
1891.] On Automorphic Functions. 281.

where fx'Xk" = 1,

and, consequently, fi'Ar" = n_Jt;

-nick* A log ( / I ' F ) = nkk" 4- log (M""") = ™ ^ +n (w-2<) kn

dk die \ die

It thus appears that (2) is transformed into

(n-t + 2)(n-t + \) an_t+2 + 2nkknd^

- {2a2 + (n -0 s - (« a -O W] a,,_, + (« + 2)(* +1) Afy,-.-* = 0.

Now, if we write t for n—t, this is

{2a% + t t ( 2 n < ) fc} at
die

o«.a = 0;

in other words (2) can be transformed into (1).

Further Note on Automorphic Functions. By W. BURNSIDE.

Received and read June 9th, 1892.

I propose in the present paper to continue the consideration of
certain groups, and the antomorphic functions connected with them,
with which I dealt shortly in a previous paper, published in the
current volnme of the Society's Proceedings. In that paper it was
shown that, for symmetrical fuchsian groups of the first class, auto-
morphic functions taking every value twico only in the generating (or
any) polygon can always bo found, and therefore that the algebraic
equation connecting two different automorphio functions is in this
case an equation of the hyperelliptic class.

I shall here show how, when the group is given, to calculate the
coefficients in the eqxiation, incidentally expressing the two variables
which the equation connects as~ uniform functions of a single para-
meter.
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Herr H. Weber, in a paper published in the Qbttingen Nachrichten,
1866, with the title " Ein Beitrag zu Poincar^'s Theorie der
Fuchs'schen Functionen," has already dealt with the problem of
expressing the variables in a hyperelliptio equation as uniform
functions of a parameter, and the mode of expression obtained in
this paper is not essentially different from M. H. Weber's ; still,
though in this point possessing no novelty, the forms of the ex-
pressions here obtained are both infinite series and infinite products,
while M. Weber's functions are all expressed in the form of infinite
products, and moreover the group on which the functions depend is
simpler than (in fact is a sub-group of) the group from which
M. Weber starts.

The latter group is defined as follows:—
Take n circles with their centres lying on the real axis, and such

that each one is outside all the others. Then n elliptic substitutions
•of period 2, with the n pairs of points where the circles meet the axis
as their double points, are the generating substitutions of M. Weber's
group. Any substitution of the group can therefore be represented
by an even number of inversions at the system of n + 1 circles formed
by the n given circles and the axis of x. The symmetrical fuchsian
group whose substitutions are the equivalents of an even number of
inversions at the n circles is immediately seen to be a self-conjugate
eub-group of the former, and it is on this group that the functions
involved really depend.

After obtaining the equation connecting two independent auto-
morphic functions, I go on to determine explicitly the relations
between the integrals of the first species to which the equation gives
rise, and the ^-functions of the corresponding group.

In the second paragraph, applying directly the definition which
Prof. Klein gives in dealing with Abelian functions of a new element
which ho has introduced iuto tho theory, I have shown how tu express
any automorphic function as the product of a number of factors
which bear the same relation to it that a linear factor boars to a
rational function.

Lastly, the relations between a symmetrical fuchsian group and
its simplest sub-group (which is also symmetrical), as well as those
bctweou the functions connected with the two groups, are investigated;
and, in tho particular case when the hyperelliptic integrals reduco to
elliptic by a quadratic substitution, the form of the generating
polygon is determined.
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1. On the Algebraic Equation connecting Two Independent Automorphio
Functions.

I suppose for the present that the symmetrical fuchsian group is
defined hy n + 1 circles Co, Ov O% ... Cu, each outside all the others
and with their centres on the axis of x. If 0p be taken also to repre-
sent an inversion with respect to the pth circle, the n fundamental
substitutions of the group may be written

8P=0p0Q Q> = 1, 2, . . . n ) .

If a, ft are the double points of Sp, and a,, ft{ the homologues of a, /3
with respect to any substitution of the group, it was shown in my
former paper that

', — a( Z—pti

the summation extending to all different pairs of points a(, ft{.

If ah ^ are the homologues of a, ft for the substitution Su and
«ii fth for the substitution OO(S,-0O, which is clearly also a substitution
of the group, then, since 0Q changes a into ft, and S{ changes ft into
ftif it follows that as and ftt are inverse points with respect to 00, as
also are ftj and a(; hence, pairing the substitutions in this way,

n i y \ •»• 1

« —o z—/3 La—oi «— PJ z—aj z—

Now, if P, Q are inverse points on a diameter MN of a circle, it
may bo easily verified that

•where the integration is taken along the semicircle from M to N.

Hence, if a0, b0 be the points where 0Q meets the real axis, the above
form of 0 (z, Jp)t taken in conjunction with the previous result that
the integral is always a finite quantity, gives

Ja0

where m is an integer, the integration being conducted along the
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circle 00; and therefore

where Sp is any one of the fundamental substitutions.

If, instead of taking for the generating polygon the region external
to 0lt 0it... 0M and to their inverses in 00, there be taken the region
external to Go, 0v ... 0<_i, (7,+1... Gn and to their inverses in 0{, the
group remains the same, while 0( takes the place of 00 in the previous
investigation, and the substitutions

0p0t (p = 0, 1, ... » - l , * + l, ... n)

must be regarded as the fundamental substitutions. Expressed in
terras of the former fundamental substitutions, these are

If, then, ait bt are the points where 0{ meets the real axis, and J is the-
homologue of infinity for any one of the n substitutions just written,

m again being an integer. Now it has been proved before that

Hence, if q =j£ i,

0tojr9) = 0toj..lg)-.0toj;_1).

and I 0 (z, Jt) dz —2mm'\

while

\bi 6 (z, X.,) dz = - f ' 6 (z, Jt) dz = (2m"+l) m.

Hence, finally,
exp [^ (&,)-<

*•

It will be convenient to use the abbreviation z, for — ^ . With.
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this notation it was shown in the previous paper that

XM ( * P ) - X M 00 = QpW-tp (a)»

-and now, if for a, b in this formula a0, b0, a,, bu &c. be successively
written, there results

e*PXao, 60(*p) = - e xP Xao, 60 (*)» P = 1. 2 ... n,

and exp Xo<1 b<(*,,)= exp Xa>6< (*), p = 1, 2 ... » - l , i + 1 ... n,

e xP Xa,, 6, (**) = ~ exp Xa(, 6, (*)•

Hence exp2Xa x.(z) is an automorphic function, and, since in the

generating polygon it has a single double infinity at bt and a single
double zero at ait its square root exp \a. j (?) is the analogue of a
hyperelliptio function.

Also the above formulae show that

£ exp Xa<> ,,.(*)
is unaltered by the fundamental substitutions, and hence this also is
an automorphic function.

I return now to functions in the form of infinite series, and, to
•simplify the analysis as far as possible, I suppose the circle O0 to be the
axis of y, which, as I have shown, involves no real loss of generality.

Then, as shown on pp. 76, 77 of my formor paper,

xa = v//a (z)—\js.a (z) + constant

is an automorphic function which takes every value twice in the
generating polygon. It will first be proved directly that between
any two such functions a lineo-linoar equation holds.

Replacing 4>a (z) and /̂_o («) by the forms given on p. 68, and
omitting a constant term, which if necessary can be replaced in the
result,

tfo = 0(a, z)-0(-a, z)

= 0(a, z)+d(a, -z).

Hence

xaxb = 22 (tta + a,.)"2 (yft + a,)"1 ["— -F - i - 1 \j±- +~-\
*j La, — z di+zJlbi—z bi + zj

On resolving the product of the two brackets into partial fractions,



286 Mr. W. Burnside on [June 9,

the term depending on —— is

a{—zlbj-a{

<—z

, -a)]

= e(o,a)[fl(&,o)+fl(6,-a)].
Hence

a?flfl56 = a>« [0(6, a) + 0 (6, -a) ]+«» [fl(a, 6)+0(a, - 6 ) ] ,

or

Now ». = 23

so that ajo has a double zero at z = oo, and, taking account of this, the
above relation between xa and xb is what would have been obtained
by assuming the one a linear function of the other from other con-
siderations, and determining the constants from the zero and
infinities.

The two infinities of xa are in general distinct, since, if a is in the
generating polygon, —a is generally a different point also in the
generating polygon. But, of the two circles Op and O'pi only one can
be reckoned as belonging to the generating polygon, and hence, if a
coincides with one of the points a, or bh the two separate infinities of
xa coalesce into one double infinity. From this it follows that
xb/xa c a n o n ' v ^ ^ e r from e xP ^X«. b- (z) ky a constant factor.
Since O0 is here taken for the axis of ?/, bQ and a0 are 0 and oo.
. Now, when a diminishes without limit,

,

7i
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and therefore #=25 ( — ) — ( — £ )
i L\ a, / \a,z + /V J

is an automorphic function taking every value twice, with a double
infinity at the origin and a double zero at infinity ; and if the value
of the argument is expressed by writing x (z), it follows that

e xP 2X«,o (*) = Cx,

and exp 2x«.-» *< ̂  = °' l~l a]'
where G, C are constants.

Finally, then, the two linearly-independent automorphic functions
x and y, where

are connected by the equation

2 £rc—x

where the constants aro directly calculable by using particular values
of z in the series

It is not without interest now to verify directly that the n indepen-
dent hyperelliptic integrals of the first kind connected with the last
equation are identical with n linearly independent ^-functions of the-
group.

The integrals may be written

(i = 1. 2 ... w),
J [x—x (&,)] y

and it is therefore to be shown that

1 dx
[x-x(bi)]y dz

can be expressed in the form

<-i
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For this purpose it is necessary to determine the zeros and infinities
- dx

of -.
dz

Now, if a, 6 are any one of the pairs of points ait &,-, then

x—x (6)
and therefore

= [.-. („)] [.-. (»)] 3 (,,+«- [_lj - jjij] .

When z = a, a—x (a), considered as a function of 2, has a double zero;

and therefore -r1 has single zeros at the points a, b.
dz

Also,flince j ^

it has a triple infinity at z = 0, and this is its only independent

infinity; and, since a; itself has a double zero at infinity, — must have
dz

a triple zero there. This enumeration is complete, for it was shown,
pp. 78, 79 of my former paper, that the number of zeros of any
function of the form

in the generating polygon exceeded that of the infinities by 2n, and
j

while r~- has a single triple infinity it has also been shown to have a
dz

triple zero and In simple zeros at the points Oj, 6j . . . a,,, &„.

Considered as a function of z,
1

[x—x(bi)]y

or [x-x (b,)] ... [x-x (&,_,)] [x-x (6^2)] ... [x-x (6.)]
Jx [x-x (at)] [x-x (6,) ]...[»-* (an)] [x-x (6,,)]

has simple infinities at an a3... a,,, 6,- and 00, simple zeros at 6,... &(.i,
t.+i ••• &i» and finally a triple zero at 0.
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Hence — — has no infinity, and double zeros at the
[x—x(bi)jy dz

points &! ... 6j.i, 61+i ... bn, co, that is to say the equivalent of 2M
simple zeros in the generating polygon ; moreover, as already shown,
it is of the form

a/oo (**+*)-'•
It therefore only remains to be shown that the constants G can be
so choson that

s Gne (z, J-J,
p

which necessarily has a double zero at infinity, shall have n—1 other
double zeros at the points 6,, b.t... i,-_i, bi+i... bn.

This is immediately obvious ; for, if 0 (z, J) has a zero at s0 in the
generating polygon, it necessarily bus a second at —z0. Now if s0

approaches one of the points b, a homologue of —z0 will also approach
b, and in the limit the two zeros will coincide and form a double
zero. Hence, if the n—i ratios of the constants tiro so determined
that the expression in question vanishes at blt &c, it will necessarily
have double zeros at these points.

Finally, then,

1 dxdx ,
-•- = const, x[ — w ] » * .,,. r , HK

(*,/„)

O(bmtJn)

Corresponding relations can obviously be obtained between the
integrals of the second and third species and the corresponding
z-functions.

2. On the Prime Factors of an Antmnorphic Function.

In his recent memoirs on hyper-elliptic and Abelian functions,
Prof. F. Klein has introduced, as a new clement, an expression to
which he gives the name " lJrimfurm."

VOL. xxnr.—NO. -148. u
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He defines it as follows. Let wv wv ... wn, be the n everywhere
finite integrals connected with a given equation of deficiency n (or
on a given 2ra-f-l-ply connected Riemann's surface), and let
<plt 0 j , . . . <pn be n finite (i.e., not infinitesimal) quantities such that

dwx _ dio% _ _ dw,t

Then, if dw is the common value of these fractions, and if P\\ I is any
integral of the third kind on the surface, the " Primform " fl (x, y) is
defined by the equation

Q ( » , y) = U.dxm0>dlJm0

x, y denoting any two points on the Bieraann's surface.

£1 (z, y) vanishes only when the point x coincides with the point yt

and does not become infinite for any position of the points.
It is the exact analogue for the multiply-connected surface of the

form

for a simply-connected surface, where xx{x% is any function of position
on such a simply connected surface, which takes every value once
only; and just as any uniform function on the simply-connected
surface can be expressed in the form

n

so any uniform function on the multiply-connected surface can be
expressed in the form

n n (x, y)
.. v, v O (a;, y) '

In his mornoir of the theory of Abelian functions (Math. Ann.,
Vol. xxxvi.), Prof. Klein refers to a paper by Herr Schottky in
Crelle'a Journal, Vol. ci., "where a precisely similar expression is
introduced in connexion with the theory of automorphio functions.
1'Vom the point of view taken by Hcrr Schottky, tho closo parallel
that exists betweon the functions he deals with and the analogous
functions of position on a Riomann's surfiice, are lost sight of.

I propose thon, hero, to tuko Prof. Klein's definition, and from that
directly to construct and investigate some of the properties of the
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functions (and forms) on the 2-plane that are equivalent to his
Primformen and the derivable prime-functions on the surface.

It has been shown, p. 69 of my former paper, that the function

X«.»(aJ»2/)=:Slogi^:

is the equivalent on the z-plane of the integral of the third kind on
the Riemann's surface.

If the suffix refer to all substitutions except the identical one,
this may be written

(*-b)(y-a) 7 (zi-

or, since x«.» (z» y) = — X M (*, y),

(z-b)(y-a)exV {-jfc.fc y)} = (z-a)(y-b)

If now o approaches y, and b approaches z, the right-hand side
remains finite, and also in the limit becomes a perfect square, for it
may be at once verified that

(zt—y)(yj-z) _ (g.<—?/)(?/-<-g\
(zt—z)(yi-y) iz-t—*)(tf-t—y)'

Hence the limiting form of the previous equation is

- X M (*,*,)} = (z-y)

where now, of eaoh pair of inverse substitutions 6( and <S~l, only
one is to be taken in the infinite product.

If now zjza and yjy^ be written for z and y, and the equation be
multiplied all through by y%z^ the left-hand side becomes

d|/>0
,—zidzl)(y%dijl-yldya) exp {— x,Td,.tf+dV

which agrees exaotly with. the expression used by Prof. Klein to
define his Primform. The Primform on the z-plane may then be
written

where (27/) = «, y,—s., y „
u 2
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and the prime-function will be derived from this by dividing by yt, zt,
It is to be remembored that in forming the infinite product, S and S~l

are not to be regarded as distinct substitutions. It is evidently
immaterial for the present purposes whother the form or the function
is dealt with, and a symbol Q (z, y) will be taken for the function.

It is clear that Q (z, y) has a single zero in each polygon, namely
the homologue of y in that polygon ; and that its only infinity is at
infinity; also if z andy are interchanged the function changes sign.

To determine the relation between Cl (zp, y) and O (z, y) it is
necessary to return to the equation defining the function. This gives

n 0,,, y) _ u k*p-bv){a>-y) e*P {~X/V, «(*,» y)}
il (z, y) "i^-S (z-b)(a-y) exp { -x*,« (2» U)}

Now, from p. 69 of the former paper,

X6.« (z;<> y)-Xb,n (a, y) = <f>,, («) -?„ (?'),

Hence exp {x*(0 (z, y) -\bp) a (*„ y)}

= exp {fp (b) - <j>tl (a) + <pp (zp)-0P (y) j

Al80' t^=(y^+^)
and therefore, writing a = y and b = z,

" (z, y)

If zp be written for z in the product

ft 9 ibJ^

the function is reproduced multiplied by the factor
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and if for n of the aj's and y's suitably chosen homologues are written,
this multiplier will become

exp {2 [0r (»r ) -

the quantities nq being any arbitrarily assigned positive or negative
integers ; but when tho x'a and y's are the zeros and infinities of an
automorphic function (p. 70 of tho former paper) the integers nt can
be chosen so that the multipliers become

exp r2m;)7ril or unity.

Hence any autoniorpliic function can be expressed as a product o£
prime-functions in the form

3. On certain Sub-groups of the Symmetrical Group.

If to tho generating polygon of a symmetrical group be added the
polygon into which it is transformed by one of the fundamental sub-
stitutions, say 8,,, the new figure so formed is bounded by 4?i—2
circles, 2n—\ of which are the inverses of the other 2n —1 with
respect to 6',,, and which will therefore serve as the generating
polygon of a new symmetric group. Moreover this new group is
clearly a sub-group of tho original one. Thus, with the notation of
§ 7 of my former papor, tho fundamental substitutions of the new
group are

-§i = (\Otn 22 = G-iO,,, 2 , , = CnOp,

"»+i = = GlCp, -̂ 2)1+1 = = GnGl>}

2,l+;) being tho identical substitution.

Now tho substitutions of the original group arc

so that 2, = /£?,£„ S,, = S% 2,, = SH8P,

It is also clear that the substitutions of tho original group are all
given without repetition by the forms ^ and ^iS'/o where 2 represents
the totality of tlio substitutions o£ the original group.
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Using now accents to distinguish functions formed with the sub-
stitutions of the sub-group, it follows that

4
_,rj , i _j i i

and

while «(*,/,) = *(*,.£).

Hence for tho sub-group n linearly independent 0' (s, i7"') fauctions
aro identical with the n 0-functions of tho original group ; and this
will involve certain simple relations between the corresponding
quasi-periods of the <p' functions.

If now the original group is also fuchsian, so also is the sub-group.
Suppose then that

is an unchanged function for the sub-group, tlmt takes every value
twice in its generating polygon. Then

fW+f(Spz) and f(z)f{Svz)

are unchanged functions for the original group, which take every
value twice in its generating polygon, and therefore, x being the
already used function for the original group, x is the root of a quad-
ratic equation whose roots are linear in as; or x is a rational function
of the second degree of x.

These considerations may be applied to a particular case of some
interest, as follows. Suppose that for a symmetric fuchsian group
derived from two fundamental substitutions (and leading therefore to
hyperelliptic integrals of tho first order), the three circles GQ, 0,, G%

are symmetrical with refspect to a fourth circle.0, which must there-
fore cut one of them, say Gv at right angles. The group is then a
sub-group of that formed by an oven number of inversions at tho
circles G, GQ, and Gu and the two fundamental substitutions of this
group being one hyperbolic and the other elliptic (of period two), the
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corresponding algebraic equation is of deficiency 1, and the corre-
sponding integrals elliptic Hence the hyperelliptio integrals to
which the group in question leads, are those which can be formed by
a quadratic substitution from elliptic integrals. Bat these are of
known form, and hence in this particular case a definite relation is
obtained, without further calculation, between the nature of the
group nnd the nature of the algebraio equation to which it leads.
As a further verification, it may be very easily shown in this case,
from the relation

fl («,/,) = »'(«, J'p),

proved on the last page, that

which relation between the periods of the hyperelliptic integral
involves the possibility of expressing it in terms of elliptic integrals
by a quadratic substitution.

Note on Approximate Evolution. By II. W. LLOYD TANNEK,

M.A., F.R.A.S. Received June 6th, 1892. Read June

9th, 1892.

In a paper published in the Proceedings of the Society (Vol. xvm.,
pp. 171-178), Professor Hill has pointed out that the rule
(Todhunter's Algebra, Art. 240) for contracting the process of
finding tho square and cube roots of a number, is incorrect in some
cases. It is desirable to havo «a practical test for distinguishing the
cases in which tho rule is available from thoso in which it fails.
Such a test is obtained by a slight modification of Todhnnter's
discussion (loc.cit.), which enables us also to state two limits between
which the required root must lie.

Square Boot.

It is convenient to lake tho decimal point in N, tho number whoso
square root is to bo fonud, so that tho integral part of \/N may con-


