*-*du. (8)
n J

The latter integral vanishes in virtue of the factor 1/n, and the former

r
integral will do so also, provided 1 Kr-2(t)dt does 30. Thus, by induc-

Jiie

(00 /-CO

K2(t)dt and I K^dt vanish i

(
2( ^ in

?ie J ne

the limit when n -> oo .

!

CO /-CO

Kx(t)dt = ri?[f(x + tln) + (-)pf(x-tln)'] r ^ s i n tdt
ne J ne

f°°
= \J(x+u) + (—ff(x—ifi] u-v-1 sin nudu,

Je

which vanishes by the theorem of Riemann-Lebesgue ; also

f K2(t)dt=\ nrlfix + tltti + i-yfix-tlnflt-v-'a-cosQdt
Jne Jne

= — f [f(x+u)+(-)pf(x—uyju-v-Hl—cosnu)du,
n Je

which vanishes when n. -> oo, since it is the sum of the integral in (8)
and an integral which vanishes by the theorem of Riemann-Lebesgue.

This therefore proves the theorem.
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12. An immediate consequence of the preceding theorem is the
following generalisation of a theorem I have given previously.*

THEOREM.—If fix) be throughout a certain interval (a, b) a function
of bounded variation, then the derived series of the Fourier series of f(x)
converges (Cl), almost everyivhere in the interval in question, to the
differential coefficient of the function.

In fact the convergence (Cl) in the interval in question does not
depend on the nature of the function outside that interval, and is there-
fore the same as if f{x) had everywhere bounded variation. But in this
latter case the series in question converges (Gk), where 0 < k, and there-
fore certainly converges (Cl) almost everywhere. This proves the
theorem.

* W. H. Young, "The Usual Convergence of a Class of Trigonometrical Series", 1913,
Proc. London Math. Soc, Ser. 2, Vol. 13, pp. 21-23. The reader will have noticed that
by a clerical error (Ck) has been omitted in the enunciation of the theorem, which should
be as follows:—"The derived series of the Fourier series of a function of bounded
variation converges (Ck), 0 < k, almost everywhere to the differential coefficient of the func-
tion." In the course of the proof another clerical error has crept in, which I take this
opportunity of correcting. In line 17, p. 22, delete

const, n-* I | df (x +1) \ ;

line 18 should then read :—" this last integral existing, since f(x) is a periodic function of
bounded variation throughout the whole infinite interval. Thus this term is of the
order n~k."

The argument is here perhaps unduly condensed. That the fact quoted does ensure the
existence of the integral is, for instance, easily seen if we integrate by parts from 1 to B.
We then have

I * * - 1 - * \df(x + t)\ = ( V 1 - * ^ ) = V(l + t ) - x - k F(t)V + (l + k) [* t-*-k F(t) dt,

where, since/is periodic, we have, writing

l+2nr < t<

F(t) = f \df(x + t ) \ ^ ?+'{r+X

Ji Ji

where K = ?*'" \df(x + t) \.

Hence ["(1 + t)-l-k F(t)~Y - • 0,

as U-+OO, and f t-2-kF(t)dt exists, which proves the existence of the integral under

consideration.
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13. Again we immediately have the following theorem, which is a
particular case of a more general theorem to be proved later (§ 22,
Theorem C) :—

THEOREM.—If f(x) has a derivate fx(x) which is continuous at the
point x* then the derived series of the Fourier series of f(x) converges
(Cl) at the point x to fx (x).

In fact, since, as we have seen, the convsrgence of the series in ques-
tion is independent of the form of f(x) except in the neighbourhood of
the point x considered, we may assume that f(x) is an integral except in
an interval containing the point x in which fx (x) is bounded; this latter
hypothesis is allowable, since/, (x) is continuous at the point x.

Since a function with a bounded derivate is an integral, f(x) is now
an integral in the whole closed interval of periodicity, and therefore the
derived Beries of the Fourier series of f(x) is a Fourier series, and its
associated function is any one of the derivates of f(x), and may therefore
be taken to hefx (x). Since fx(x) is continuous at the point x, the Fourier
series of fx{x) converges (Cl) to f^x) at the point x. That is, the derived
series of the Fourier series of the modified function f(x) converges (Cl) to
fx(x) at the point x.

Since the modification of f(x) did not affect the convergence of the
derived series, this proves the theorem.

COR.—It is sufficient if %[f(x-{-u) —f(x—w)] has a derivate with
respect to u which is continuous at u = 0; the derived series of the
Fourier series of f(x) then converges (Cl) to the value of this derivate
at u = 0.

CO

For \ [/ (x+u) —f{x—u)~\ ~ 2 (blh cos nx—atl sin nx) sin nu,

x being here a constant, and u the variable. By the above theorem the
derived series (with respect to u) of the above Fourier series converges
(Cl) at a = 0 to the derivate in question. That is

Id \
\-j- % [f(x-\-u)~f(x—u)~\) = 2 (nbn cos nx—nan sin nx),
\au I w=o «=i

which proves the corollary.

* All the derivates then coincide at the point x, so that there is a differential coefficient
and all of them are continuous.
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14. We now turn to a theorem of a different character, from which we
shall be able to draw a variety of important consequences.

THEOREM.—If two functions agree in a certain completely open in-
terval, the difference of the n-th partial summations (Cl) of the derived
series of their Fourier series converges uniformly to zero in any closed in-
terval inside the completely open interval.

To prove this we require two Lemmas:—

LEMMA 1.*—If f(x) is a summable function in an interval (a, b), then,
for any pair of points x and y of this interval,

Lt [f(x)COBnxdx = 0,
•a—>a> Jx s i n

the convergence being uniform, as x and y vary in {a, b).

If f(x) is a constant, say P,

y
P

X

COS

sin
nx dx — — I

n
, fsin
' nxLcos

T

V nna CV fft

(/""•A) O n nX dX < if~fr)dx < (f-
x sin j x j a

< 2P/n,
n L U ( J S Jx

from which the result is obvious.
Hence also it is obvious if f(x) is a simple I- or ^.-function. Next,

let /u/2, ... be functions none of which exceed ^.f(x), and whose integrals
have for limit the integral of f{x). This is, for instance, the case if the
functions fr form a monotone ascending sequence with f{x) as limit, or if
they are properly chosen ^-functions less than f(x). Then, since f—fr^O,

dx^e,

if r is chosen greater than a certain fixed integer re, depending only on e.

This integral converges therefore uniformly to zero, when x and y
vary as we please in (a, b) and n -> <x>. But

[v ,. . cos , V* . . . . cos , . [u . . cos ,1 f(x) . nxdx=\ (f—fr) • nxdx-\-\ fr{x) . nxdx,)X
J sin ) x '

 J sin } / sin

and each of the integrals on the right converges uniformly to zero, so that
the integral on the left does so. This proves the theorem for f(x).

Similarly the theorem holds for f(x), if

fr(x) !> f(x).

This includes the result to which I habitually refer as the theorem of Riemann-Lebesgue.
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Hence the theorem is true for semi-continuous functions, since these are
the limits of monotone sequences of simple I- and 2^-functions ; and there-
fore it is true for any bounded function f(x), since the integral of f{x) is
the upper (lower) bound of the integrals of upper (lower) semi-continuous
functions less (greater) than f(x). Hence it is true for any positive
summable function f(x), as the limit of a monotone sequence of bounded
functions. Finally, it is true of any summable function, as the difference
of two positive summable functions.

This proves the lemma.

LEMMA 2.—If f{x) be summable in (a, b), and g(x) have bounded varia-
f ' ' . .tion, then I f{x-\-it) g{u) sin nudu approaches zero uniformly as n —> oo .

ru

Put F(u) = I f{x-\-t) sin ntdt: then, integrating by parts,
Jo

[ f(x+u)g(u)ainnudu = F(b) g(b)-F(a)g(a)-{'F(u)dg(u). (1)
Jij. Ja

i
.v+u Cx+n

f{t) sin ntdt—sin nx f(t) cos ntdt,
x J):

and therefore approaches zero uniformly as n —•> oo , since | sin nx | and
| cos nx | do not exceed 1, and the two integrals approach zero uni-
formly, by Lemma 1. Integrating therefore with respect to the function

rh

g(u) of bounded variation, F{u)dg{u) approaches zero uniformly. Since
Ju

also F{b) g (b) and F(a) g(a) approach zero, by the theorem of Riemann-
Lebesgue, the required result follows from (1).

15. We now return to the theorem enunciated above (§ 14), and pro-
ceed to prove it.

Let (a, b) be the completely open interval in which fx and / 2 agree,
and let us consider any point x of the closed interval {a1, b') inside (a, b),
where the distances of the end-points of the latter from those of the
former interval are all greater than e. Then in the interval (x—e, x-\-e)
the functions/! and/2 coincide.

Let S'n, i and S'nt 2 denote the differential coefficients of the n-th. partial
summations of the corresponding Fourier series, each taken in the Cesaro-
manner, index unity. Then, by the formula (3) of § 10,

0(3-*)] ^ [ U - O O B «0/2n(l-cos t)~]dt>
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where <j>{x) =/1(x)—f2{x)

is zero in the given interval. Hence

= i \' *<*+*-£*+*> sin ntdt
Je J-"""-COS C

)—d>(x—t),. .v . . . .
—*-^a—(1—cos«i)sin tdt.

2ilJe (1— COS 0

The first of these integrals is the sum of two integrals, one involving
<}>(x-\-t) and the other <p{x — t), each of which converges uniformly to zero,
by Lemma 2, as x moves about in the interval (a', b') and n -> oo , since the
•quantity e does not then depend upon x. The second of the integrals on
the right of the last equation also approaches zero uniformly; for, in
virtue of the inequality

T T T J ( 1 —
(1-coslr

f* \</>(x+t)-(f>(x-t)\dt/(1-cose)2

\<l>(f)\dt+\ \<j>(t)\dt]- (l-cose)2

Jx-n I /

Ja—i —cos

the integral in question is numerically less than K/Sn, where K is inde-
pendent of both n and x, as long as x remains in (a/, b').

Thus S'ati — S'u,2 also converges uniformly to zero, when x moves
about in the closed interval (ar, b') and n -> oo.

This proves the theorem.

16. From the theorem just proved we can deduce a number of im-
portant consequences. The following is an immediate corollary :—

COR. :—

(i) If two functions agree in a certain completely open interval, then
if one of the derived series of the corresponding Fourier series converges
uniformly in a closed interval or at a point of that open interval, so does
the other.

(ii) If one series converges boundedly, so does the other.
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(iii) If one series oscillates uniformly above or below, so does the other.

(iv) If one series oscillates boundedly, so does the other.

It is supposed that in all four cases the convergence is taken Cl.

17. But further the theorem gives us numerous theorems which
correspond to the theorems in my paper " On the Integration of Fourier
Series."* The following three theorems are given as applications of the
principles, and as showing the use we can make of the derived series of
Fourier series. These theorems all refer to a certain sub-interval of the
interval of periodicity, and show that, in such an interval, these series are
as useful as Fourier series.

THEOREM.—If f(x) is a function which, in a certain sub-interval of the
interval of periodicity, is the integral of a function whose (l-\-p)-th power
is summable, and g{x) of a function tohose (1 + 1 lp)-th power is summable,
then, if we multiply the derived series of the Fourier series of f(x) by g{x),
we may integrate term-by-term over the sub-interval, provided xoe sum in
the Cesaro manner index unity ; and the result will be the integral of
g(x)df/dx over the sub-interval.

Let/j(re) agree with f(x) in the sub-interval, say (a, b), and outside
(a, b) let /i(ic) be the integral of a function whose (l+jp)-th power is
summable. Then the theorem is true tor f^x) and g(x).

-o i. • / 7\ df dfi
But in (a, b) -f- = -j ,

fb df f6

so that 1 g{x) -jf- dx = Lt 1 g(x)vnii(x) dx,
Ja aX n—>a3 Ja

writing vn(x) and vn,i{x) for the ?i-th Cesaro partial summations of the
derived series of the Fourier series of f(x) andf^x) respectively. But, by
the theorem of §14, [vn(x)—vn,-i(x)] converges uniformly to zero, as
n -> oo, x moving as we please in {a, b). Also g(x) is summable, so that

g(x)[vn(x)—vnil(x)]dx->0

Proc. London Math. Soc, 1910, Ser. 2, Vol. 9, pp. 449-462.
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as n -> QO ; whence

[b df [b

g(x)~dx = Lt g(x)vn(x)dx,
Ja ax n—>x Ju

which proves the theorem.

18. The argument is the same in the proof of each of the two follow-
ing theorems:—

THEOREM.—If f(x) is an absolutely convergent integral in a certain
interval (a, b), and g(x) any bounded function, the same result holds as in
the preceding theorem, viz.,

[h df [b

g{x) -r-dx= Lt g(x) vn(x)dx,
Ja ax ?i—>M Ju

where vn(x) is the Ceshro iiartial summation, index unity, of the derived
series of the Fourier series off(x).

And also the following :—

THEOREM.—If f\x) be the integral of a bounded function in a certain
interval (a, b), and g{x) any summable function, the same result holds as
in the last two theorems, viz.,

[b df [h

g(x) -*- dx = Lt g(x)vn(x)dx
Ja ax n—>«j Ju

It may be remarked that in the first ot these theorems there is no
simplification when p = 1, nor in the second when g{x) is a function of
bounded variation, since the theorem respecting the uniformity (§ 14),
refers only to the Cesaro summations, and not to the ordinary summa-
tions.

19. For reasons which will immediately appear, it. will be convenient
to introduce the term "restricted Fourier series", using this expression iu
the following sense :—

The p-th derived series of the Fourier series of f{x) is said to bt a
restricted Fourier series of the p-th class, and to be restricted to one or
more intervals (a, b), if, throughout each such completely open interval
(a, b),f(x) is a p-th integral.

The interval (a, b) may be a sub-interval of the interval (—ir, ir) of
periodicity, but it may also coincide with it without the restricted Fourier
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series becoming itself a Fourier series; in fact, in order that a trigono-
metrical series may be a Fourier series it is necessary and sufficient that
it should be the derived series of a function of period 27r which through-
out the closed interval of periodicity is an integral.

The p-th differential coefficient of f(x) in the interval (a, b) is called
the function associated with the restricted Fourier series.

Instead of saying that a series is a restricted Fourier series, restricted
to the interval {a, b), we may, for brevity, say it is a Fourier series re-
stricted to the interval (a, b).

With this definition the theorem of § 16 leads to the following im-
portant result:—

THKOKEM.—The condition that a restricted Fourier series of the p-th
class should converge (Gp), at the point x of the interval to which it is
restricted, is precisely of the same form as the condition that a Fourier
series should converge {Gp) at that point, the function associated loith the
restricted Fourier series taking the place of that associated loith the
Fourier series.

On the other hand, it will be noticed that there are for such a series
no theorems relating to convergence (Cq), where q <.p.

To prove this theorem consider, for simplicity, the case when p = 1,
and let f(x) be the function associated with the given restricted Fourier
series, and v!t, the n-th Cesaro partial summation of that series. On the
other hand, let fi(x) be a function of period 2TT, equal to f{x) in the com-
pletely open interval (a, b), and an integral at the remaining points of the*
interval of periodicity, and let v,h i denote the n-th Cesaro partial summa-
tion of the Fourier series of f^x). Then, by the theorem of § 16,.
va(x)—vlv<\(x) converges uniformly to zero. Therefore, if any condition
is satisfied which ensures the convergence of v,h i(x) to a unique and finite-;
limit, vu(x) will also converge to the same limit. This condition will, of
course, involve the function fx(x), but, since it is independent of the form
of f\(x) except in a certain neighbourhood of the point x as small as we
please, it will be unaltered* if we ch&ngsf^x) into f(x), the point x being
a point of the completely open interval (a, b).

* In all the conditions which actually are used, an arbitrary small neighbourhood of the
point x appears explicitly as the range of the variable. It is hardly necessary to point out
that, if the condition should involve formally values of / , (x) outside such an arbitrary
small neighbourhood of the point,/(x) may, when substituted, bo supposed to have any con-
venient values at points outside (a, b), or, if we prefer, the interval (a, b) may in the con-
dition be substituted for ( — IT, w).

SBR. 2. VOL. 17. HO. 1316. Q
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The condition being therefore fulfilled when f{x) is substituted for
/i(#)» vn(x) converges. This proves the theorem.

In particular we have the condition corresponding to de la Vall6e
Poussin's condition for the convergence of a Fourier series:—

COR. 1.—The restricted Fourier series of f(x) converges (Cp) at the
point x of the interval to which it is restricted, if

n ri fi
= ... $

Jo Jo Jo

is a function of u of bounded' variation in some interval containing u = 0.
The Cesaro sum of the series, index p, is then 0,,+i(+O).

We have also the condition corresponding to my own condition for the
convergence of a Fourier series, given above (§ 5) :—

COR. 2.—The restricted Fourier series of f(x) converges {Cp) at the
point x of the interval to which it is restricted, if 0,,(+O) exists, where

—x r
u Jo

and if — f" | dt<j>p(t) \ = T I ( ' . . . f' £ [f(x + utx t 2 . . . g
U Jo Jo I Jo Jo

T f £ [ / M a j f ^ g ] x . . . dtn
oJo jo

—ut^ ... tp)~\ dtxdt2... dtv,

is a bounded function of u in some interval containing u = 0. The }>t
Cesaro sum of the restricted Fourier series off{x) is then (

20. Among the derived series of Fourier series, restricted Fourier
series play an important part, owing largely to the existence of a definite
function with which such a series may be associated. The theorem just
given, interesting as it is, is only a special case of more general results.
In order that the r-th derived series of a Fourier series should converge
(Cr) at a point, or in a certain interval, it is by no means necessary that
the series should be a restricted Fourier series. We proceed to give
theorems of this more general nature, confining our attention in the first
instance to the case in which i = 1. Special attention will be called to
the cases when, in consequence of the hypotheses made, we are in effect
dealing with restricted Fourier series. Before doing so, however, one
general remark should be made. Our theory reveals the importance of the
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condition for the convergence (O)* of a Fourier series. Whereas a
Fourier series may be treated in general without going beyond r = 1,
a restricted Fourier series cannot.

21. We shall require the following formulae, which I had already given
in a previous communication t :—

If fix) ~ ^ao+ 2 (alt cos nx-\-bn sinnx), 0)

and g(u) -v 2 Anco8{2n—l)u, (2)
u=i

where g(u) = £ \f(x-\-2,u)—J{x—2zt) | cosec u, (3)

,g{u) being supposed to be absolutely integrable (sumrnable), we have

An—An+\ = — I g{u) [eos(2n—1) u—cos(2?i+l) it] du

2 f*
~ — g{u) sin u sin 2nudu

M) —fix — 2u) \ sin 2nudu

= bn sin nx — an sin nx. (4)

Now let us write sn for the n-th partial summation I of the derived
:series of (1), so that

ii-i

sn = 2 irbr cos rx — rar sin rx),
r=l

find Sn for the sum of the first n quantities Ar, so that

r = l

We then have, multiplying both sides of (4) by n, and summing,

sa = Sa—nAn. (I)

'Thus, since

* Sufficient conditions are, of course, obtained by replacing r by any smaller value, in-
cluding zero.

t W. H. Young, "The Convergence of a Fourier Series and its Allied Series", 1911,
Proc. London Math. Soc, Ser. -2, Vol. 10, pp. 262, 263, § 4. The notation is altered here,
f(x), which is not an integral, taking the place of the integral F(x).

+ The term corresponding to r = 0 is, of course, zero.

Q 2
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and C(Sn) = (

we have C(sn) = 2C(Sn)-Sn. (II)

Hence, repeating the process of taking the mean any number p of times,

(Gp){sn) = 2 (Gp)(Sn)-(G, p-l)Sn. (HI)

In all cases therefore in which the Fourier series of

g(u) = ![/($+2?*)—f(x — 2*/.)] coseczt

converges for u = 0, the derived series of the Fourier series of f(x) con-
verges in the Cesaro manner, index unity, to the same value as the former
series. And when the former series converges [C. p—1), the latter series
converges (Cp).

22. There are accordingly four cases to be specially mentioned in
which the derived series of the Fourier series of fix) converges (Cl) at
the point x.

(A) If [fix-\-t)—fix — t)~\/t is a function oft which has bounded varia-
tion in an interval containing the origin t = 0.

In this case

g{u)-[f(x+2u)-f{x-2u)]l4M =
sin it

and, being the product of a function of ii which is an integral by a function
of bounded variation, is a function of bounded variation in the interval
mentioned, and has the unique limit zero at u = 0. Therefore the left-
hand side is a function of it whose Fourier series converges at u = 0 to
zero, so that the Fourier series of giu) converges to the same value as that
of [/(z + 2*£)—fix — 2«)]/4zt, the convergence of the latter series being
ensured by the hypothesis made, and its sum being

Lt [/(z + 2z<)-/(z-2tt)]/4u,
it—>0

which is the generalised differential coefficient of fix) at the point x.

Thus, if \Jix-\-t)—f(x — t)~\lt has bounded variation in an interval
containing the oHgin t = 0, the derived series of the Fourier series of
fix) converges to the generalised differential coefficient of fix).

(B) If for some value of the constant K the function iof u)

[fix + u)-fix—u)-2Ku] \u-



1916.] CONVERGENCE OF THE DERIVED SERIES OF FOURIER SERIES. 229

is absolutely integrable {sunwiable) in a certain interval containing
u = 0.

In this case

g(u)—K _f(x + 2u)—f(x—2u)—4:K sin u
u 4M sin u

f{x -f Zu) —f(x — 2u) — ±Ku u _,w—sinw
4wa sin u u sin u '

and is absolutely integrable in the interval mentioned. Therefore, by the
•condition of § 9, the Fourier series of g(u) converges at u = 0 to the
value K.

Thus if, for some value of the constant K,

is absolutely integrable in a certain interval containing u = 0, the derived
series of the Fourier series of f(x) converges at the point x to the value K.

(C) If fix) has a generalised differential coefficient at the point x, and

is a bounded function of h in some interval containing h = 0.

Putting (j>{u) =[f{x + 2u)-f(x-2u)]l4u,

<(>(u) has a unique limit when u -> 0, namely, the generalised differential
•coefficient of f(x). Also

~ £ | d[u<p{u)]\ = ̂  j *

and is therefore a bounded function of h in some interval containing
h = 0.

Thus both the conditions involved in my test (§ 5) for the convergence
•of the Fourier series of <p(u) at u = 0 are satisfied. It follows that this
series converges at u = 0 to the generalised differential coefficient of f(x)
at the origin.
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But g(u)

which is a function of u having the unique limit zero at the origin, and is
also a function of bounded variation in an interval containing the origin,
since [f(x + 2u)—f(x — 2M)] is a function of bounded variation in virtue of the

second of the given conditions, and : is an integral. Thus the
° u sm u °

Fourier series of g{u)—(f>{u) converges to zero at the origin. It follows
that the Fourier series of g{u) converges at the origin to the generalised
differential coefficient of f(x). Thus in this case the derived series of the
Fourier series of f(x) converges at the point x to the generalised differ-
ential coefficient, that is to

Lt [f{x+h)-f{x-h)~\IM.

As an immediate corollary from the result (C), we have, in particular,,
the two following results, which bear the same relation to (C) that Cor. 2
and Cor. 3 of § 5 do to the theorem of that article:—

Iff(x) has a generalised differential coefficient at the origin, and one
of the derivates of f(x) [or more generally those of \f(x-\-u)—f{x—u)\
with respect to to], is known to be, in a certain neighbourhood of the point,

(a) bounded,

or (6) summable, and, except possibly at a countable set of points,
finite,

then the derived series of the Fourier series off(x) converges at the point
x to the generalised differential coefficient of f{x).

As a particular case we have the theorem of § 13.

1 Pl f(x-\-u) fix u)
(D) If — \ J —>^——- du is a function of u of bounded varia-

tion in an interval containing the origin.

In this case, writing

. l f w , / w 1 ?»f{x+u)-f(x-u) j
we have — 1 yk(u) du = ^- du,

u )o 2u Jo u
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a function of u of bounded variation. Thus, by de la Vall6e Poussin's

1 fM
test, the Fourier series of <p(u) converges at u = 0 to Lt — \ d>{u)du.

u->0 W JO

In order therefore to prove that the Fourier series of g(u) converges to
the same value, it is only necessary to prove that

1 f11
— [g(u)—<f>(u)]du
U Jo

is a function of bounded variation whose limit when u = 0 is zero.
Now

JL £[>+*,,-/<*-*,)] (*=£*) d«

qt ,̂ _ Sill 1L

where Fix) is the integral of fix), and q(u) = : is a function such
° J u sin u

that q(u)ju, as well as the differential coefficient q'(u), is an integral.
Integrating by parts, we get now

~q(

an expression of which the first term is the product of two integrals, and
is therefore a function of bounded variation, and the second term is also a
function of bounded variation, since the integrand is a function of bounded
variation, so that the integral divided by u is also a function of bounded
variation.

Also, when u-*0, the first term of the expression vanishes, since
q(u) has zero as limit, and the second term approaches half the value at
a = 0 of the integrand, since the integrand is continuous ; but ^'(0) = 0,
so that this second term also approaches zero. Thus we have proved

that — \ [g(u) — <b(u)~\dii is a function of bounded variation whose limit
u> Jo

when u = 0 is zero. This proves that in this case the derived series of
the Fourier series off(x) converges to

•u^*o n Jo u

COR.—If F(x) be the integral of f{x), it is sufficient for the conver-
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fjence (Cl) of the first derived series of the Fourier series of f(x) that
\F(x-\-v)-\-F(x—u) — 2F(a;)]/w2 should be a function of bounded varia-
tion.

23. The formula (III) gives us corresponding conditions for the con-
vergence (Cp) of the derived series of the Fourier series of f(x). We
merely have to write down conditions that the Fourier serie3 of

g(u) = £[/(z + 2w) —f(x—2w)] cosec u,

should converge (C, p—1) at u = 0.
Thus, for instance, using the conditions for the Cesaro convergence of

a Fourier series contained in § 6 from my new condition for the conver-
gence of a Fourier series, we have the following conditions : —

The first derived series of the Fourier series of f{x) converges (C2) at
the point x, if fai+O) exists, where

<p2(u) = -J- T frifidt = ^r[h [fix+t)-f&-t)~] dt
"> J o U Jo At

= T f
U Joand if

is a bounded function of u in a certain interval containing v = 0.

Indeed if these conditions are satisfied, they are also satisfied when we
•change u into 2u, so that the Fourier series of \^j (2u) converges (Cl).

But, as we saw in § 22, g{u)—-^x{^iu) is a function of bounded varia-
tion of u which is continuous at the origin and has there the value zero,
so that its Fourier series converges at u = 0 to zero. Hence the Fourier
series of g(u) converges (Cl) at it = 0, whence the required result is
also true.

Similarly, we have the more general condition, as follows:—

The first derived series of the Fourier series of f(x) converges (Cp) at
the point x, if yjsp(+O) exists, where

1 f1 f1
yf,p(u) — — ... \ \Jtx+utx ^2... £p_i)—/(*—

u Jojo
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1 f *and if — | \J/p-i(t)dt \ is a bounded function of u in a certain interval
ii Jo

containing' u = 0.

24. The discussion of the convergence (C2) of the second derived
Beries, and the convergence (Cp) of the ^>-th derived series, may be under-
taken on the same lines as have been followed in § § 20-23 for the first
derived series.

Let f(x) be a periodic suminable function of x, with period 2TT, and let
its Fourier series be written in the following form:—

f(x) ~ %ao-\- 2 (alt cos nx + bn sin nx)/it* = %a0— 2 an/n
2.

11=1 H = l

Now let us write

g (u) = [f(x + 2w) +f(x - 2u) - 2/(a;) ]/4 sin2 u.
Then g{u) is an even function of u, such that g{ir-\-u) =^g(u), and there-
fore its Fourier series has no sine terms, and the cosines of the odd
multiples of u are absent. We may therefore write

g{u) ~ %AQ-\- 2 An cos 2nu.
n=l

We then have, for n ^ 0,

\ir{An—An+i) = g(ti)%[eos'2,nu—coQ'2(n+l)u]du
J—tr

= 2a (u) sin u sin(2?&+l) udu ;
Jo

and therefore, for n ^ 1,

= I 2a(u) sin u [sin (2n— 1) u—sin {2n-\-1) u~\ du
Jo

r
Jo

2(amcos mx-\-bm sin wa;)(l —cos 2mu) cos nw.fZw.

Hence ^4*_i — ZAn+An+l = — 2{anco^nx-\-bnB\u nx)ln2 = 2an.

We have then

r+]) = 2 2 ar = 2.9n,
r= l
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say. On the left the coefficient of Ao is 1, of Ax is 2, of An is

and of An+i is n2; and that of each of the remaining quantities Ar is

( r - l ) 2 - 2 r 2 + ( r + l ) 2 = 2.

Thus our equation becomes, when we write

2 S r - ( r + D 2 ArWA r+1 = 2s,. (IV)

Adding the equations (IV) for all values of r from 1 to n, we evidently get

r = l

Since, however,

r=0

we get, writing

G(Sn) = <S1

6C(S«;+4S0/n-4(n+l) Snln+nAn+i = 2C(sw). (V)

Proceeding to the limit, this becomes

Lt [6C(Sn)-4Sn+nAn~] = 2 Lt C(s«); (V)

and, operating on (V) in the Cesaro manner and proceeding to the limit,
W e g e t Lt [6(C2)(f i f , ) -5C(SJ+Sj=2 Lt (C2)(sn). (VI)

Generally*

Lt [6(Cjp)(Sw)-5(C,^-l)(Sft)+(C,p-2)(Su)] = 2 Lt (Gp)(SJ ; (VII)
n.—>eo

that is, denoting the Cesaro summation, index p, of the second derived
series of the Fourier series of f(x) by tp, and that of g (u) for u = 0 by Tp,

s = 2<p. (VID

* As on p. 264, footnote, of "The Convergence of a Fourier Series and its Allied Series",
this relation holds in the first instance for positive integral values of p, but is true when p is
fractional also.
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The corresponding form of (V), is the following, in which the index zero
denotes an ordinary summation :—

6 2 W T J - Lt nAn = t0. (V")

)l—>M

In all cases therefore in which the Fourier series of

9*M = [/*(a;+2w)-f-/(x-2w)-2/(x)]/4 sin2?*
converges for u = 0, the second derived series of the Fourier series of f{x)
converges (C2) to the savie sum; also when the former series converges
(C, p — 2), the latter series converges {Gp).

Hence, as is evident, we have tests for the convergence ((72) of the
second derived series of the Fourier series of f(x) at the point x exactly
corresponding to those given in § 21 for the convergence (Cl) of the first
derived series, and we have tests for the convergence (C, p+2) of the
second derived series, corresponding to the tests for the convergence
(C, jp+1) of the first derived series.

25. The treatment of the third and higher derived series is precisely
similar ; we only have to replace the function g2{u) used in the discussion
of the second derived series by

gs(u) = [/(x+2w)—f(x—2u)—^(x) sin 2w]/sin3 u

in dealing with the third derived series, and by

g4 («) = [f{x + 2w) +f{z—2u) — 2/(x) — <px (x) sin2 %]/sin

iu dealing with the fourth derived series. Here \f^x and cf>x are in the first
instance such functions of x as render g3 and gA summable functions of
u. In consequence of the conditions introduced in the tests employed,
these functions of x come to be—to a numerical factor pres—the generalised
first and second differential coefficient of f(x), the generalised differential
coefficients being accordingly required to exist.

More generally the auxiliary functions to be employed are the
following:—

g>2n+l(u) = [ / (Z + 2M)—f(x — 2w)—xfŝ x) sin 2w—^2(a0sin32™—^3(a;)sin52M

—... —yj,n(x) sin2""1 2tt]/sin*H+; u,
and

g.ln (u) = [f(x + 2M) +f(x — 2w) - 2/(z) - 0! (x) sin2 u — fc (a?) sin4 u

—... — 0,i-i (a;) sin2"""2 u]/sm2n u.
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26. Taking, for example, the case of the fourth derived series, we have,
g2 and g4 having the meanings assigned to them in the preceding article,

0

Hence, if <7_>r(«) ~~ ^ 4 ? + 2 A^ cos 2?iu,

we have A^-i—ZA^+Anli = tyiiu) sinaM cos 2nudu
IT JO

2 fTr

7T Jo

2 f77
— igziu) cos 2«w<Zu {n^ 1)

7T Jo

Since ^4u_i —2^4n +^( l
2

+i = — (an cos ?ia:-}-6n sin ?w) (w > 1)

we get

In the general case in which g'p(zt) takes the place of giin), we have the
corresponding formula

= 3/ (aK cos ?*£-{-&» sin nx)fnv,

the coefficients \\\ being the binomial coefficients, and M a numerical
factor.

Multiplying up by nv and making use of a process exactly analogous to
that already used for p = 1 or p = 2, we find that the convergence (Cp)
of the p-th derived series follows from the ordinary convergence of the
Fourier series of gp(u) at u = 0, whenever this occurs.


