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On a Olass of Integrable Recip recants. By Mr. J . HAMMOND.

[Read January Mth, 1886.]

1. The notation, and nomenclature, of the present paper is that of
Prof. Sylvester's Inaugural Lecture (Nature, Jan. 7th, 1886) ; in

ftti ft tl ff II f i l l

which —' is denoted by the single letter t, and —•*, -—.. —:, ... by
UX tl.C (tit' u»(/

a, b, c, ... respectively, and a Reciprocant is a function of t, a, b, o, ...
which, to a factor pres, remains unaltered when the variables x and y
are interchanged.

Or, it — = r, — = a, —- = p, —i = y,

ay dy dy dy

and <f> (r, a, /3, y, ...) = f (t, a, b, c, ...) to a factor pres,

the function <j> is a reciprocant.
The class of reciprocants referred to in the title is characterised by

having an integral of the form

a = F(t) (1),

i.e., this is an integral of the differential equation

<p(t,a,btc, . . . ) = 0 (2),
obtained by equatiug the reciprocant 0 to zero.

The integration of (1) may be performed by well-known and simple
methods which show that, in the case considered, the complete primi-
tive of (2) is the equation of a curve whose Cartesian coordinates are

pj-—- + const.

f tdt
1 = J F(0

(3),
+ const.

or whose intrinsic equation is

-f/x !\+const..'' (tan \p)

2. The first reciprocant of this class that came under the author's
notice was Prof. Sylvester's orthogonal reciprocant, which is the
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left-hand, member of the equation,*

(l + tf) c—lQabt + 15as = 0 (4).

This may be solved by assuming its first integral to be of the form

Pa*+Qb = const (5),

where P and Q are unknown functions of t in which neither a, b, c,...
nor the variables x, y enter.

Then, since — = alt + b$a + c$b + ...,

the differentiation of (5) gives

— (Pa2+Q6) = a3 -r- + a6 2P+ -~ +cQ — 0.
ax at \ dt I

Comparing this with (4), we see that

• a : 2 P + f : ; J = 1 + ! i : - 1 0 ( : 1 5 w .
whence P and Q i»ay be determined.

But it will shorten the work to assume

p = i _
dtx

when one of the equations (6) is satisfied, and the other becomes

Avhich, written in the form

^ {(! + «») tt}=0,

* Captain MacMahon has transformed (4) into

which is tho differential equation of tho curve whoso intrinsic equation is

sin 3f = -— sn ( 3//t V2s, -— 1.
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It follows, from (7), that we may take

P - I. (JL \

- di ( t \
a " dfKi+tv

•(8),

and thus obtain two first integrals of the form (5),

from which, by the elimination of 6, a is found expressed as a func-
tion of t, thus

and the complete primitive is of the same form as (3), containing
four arbitrary constants; two of which are the Gx and 0, which
appear in the function of t just found, the remaining two being the
constants of integration in (3).

8. Writing t = tan 0,

and performing the differentiations indicated in (8), we find, without

difficulty, P, = 24 cos5 0 cos 50,

Q, = -8cos40sin60,

Pa = 24 cos5 0 sin 50,

Qj = 8 cos* 0 cos 60,

whence P, Qt - P, Qj = 192 cos10 0,

and these values, substituted in (9), will give

a = sec8 0 y K cos 60 + X sin 60 (10),
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in which K and \ are mere numerical multiples of the former arbitrary
constants Gx and Gv

Now (10) is the second differential equation of the curve repre-
sented by the complete primitive of (4), and may be written in the

form /»9cosG(0-^l) = B (11),
8 il

where p = is the radius of curvature of this curve at any point,
a

and 0 is the inclination of the tangent at that point to the axis of aj.
Thus, if we refer the curve to new axes, making an angle A with

the old ones, and take for our unit of linear measui'ement the length
of the radius of curvature which is parallel to the new axis of y, we
may write p2 cos G0 = 1,

whence we obtain

$ _ f __dO__ _ f dd
J -x/cosM ) v / r ^ l i n ^ '

leading to tho intrinsic equation to the curvo

Comparing (10) with (11), we see that

cos ()A > sin GA

so that the corresponding simplification of (10) is effected by writing
K = 1 and A = 0. Tho Cartesian coordinates of the curve are easily

, , f cos 0 dfi f sin 6 dd
seen to be x — \ —-•_=.•:•_=, y = I —.-—==r,

J ycosGO J \/cos60
and the Cartesian equation of the curve is found by eliminating 0
between these two in the following manner :—By means of the first
cot2 6 is expressible as an elliptic function of x, and by means of the
second tan2 6 is expressible as an elliptic function of y ; the product
of these two elliptic functions equated to unity is the Cartesian equa-
tion of the curve.

In fact, if we write

tan8 6 = sin9 ̂  + -p- cos9 ̂ ,

where h s= sin 15° and h' = sin 75°,
E 2
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after some easy reductions we shall find

my = I r — =̂r,
J -/I-P sinV

where m2 = 8^/3,

so that tan8 0 = sn2 (my, A;') + -JJ- en2 (my, & )»

7 '

and similarly cot3 0 = sn2 (wia;, &) + T T en2 (mx, k).

Thus the curve is similar to the one whose equation is

1 = | sn2 (re, *) + £ en2 (a, *) j [ sn2 (y, fc') + - £ en2 (y, AT) J ,

which reduces to k'3 tn2 (as, ^) = k* tn2 (y, A;').

The complete pi'imitive of (4), with its full number of arbitrary con-

stants, may be obtained from this equation by the orthogonal substi-

tution of Ix -f- my + nx for x,

and vix — ly+n^ for y;

as may be verified by differentiating it four times in succession,
after the substitution has been made, and eliminating the four
arbitrary constants I, m, nu nr

For the results given in the present article I am indebted to Prof.
Greenhill, who first pointed out the advantage of using tan 0 instead
of t. The restoration of t in (10) will give

(12),

leading to the form of the complete primitive of (4), originally
given in Nature, viz.,

dt

f tdty = I ..-. +v
J VK(l—l5f + 15ti—t°)+\(6t — 20ti"'^

where the integrals which occur are reducible to elliptic, instead of
being, as was stated without due consideration, hyper-elliptic integrals.

4. The form of (12) clearly indicates that it is an integral of a
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reciprocant; for, on interchanging the dependent and independent
variables, or, what is the same thing, writing

a . , 1
a = r and t = —

3

becomes a2 = K'(l-15T* + 15r4-rf l)+A'(6r-20r" + 6r8) *

and obviously the difEerential equation obtained by differentiating the
latter twice with respect to y, and eliminating K and X', will be pre-
cisely similar to that found by differentiating the former twice with
respect to x, and eliminating \ and p ; i.e., it will be precisely similar
to the original equation (4).

More generally, if, when the variables are interchanged,

F(t, a, A, B, G, ...) = 0 (13)

becomes F (r, a, A', IX, 0', ...) = 0,

the form of the function remaining unaltered, and only the values
of the arbitrary constants A, B, G, ... suffering change; the same
reasoning as before will show that (13) is an integral of a re-
ciprocant.

And if the same permanence of form accompanies any linear sub-
stitution of the variables, say

x = IX+mY+n |
y =VX+mY+n'i'

(13) will be an integral of what, after Prof. Sylvester, we call a Pure
Reciprocant. In this case r and a are denned by

_dY_ _d?Y
T~dx' a~dx*]

and, since dx = (l + mr) dX and dy = (I' + mV) dX,

we have t — '-—-— - (14).
J + mr J

•KT ••• dt \ dt
Now, writing a = — = — ,

dx 1+VIT dX

* In the case considered, «'= — K and A.' = A ; but the form of the relation be-
tween a and t is also permnnent when subjected to any orthogonal transformation,
in which case the relations between «, A. and K', A' will differ from those given.
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we obtain, from (14), a = —; -^a

and obviously

(A, B, 0, . . . I I , t)' = fjJ (A\ B, C, ... 1 1 , r)-f

so that the relation a** = (A, J5, 0, . . . $ 1 , 0 " (1 6)

possesses this permanence of form, and is consequently an integral of
some pure rcciprocant.

5. From (16), by making K — 1, 2, 3 ... in succession, we derive,
by a process of alternate differentiation with respect to $ and division
by a, a series of pure reciprocants, from which, as Protomorphs, all
other pure reciprocants may be algebraically deduced. The degree of
these is however, in general, greater than that of Prof. Sylvester's
scries of Protomorphs.

Thus, when K = 1, we have

a* = A + Bt,

whence, by differentiation with respect to x,

•|a-*& = Ba\

dividing by a and differentiating again with respect to *, we have

-f (a"* b) - a-*e—fa"' 63 = 0,

or, 3ac — 56s = 0,

where the expression on the left is Prof. Sylvester's Parabolic
Protomorph.

In exactly the same way, the Mongian

is obtained from a! = (A, B, C J 1 , 02-

But, when K = 3,

gives the form a8e-7a2&cZ-4aV

Multiplying this by 5, and adding on 3 times the square of the
Parabolic Protomorph, we have
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where the expression in brackets is Prof. Sylvester's Protomorph
of weight 4.

6. The case of K = 6 deserves special attention.

In it a3 = (A, B, C, D, E,F,G7[ 1, t)\

when treated by the process of the preceding article, yields the pure
reciprocant

tt<sfc_ ISatbg—21aty — 21a*de + 105a8 &*/+ 231asbce + lQbcfbd? + lQ5a?c*d

- 420a268e- 1050a?b*cd - 280aJ6c8+945a64i +1260a&V - 94565c,

which, since the complete primitive of the differential equation
(obtained by equating this to zero) is given by (3) in the form

f dt

+const.r

may be called the Hyper-Elliptic Pure Reciprocant.

When the sextic function of t has two equal roots ; i.e., when

the reasoning of Art. 4 shows that the form of this relation is per-
manent when we substitute for t and a their values in terms of r and
a, given by equations (14) and (15). Hence, if we eliminate the
constants A, B, G, D, E, F, we shall arrive at the Pure Reciprocant
whose complete primitive is

dt

•4
-1:

(t + F) S(AtB,CtD,E][l,ty

tdt

+ const.

— ^ .. + const.
i,ty

where the second integral may be replaced by

<U =+ const.
' T) P17T1 t}*

All the constants except F may be eliminated by the process of the

preceding article : which ( since a — — so that — . —- = — ] isr \ dx a dx dt/
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equivalent to continued differentiation with respect to t, and gives

After performing the differentiation and multiplying by (t + F)7, to
clear the equation of fractions, we shall obtain the following quintic
in t + F,

^ + 60O((+i)|720| a' = 0.
dt dt )

A final differentiation will give another quintic in t + F, and the
resultant of these two quintics will be the Pure Reciprocant in
question. Its value, expressed in terms of a, b,o, ..., appears to be too
complicated to be of any use, and for this reason has not been
calculated.

When the sextic in t has five equal roots, we may write

whence, by logarithmic differentiation,

2b _ 5 , 1
a3 t + B t+G'

Differentiating again with respect to x, and dividing by a,

lac—4b2 _ 5 1 _ 5 _ / 2b 5

a* ~ (t+By (t+oy~ (t+By~~ w
which reduces to c(t+By~lQab (t + B) + 15as = 0 (17).

(The close resemblance of this to (4) may be noticed en passant.)

A final differentiation gives

d (t + B)2-2 (4ac + 562) (t+B) + 35a26 = 0,

and the pure reciprocant we are in search of is obtained by elimina-
ting B between this and (17) ; or, what is the same thing, it is the
resultant of the two binary quadrics

(c, hob, 15a3 # X , Y)\

(d, 4ac + 562, 35a26£X, Y)\

The discriminant of the first of these is 5a2 (3ac—562),
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that of the second 35a2&tf-16aV-40a&2c-25b4,

and their connective is 5a (Za2d — abc — 10b8).

Hence, rejecting the factor 5as from their resultant, we obtain

which divides again by a, and gives

'd + 165afc2c2- 40064c,

or the " Quasi-Discriminant" whose evanescence serves to mark
points of closest contact of a cubical parabola with any curve.

Equation (17) is the first integral of the differential equation to the
general cubical parabola whose coordinates are

dt-1 + const.

f tdt , ,
y = I . = + const.

If, now, we differentiate (17) with respect to B, and eliminate B from
it by means of the resulting equation ; we see that the discriminant
of (17) regarded as a quadric in B, or Sac—5 b2 = 0, is a singular
first integral of the differential equation to the cubical parabola. The
geometrical property indicated is, that at some points at least on any
curve where the Quasi-Discriminant vanishes it is possible to draw
a common parabola through six consecutive points of the curve.

7. The present seems to be a fitting opportunity for pointing out the
form of algebraic relation that must subsist between a and t iu order
that the differential equation, freed from arbitrary constants, of the
curve implied by this relation may be expressed by the evanescence
of a reciprocant.

The reasoning employed in Art. 4 will show that the most general
algebraic relation of this kind is

a"1 (1, 0" + ft"'-1 (1, 0"+3 + a'"-2 (l> 0"+6+ = 0 (18),

and that the final differential equation obtained from it will bo

of the form Ptire Reciprocant = 0 ;

provided only that the coefficients of all the quantics in t, which
multiply the different powers of a, are either general or else connected
by some invariantive condition; e.g., (1, t)" may have two or more eqnal
roots, and then its coefficients will be connected by an invariantive
relation.
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The second differential equation of any algebraic curve may, of
course, be exhibited as an algebraic relation between a and t by
eliminating x and y between the equation to the curve and the two
other equations found by differentiating it twice with respect to x.

But (18) includes transcendental as well as algebraic curves.
As an easy example, the second differential equation of the conic

Ax2+2Hxy + By*+2Gx+2Fy + C = 0,

expressed in this form, is <i9A = (A + 2Ht+Bti)a,

where A is the discriminant.

When the curve is unicursal, let u, v, w denote rational integral
functions of 0, then

It j T IIW — UW' J a

x = —, and dx = 5 — . do,
W 10

V j j v'w — VW' Ja

y = —, and ay = ;— . do;
w w*

whence te',"""', (19),
UW — UIV

3 _ dt_ _ w8 dt
dx uio—uvf dd'

or, after some easy reductions,
• u v w

(20),
vr

a = (riw—uw'y

V

\
v"

w

to"

and the elimination of 6 between (19) and (20) gives the second
differential equation of the curve in the form of an algebraic relation
connecting a and t.

Thursday, February Mth, 1886.

J . W. L. GLAISHER, Esq., F.R.S., President, in the Chair.

Prof. P. H. Schoute, Ph.D., Professor of Mathematics at the
Government University of Groningen, Netherlands, was elected a
Member.

The following communications were made :—
On Perpetuant Reciprocants : Captain MacMahon, R.A.
Note on the Functions Z (M), 9 (w), II (w, a) : the President.
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Note on a Z (u) Function: J. Griffitlis, M.A.
On Polygons Circumscribed about a Conic and Inscribed in a

Cubic: R. A. Roberts, M.A.
The following presents were received:—
Carte-de-Visite likeness of Mr. J . D. If. Dickson.
"Educational Times," for February.
"Journal of the Instituto of Actuaries," Vol. xxv., Part in., cxxxvu.,

April, 1885.
" Proceedings of tho Physical Socioty of London," Vol. VII., Part HI.,

January, 1886.
" Bulletin des Sciences Mathematiquos," for January and February, 1886.
" Annales de l'Ecole Polytechnique de Delft," Tome I., L. 3 and 4; Leide, 1886.
" Acta Mathematical' vn., 3; Stockholm, 1885.
" Atti della R. Accademia dei Lincei," Rendicouti, Vol. i., F. 28, 1886 ; Vol. II.

F. 1 ; Roma, 1886.
" Beibliitter zu den Annalen der Physik und Chcmie," B. x., St. 1 ; Leipzig, 1886.
" Sur le mouvoment d'un corps pesant de revolution fixe* par un point do son axe,"

par M. GK Darboux (from Journal de Muthematiques pures et applique'cs).
"Appendix to Mathematical Questions and Solutions from Educational Times,"

Vol. XLIII.—" Solutions of some Old Questions," by Asutosh Mukhop&dhyay, M.A.,
from the Author.

Perpetuant Eeciprocants. By Captain MACMAHON.

[Mead February llth, 1886.]

Reference is made to Prof. Sylvester's account of his discovery of
Reciprocants, in Nature for January 7th, 1886 ; to several short articles
on the same in recent numbers of the Comptes Rendus, and of the
Messenger of Mathematics.

What is done, in this paper, is merely to present the numerical
enumeration of the perpetuant reciprocants of the first six degrees,
which is carried out on the same plau as that initiated by the author
of their being for the allied Theory of Invariants, in Vol. v. of the
American Journal of Mathematics.

The Theory of Invariants is, for the algebraist, concerned with the
solutions of the lineo-linear partial differential equation

\a$b+nb§c + vc%<,+... = 0 ;

these are now termed binariants; and, were we to calculate any such
general form, we would find that the coefficient of every term was
partly numerical and partly composed of the letters X, p, v, ..., and
that, on putting A = /i = »' = ... = l, the binariant would become a


