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298 Mr. S. H. Burbury on some _Problems 

supposing the pressure to follow the law (31) applicable when 
2r > a, is 

~o t~2_ v a  ~ 47rr~ d r =  ~r~a7 
r "  40 " 40 

The work required to generate a cavity for which 2r> a is 
therefore less than if the ultimate law prevailed throughout 
by the amount 

~r~a7 [ 1 1 1 ~ ~ a  7 (33) 
\1-0 18 35]---- 4..9: 7' 

[To be continued.] 

XXXV. On some _Problems in the Kinetic T/,eory of  Gases. 
By S. tL B~RBUaY, F . R . S 2  

Maxwell's Law of  Distrlbution. 
1. " ~ - ~ E ~  a gas or mixture of gases is at rest in the 

¥ ¥ normal state, the distribution of velocities among 
the molecules may be defined thus :--Take an origin O, and 
let the vector velocity of each molecule be represented by a 
line drawn from O. Then the number per unit of volume of 
molecules of mass M, whose velocities arc represented by lines 
from the origin to points within the element of volume dQ 
at P~ is 

where ~ is the number of molecules of mass M in unit of 

volum% and ~ is the mean kinetic energy of a molecule. 

2. I shall employ two other variables : -  
Let V denote the vector velocity of the common centre of 

gravity of two molecules whose masses are M and m. Call 
this their commo, velocity. 

Let R denote the velocity of M, r that of m, relative to this 
common centre of gravity. Then the velocity of M is the 
resultant of V and R, that of m is the resultant of V and r. 

The relative ~:eloeity of hi and m is • + % and stlall be 
denoted by p, so that 

R m M + m  M T m  
r M' P= m M 

3. The molecules whose velocities are represented by lines 

* Communicated by the Author. 
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in the Kinetic Theory. of Gases. 299 

from the origin to points within the element of volume dQ at 
I ) shall be said to have velocities OP (dQ). Or if we give to 
dQ any particular form, as to~dtodS, to being OP and dS 
being a small solid angle, we may speak of the velocities OP 
(toUdtodS). If  X,~,v be direction-cosines of the axis of a 
cone containing the elementary solid angle dS, we may speak 
of the direction X t* v dS as comprising all lines drawn from 
the vertex of that cone and falling within it ; and Xt~vto 2 dto dS 
as comprising all velocities between to and doJ in directions 
within that cone. 

4. In Maxwell's distribution, i f  we consider all pairs of 
molecules, M and m, having common velocity V, and relative 
velocity R + r~ for given ¥ all directions of R or r are equally 
probable. 

Let OC=V,  P O p = R +  r, T / / 2  

PO m R 

p-U = ) ~  = 7 • 
C 

If  OC be given, the nmnber of the 
pairs in question for which the angle 
1)0C lies between 0 and #+dO is pro- 
portional to 0 

2 
e-he1, rc2+,~.pc~) sin 0 dO. / 

] Y  
How 

M.PC2 +m.pCe= MR~ +mr~ + M + m V ~ 

--2(M. R- -m. r )V  cos 0, 

which is independent of 0 because MR--mr-=O. The number 
is therefore proportional to sin t? dO, and this proves the pro- 
position. 

5. I f  the molecules behave in their mutual encounters as elastic 
spheres, then for given direction of the relative velocity before 
encounter, all directions after encounter are equally probable. 

I think it unnecessary to give a proof of this proposition. 
6. (a) .Every distribution of velocities among the molecules 

which satisfies the condition that for given V all directions cf R 
are equally probable, is undistur.bed by encounters, or by the 
mutual action of the molecules~ and is therefore~ in the absence 
of external forces, stationary. 

(b) _No distribution whatever 0 2" velocities among the molecules 
is undisturbed by encounters, or by the mutual action of the 
molecules, unless it satisfies the condition that for given V all 
directions of R are equally probable. 

Of these theorems (a) corresponds to the well-known pro- 
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300 Mr. S. H. Burbury on some Problems 

position that Maxwell's distribution is stationary. The con- 
verso (b) is founded on Boltzmann's proof (Sitzungsberichte, 
Vienna, 1872), but is much simplified by using V and R for 
variables. 

We will prove these theorems, (a) and (b), first on the 
hypothesis that the molecules are to be treated as elastic 
spheres. We will suppose two classes of molecules having 
mass M and m respectively. It will be sufficient if we prove 
our propositions for the encounters of M with m. 

Let F(xyz j  dxdydz,  or F . d x d y d z ,  be ~he number per 
unit of volume of molecules of mass M whose velocities are 
represented by lines from the origin to points within the ele- 
ment of volume dx dy dz at x y z. Similarlyf(x'y' z') dx' dy' dz', 
or f .  dx I dy' dz ~, is the corresponding number for the m's. If  
x y z  be denoted by P, and x~y'z ~ byp ,  we will write Fe and 
fp for F and f .  

Let C be the point ~:v ~'. Consider all the pairs, M and m) 

' ~ ~ ~  

0 
which have 0 C for common velocity. About C as centre 
describe two spherical shells, one with radii R . . . R  + dR, the 

other with radii r . . .  r +  _M dR. Let P be a point in the firs~ m 
shell. The common velocity being OC, and the velocity of M 
being OP, the velocity of m is Op, where p is a determinate 
point in the second shell, namely in PC produced so that 
cp=_M 

And so fp can be expressed as a function of ~ ~ 
CP m. 
and of xy  z, the coordinates of P. 

The effect of an encounter between M and m under these 
circumstances is, without altering V, to substitute for t)Cp 
some other common diameter of the spherical shells as the 
relative velocity. Let it be P~Cp ~. Then all directions of 
P'Cp r, given PCp, are equally probable. 

The number of pairs M and m per unit of volume and time, 
having OC for common velocity, for which the relative velocity 
is PCp(dS) before, and P'C/; '(gs') after, encounter, dS and 
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in the Kinetic Theory of Gases. 301 

dS / being small solid angles, is 
- dS dS / dS' Frf~ dS ~rs'Zp, that is Frfp ~ ~rs2p, 

where s is the sum of the radii of ~ and m. 
The number of pairs for which it is P'Cp'(dS') before, and 

PCp (dS) after, encounter is 

dS dS dS' 
4-'-~ FP"fp'dS/7rsVp' that is F r , f p , ~  7rs'Zp. 

If, then, Frfp = Fr,f¢, the number per unit of volume and 
time of pairs for which the relative velocity turns, as the result 
of encounter, from PCp to P~Cp' is equal to the nmnber for 
which it turns from P~Cp' to-PCp.- And if this is true, 
given C, for every two directions of PCp, and for all positions 
of C, it follows that the distribution of velocities is not affected 
by encounters between M and m. 

Now Frfp represents the chance that, given V=OC, the 
relative velocity shall have direction PCp. And we see that 
if, given OC, this chance be the same for all directions through 
C, the distribution of velocities is not affected by encounters. 
So (a) is proved. 

If for some two directions of the diameter Fe.f¢ ~=Frfp we 
proceed as follows, adapting Boltzmann's proof. 

Let 
I-I = S.~y dx @ dzF(xyz)(log F(xy  z ) - - l )  

+ Syy du z)(log/(xU ) - 1), 
the limits being in each case ___ ~ ,  or, as we will write it~ 

H = S~  dx dy dz { F (log F - -  1) + f ( l o g f - -  1) } ; 
then 

dtt .~.~.~ dz f, dF l o g F +  d~ logf  } .  
= @ t dt 

Now F is supposed to vary only by encounters between the 
M's and the m's. Therefore 

dFr  _ T / r _ T r  ; 
dt 

where Tr is the number per unit of time of encounters with 
the m molecules which the M molecules with velocity OP 
undergo, and T'r is the number per unit of volume and time 
of encounters between M and m from which M issues with 
velocity OP. hTow P being given, and the velocity of M 
being OP, C or S v ~ may have any position whatever, and 

_Phil. Meg. S. 5. Vol. 30. !qo. 185. Oct. 18(20. Y 
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302 Mr. S. H. Burbury on some Problems 

the position ofp  is determined by that of C. Hence 

mp= FpSj'S @ d, 

= yyS d$ d~l d~ Trs:pF,fp ; 

and since all the directions of the relative velocity before 
encounter are equally probable, 

in whiehSSdS denotes integration for all directions of the 
diameter, P~Cp ~, of the spheres described about C, or ~ v ~', 

through P. Let 1 Z Fe,fp, dS be denoted by Fe,f¢, then, 
given P, 

and by symmetry dk  has the same value. In this equation 

f¢ andfp are supposed to be expressed as functions of SV~ 
and the coordinates of P or Pq 

dH dFi, d'fr by In order to find "dr-' we multiply - ~ -  by log Fe and ~ /  

logfp, and then integrate over all positions of P in space. I f  
PCp and P'Cp'  be any two diameters of the spherical shells de- 

dH 
scribed with radii R and r about C, dr-  will contain the term 

~'dp (log El, 4- logfp) (Fp,f¢ -- Frfp) ; 
that is 

"s:P log (F~/,) (Fr,/,, -- :F~,/,). 
By symmetry, as P' is a position which P will assunle in 

dt t  
the integration, ~ will also contain the term 

7rsVp log (Fr,fp,) (F~, G -  Fr.f¢).  

dH 
And adding the two terms together, d t -  contains the term 

Frf  , , log - 

and will consist wholly of a series of terms of' that form. 
Now this expression is necessarily negative unless 

dH 
Fr,f¢ = Frfr ,  and is then zero. Therefore ~ is necessarily 
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in the Kinetic Theory of Gases. 303 

negative unless Fp, f ¢ - -F r fp  for every two directions of the 
diameter through C;  that is unless~ for given V, all direc- 
tions of the relative velocity are equally probable. Now in 
stationary motion It must be invariable with the time. There- 
fore the motion is not stationary, or the distribution of 
velocities is not unaltered by encounters, unless the condition 
be satisfied. So (b) is proved. 

7. We will next assume that the two molecules M and m 
act on each other with finite forces. Then in the infinitely 
short time dt the relative velocity is by their mutual action 
during encounter turned through some small angle; and 
generally also altered in magnitude, in such manner as that 

Mm 2 + constant, 1M+mP Z = 

% being the potential of the mutual action. 
It is not necessary to restrict the number of m molecules 

which may simultaneously be in encounter with, and affect 
the motion of, a given M. But by the superposition of small 
motions, we may regard the total time-variation of the velocity 
of lVf as the stun, or resultant, of the time-variation due to the 
action of all the m molecules separately, each acting for the 
time dr. We can then prove that for any given class of M's 
with any class of re's, as the result of their mutual action, 
dH 
dt is negative unless the condition is satisfied, in which 

case it is zero. 
The mutual action is assumed to depend on the relative 

positions, not on the velocities, of M and m. 
We assmne also the distribution to be uniform in space, so 

that the number per unit of volume of any given class of 
molecules is independent of the position. 

Let, then, at any instant the distance between M and m be 
between q and q + d~/. 

Let the common velocity be OC----V~ and let the velocity 
of M be OP(R ~ dR dS). 

The velocity of m or 019 is then determined by these con- 
ditions. In order completely to define the motion we require 
one other coordinate of position. Let it be 0. Consequently 
the number of pairs M and m satisfying these conditions at 
any instant is FrfpR 2 dR dS dq dO. Call this the first state. 

By mutual action V is not affected. The motion under 
the influence of the mutual action is determinate~ and after 
time at the same variables shall be denoted by accented letters. 
Then ~/'~ R I, S'~ tT ate functions of q, R~ S, 0, known if the 

Y 2  
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304: Mr. S. H. Burbury on some Problems 

law of mutual action is known. Call this the second state. 
The number of pairs, M and m, in the second state, at any 
instant is Fp' .f /R/~ dR f dS I dg dO'. 

Now by a known theorem (Boltzmann, Sitzungsbericlde, 
Vienna, 1871 ; Watson, ~ Kinetic Theory of Gases,' Prop. III.) ,  

R ~ dR dS dq dO= R t2 dR r dS I d¢ dO', 
or, since 

dg=--gdt, and d /=- -~dr ,  
R ~ dR dS d(? pdt = R t2 dR' dS j dr9 ~/dt. 

The number of pairs which in unit of volume and time dt 
.pass by their mutual action from the first to the second state 
lS 

Fpfp R ~ dR dS dr? pdt ; 

and the number which so pass from the second state to the 
first is 

Fp'f/R re dR r dS r dO r/dt. 
If  therefore 

F p I f / =  Frfp, 

the number of pairs which pass from the first to the second 
state is equal to the number which pass from the second to the 
first in the same time, and this being true for all positions of 
C and of P, the distribution of velocities is unaffected by the 
mutual action of M and m. 

If  F / f / ~ F p f ~ ,  then we f o r m a t  as before, and it will as 

before consist of a series of terms, each of the form 

Fpf. log ~ (F~'~'--Fp/p), 

and is therefore necessarily negative until for given C, Fp.fp, 
becomes equal to Fif~ for all directions through C. 

d t t .  
8. The complete expression for ~/-m case of elastic spheres 

is 

~ d ~  d,  d~ ~, o®dR~'s'p . R~ ~ d S  log (Ff  ) { F'f ' --  F f}  , 

where SSdS denotes integration over a spherical shell described 
with radii R . . .  R + d R  about the point ~:~ ~" as centre, and 
F~fl denotes the mean value of F f  for all positions of the 
diameter of that shell. 
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in the Kinetic T]~eory of Gases. 305 

This may be put in the form 

dVV u da2~r sin a dRTrsepR ~ S log (F f ) (F~- -Ff ) ,  
,.I0 

where a is the angle made by OC with a given line--or, 
dH 

changing the order of integration, -~  = 

So I YJ dVV  d 2 -sin dSlog (F/)(FV'-W). 
.JO 

9. In case of finite forces acting between the molecules, we 
have no such simple expression as 7rsVp to denote the number 
per unit of time of encounters between two molecules with 
relative velocity p. We might define an encounter to be a 
case in which the relative velocity of two molecules is turned 
by their mutual action through an angle exceeding a certain 
limit, reckoning from the time when mutual action begins, to 
a time when it has ceased, to be appreciable. If  with that 
definition we denote by ~rs~p the number of encounters per 
unit of time, s is generally a function of p or of R. We 
might use ~rs~p in this sense for any medium in which the 
coincidence of two or more encounters for the same molecule 
simultaneously is so rare as to be negligible. 

10. The equation 
Fp = Fpf  

is satisfied by 
F~-- Ce - ~ .  oe~ 

fp = C/e-~.op ~, 

where C~ C' are constants, because if PCp, QCq be two 
diameters of ~he spherical shells, 

M. OP 2 + toO2: = M. OQ 2 + toO9 ~. 
It  is also satisfied by 

Fp--  Ce-~M(°P2+ u2-2uOP cos#) 

f p = C/ e-~m( op~+u2-2uOpeos~') 

where u is a constant line measured in any direction, and 
t ,  ~r are the angles made by OP and Op with that direction, 
because M. OP cos ~ + m. O 2 cos fl' has the same value for all 
directions of PC T. These are the values of Fea ndfp when 
both sets of molecules, M and m, have the same velocity, u, 
combined with the velocities required by the kinetic theory 
ibr a gas at rest. 

A motion of this description is called by Professor Tail 
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306 Mr. S. It .  Burbury on some Problems 

"mass motion." I prefer to call it a motion of slm2~le trans- 
lation. Since the equation Fpfp =Fe fp ,  is satisfied by such 
a motion, the distribution of velocities is una~c ted  by en- 
counters. As is otherwise also evident, because the motion 
of translation does not affect the relative velocities, it is not 
necessary that u should be small. I t  may, for instance, be the 
earth's motion in space. If~ however, u be very small iil a 
motion of this kind~ the number per unit of volmne of mole- 
cu|es of mass M whose velocities are between eo and co + d~o in 
direction XlzvdS is 

the direction of u being taken for axis of x. 

On Disturbed States of a Gas. 
11. Thus far we have treated only of a gas at rest or in 

T T  

simple translation, in both of which cases ~-~ = 0. Both may 

be regarded as normal states. We come now to consider cer- 
tain disturbances in which, by the action of external causes, 
the gas is maintained in a state differing from the normal state. 
We mi_~ht~ SUDDOSe~ =generallv~ the number, p. er unit of volmne 
of molecules of mass M having velocities X/z v ¢0 ~ d~o dS 
to be 

F(~o)~o~dco dS, 
and 

where the Y's are any spherical harmonic functions referred 
to the origin, the C's functions of (s, and XC,Yiis supposed 
very small compared with unity. In the problems with which 
we shall deal the harmonics will be of the first and second 
orders only. 

12. In such a system H differs fl'om the mininmm value 
which it would have were there no external disturbing causes. 
Encounters between the molecules tend to diminish H, and 
so to reduce the system to the normal condition, and the rate 
of diminution of I t  increases with the increase of the distur- 
bance. I f  there be an external cause always producing the 
disturbance at  a constant rate, a state of steady motion will 
be reached in which the disturbance is diminished by encoun- 
ters as fast as it is increased by the operation of external 

dI t  
conditions. We shall denote by dt~ the time-variation of H 
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in tlze Kinetic T],eor.~ of Gases. 307 

due to encounters~ and by ~t~---its time-variation due to e x -  

t e r n a l  causes. In steady motion 

dH ~ H  
d-7 + 5F =°" 

dF 
In like manner for any other function, as F~ ~ -  shall be 

5F 
the time-variation due ~ encounters~ ~ that due to exter- 

nal causes, and the condition for steady motion is 

dF  5 F  
d-t + ~--/-= 0. 

13. Let us consider the case of two sets of molecules, each 
subject to a small disturbance. 

For the M set let 

F(~) =N (~)~e-hM~(l +X). 
For the m set let 

f(qF)----n (~-)e-'~'(l +x). 
Here N and n are the numbers of molecules per unit volume 

of the M and m sets respectively, and X and x represent the 
disturbances. 

Let us form the spherical shells described about C, with 
radii R~ r as in (6). Let PCp be any common diameter, and 

o,= OP, ,=op. 
Let Xp, xp be the values of X and x at P and p respectively. 
In that case 

M~ ~ + m ~  ~ = (IV[ + m) V ~ + M R ~ + mr ~ 

~V~ lft 2 
= (M + m) V~ + ~ p 

= (M+,rO (V~+ ~R~). 
and 
, = 7  - _ U~Mx /I.n~ _~(~+mw+~. )  . . . .  F y - - F f = N n t ,  ~. ) t - ~ - )  e ~+'< l .x- t -x--(Xe+xv)} ,  
where 

1 x+~=~SS(x~+~,) ds, 
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308 Mr. S. H. Burbury on some Problems 

the integral being over the whole spherical surfaces, that is 
for all directions of P~Cp'. 

Also 
log ( F f ) =  log { F(OP). / (Op} 

( Mm ) ( ~ - - h  M+mV~+ ~ O~ + X r + , % +  log Nn ~ ~ -  • 

And therefore 
~ d S  log ( F f ) ( F ~ f  - - F f )  

hM ~ hm ~ ~ ~ - ' ~ w  ~ ' ~ p ~  - -  

the last factor being the square of the mean minus the mean 
of the square of XrTxp, for all directions of PCp. 

dt t  
Hence we can find ~ in the form 

d t t  M + m N n  
dt m \ ~r J ~ ~r ] ) o 

x sin ( x  +  ?1t, 

in which M + m R is written for O. 
m 

EXAMPLES. 

14. 1)iffusion.--Two reservoirs, A and B, are connected by 
a uniform horizontal tube. In A is a mixture of two gases, 
gas M and gas m, in certain proportions. In B is a mixture 
of the same two gases in different proportions. The tempera- 
ture and pressure of ghe mixture are the same in either reser- 
voir and at all points in the tube between them. Gas M is 
of greater density in A than in B. 

Then a stream flows through the tube, of M from A to B, 
of m from B to A. If  the proportions in which the gases are 
mixed in the reservoirs be maintained constant, as if for 
instance the reservoirs were of infinite extent, tile stream 
becomes steady. 
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in the K{netlc T]~eory o f  Gases. 309 

Let N be the nmnber per unit of volume of molecu]es of 
gas M, n the number for gas m, at any point in the tube. 
By Avogadro's law N + n is constant throughout, or taking 
the axis of the tube for that of x, 

d N  dn 
d--U - - - ~ "  

The stream velocity is assumed to be very small compared 
with the molecular velocity of mean square. The problem of 
diffusion is to find the stream velocity. 

Take as an element of volume in the tube a cylinder of 
length Sx, and whose base is unit area parallel to yz. 

Let N be the number per unit of volume of molecules M 
at the left-hand face (towards A) of that cylinder. Then the 
number at its right-hand face is 

The number of M molecules of the class X/~ v ~ do~ dS which 
enter the cylinder through its left-hand face in unit of time is 

2 XN e - ~  o"do dS. 

The number of the same class which pass out of the cylinder 
through its right-hand-face in unit, of time is 

and therefore, but for encounters, the number of molecules M 
of the class X/~ v o 2 do dS within our cylinder would be in- 
creased in unit of time by the quantity 

, ,tiM\ ~ dn ~ t,~,~ 3. , xl, - J o  dS, 
or the number per unit of volume would be increased by 

~r ) ~ e  o a o d S .  

Therefore 

- ~ =  \ ~r ] dx 

This is a zonal harmonic function of the first order about 
the axis of x. In this case we shall assume 
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310 Mr. S. H. Burbury on some Problems 

where ¢(~o ~) is an undetermined function of o~. The distur- 
bance is of the first order. 

15. Conduction of heat in a single 9as.--Let there be a 
horizontal tube, AB, filled with a single gas. Let the 
temperature be higher at A than at B, and be maintained 
constant at each of those points, and let the pressure be uni- 

form throughout the tube, so that ~ = P, a constant, pro- 

portional to the pressure. With the same notation as in the 
last example, let us consider the molecules of the class 
X t* v w: do~ dS which enter the elementary cylinder from the 
left in unit of time. Their number is, putting k for hm, 

The number of the same class which pass out of the ele- 
mentary cylinder by its right-hand face per unit of time is 

XN ( ~ )  ~ e-"~co3do~ dS. 

N and k being variable. 
Therefore, but for encounters~ the number of the class 

within our elementary cylinder would be increased in unit of 
time by 

- - x ~ x d  ( N ( k ) '  e-~°"~) co~d~o dS, 

or the number of the class per unit of volume would be in- 
creased in unit of time by 

- -  X d__ N "e - ~  o,~&o dS ; 
dx 

that is by 

2}dx" 
5 This is positive or negative according as kco~> or < ~. 

For high values of co there is an increase, for low values a 
diminution. ~l~lls increase or diminution is in steady motion 
compensated by encounters, because molecules with high 
velocities are on average moving more to the right than to the 
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in the Kinetic Theory of  Gases. 311 

left~ and lose velocity in direction x by encounters. Here 

And we assume 

where ¢(co ~) is an undetermined function. The disturbance 
is of the first order. 

16. Viscosity of  a single g a s . - - A  gas on either side of the 
plane of xz is uniform throughout as regards temperature 
and density. On the negative side of the plane y =- -- a the 
gas has, and is constrained to maintain, a constant velocity, 
v, of simple translation in direction x. And on the positive 
side of the plane y----+a, a constant velocity--v of simple 
translation in that direction. The problem is to find the 
quantity of x momentum which under those circumstances is 
carried across unit area of the plane of xz per unit of time in 
the positive direction by molecules crossing that plane. 
Take any two planes parallel to xz and distant 3y from each 
other. Suppose for a moment that on the negative side of 
the negative plane the gas has a velocity, v, of simple transla- 
tion in direction x. Then the number of the class 

X / t  u eo 2 dw dS 
per unit of volume is 

The number of this class which cross the negative plane in 
the positive direction per unit of area and time is 

2 

The number of the same class that cross the positive plane in 
the positive direction per unit of area and of time is 

]c ~ ~.~'~ 3 
\ a y / j  

And, but for encounters, the class within the layer between 
the planes would gain in number per unit of volume and time 
by the quantity 

-- ~ ~e-~%J~doo dS  . ~t ~ . 2k~o ~u" 
e , i  

In steady motion the number of the class in question is 
diminished by encounters by the same quantity. 
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312 Mr. S. H. Burbury on some _Problems 

The motion of the gas is a motion of simple translation with 
velocity v------qy in direction x, where q is constant, combined 
with a distm-bance of the second order symmetrical about the 
plane x----y. In this case we should assume 

/ ', k 
F - - I N  ( ~ )  e - " ( l  +Xff¢(co2)), 

where ~)(~o u) is an undetermined function, and 

at  k~r ) '- dy" 

17. The complete solution of any problem of the kind would 
have to be found fl'om the equation 

dF a F  
d~ + ~- =0, 

expressing the steadiness of the motion for each class of mole- 
cules. It  does not appear that in case of diffusion we can 
obtain a solution by assuming the two gases to have a motion 
of simple translation, one in one direction and the other in 
the opposite. 

Relation @Diffusion ~fc. to Temperature. 
Without obtaining a complete solution of any of these pro- 

hlems~ we can by means of the equation 

dlt att 
d-y+ ~/-=0 

determine the relation in which the solution, whatever it may 
be, stands to the absolute temperature of the system. 

18. When the disturbance is of the first order the solution 
proposed is~ using X to denote the disturbance as in (13), 

in which X(tt) is a function of 1~ to be determined, and 
4)(hMco ~) is a function of hMco ~, containing only odd positive 
powers of co ~ ] ~ ,  as for instance 

¢ (hMco 2) = Coo) v" hM + C,~ (hM)+co~ + &c., 
where the C's are numerical. 

Similarly in dealing with two gases, we shall assume 
• ~ = X'X (10 +'(~,mt," % 

and ~b v has similar form. With these values of X and x, 
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in the Kinetic Theory of Gases. 313 

the integration being over the spherical surface, described 
about C, as in (6). 

Now, if ~./~c v. be direction-cosines of OC, and OP-----~, 

koJ =X~(V--R cos E) + V'l--X~ R sin E cos ],, 

where E is the angle OCP, and ~/is the angle between the 
plane OCP and a fixed plane, and therefore the second term 
disappears when we form the integral 

yS dSkoJ dp (h~o~). 
o~ 

Also, since ~ = V ~ + R ~ - - 2 V R  cos E, we may write, ex- 
pressing Taylor's theorem, 

¢ (I, M V ~  + = ~ - ~ v ~  oo. ~ ,  : , ,  
co ~ V  ~ + R ~ 

where 

Thus we obtain 

d 
iv = dV z. 

y• )f'~ E)~-2w oos~p ~( hMV~ + R~) XdS =XcX (h o dE2~r sin E (V-- R cos ~ V~ + R e 

The integration according to E can now be effected in a series, 
and with the assumed form of ~b(hMoJ ~) no negative powers 
of V or R will appear. SSx dS can be treated in the same 
way. 

dFr  
By an extension of this method we might form T in a 

series of positive powers of oJ, and we should then have 
theoretically sufficient data for determining the coefficients 
Co, C1, &c. in the expression for ¢,b(hMo~ ~) by equating to 
zero the coefficients of powers of o~ in the expression 

dFp ~ _ t  r d~-+ =0. 

In order to find X(h) we resume the discussion of the equation 
dI-I ~ H  
d~- + ~ =0. 

19. I f  in the expression 

I h m ' ~  ~ . v r  - h M + m V ~  2 ~ . n  - ~ M + m R 2  . . . . . . . .  =~.,.~ { - - !  / a v e  v I ar~e ~ ~'zgL/t±v£v'. + R  ~) 
\ T r J d o  Jo 

all the integrations were effeeted, the result would be in- 
dependent of h, whatever the form of' ~b might be. As we 
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314 Mr. S. H. Burbury on some _Problems 

may express it, the above function is, as a function of h, of 
zero dimensions. Therefor% since X=.~X(h)d?(hMo~e ) &c., 
the expression 

\ ~ - - J  \ ~ - "  do ~ o 

x t d~2~- sin a-X + :c[ ~ 
,2o 

must have, as a function of h, dimensions (%(/O)e V]~ , the  factor 

v'f~ appearing in the denominator on account of the intro- 
M + m  

duetion of ~sep, or ~'s ~ R, 7rs ~ being in the cases now 
m 

considered independent of p. 
In like manner the expression 

AM \i f h m  \~ ['® 

jo  

h Y £ - -  ~ s ' o  - - 5 I  + , f l t ~ .  o ) {  " l -  m 

m 

will, as a function of h, have dimensions (%(]0)e 
V~ 

d H  (see (13)) will, as a function of It, have And therefore ~ -  

dimensions (%(a))8. 

B H  
20. We have next to treat ~ in the same way. The re- 

sult will be different for diffusion and for conduction of heat. 
In diffusion 

b F  . l 'hM'~ hz~ ~ dn 

Also 

log F = log 

logf=log 
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in the Kinetic Theory of Gases. 315 

Now if we form 

bY log/}, 
the terms containing X or Xr in the first degree disappear, and 
s o  

dn ]tM i 
3t 

d n  ]t in ~ t r t r~ - J , m  2 I ,, fS d dJd x  
a x \  ~ /  

where 
o~ _ x  ~ +y2 + z  ~, 

As a function of h, this expression has dimensions x(h) 

~/h appearing in the denominator in consequence of the 
factors ~ and ~ .  

21. 5Tow by virtue of the equation 
~H 3 I t  
dt + b t  - = 0 '  

dH and 5 t /  dr/ ~ will~ as functions of/b have the same dimensions. 

And therefore in diffusion (X(h_))-~ has the same dimensions as 
x(;,), v 
~/~ , or x(h) is a constant, independent of It. 

But the stream of gas M through the tube, that is the rate 
of diffusion for given space variation of density~ is 

1 
and therefore varies as - ~ ,  or as the square root of the abso- 

lute temperature. This is a consequence of the assmnption 
that z-s ~ is independent of R, and therefore holds only for 
elastic spheres. 

22. We will now treat conduction of heat in the same way. 
Since the disturbance is Of the first order, we shall as befbre 
assume for the solution XX(k)¢(koo2), k being written for hm. 

Then c~--tnwill ~ as a function of k, have the same dimensions as 

before, viz. (Xik)) ~ 
~ / #  ' 
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316 Mr. S. H. Burbury on some Problems 

5H In forming ~ - w c  have now the factor P dkdx ' instead of 

du 
~xxaS in diffusion. Also k---- 32~,if ~" be the absolute tempera- 

ture and 
dk 3 dT 2 .~ d'r 
dx  - 2 ~  d x - -  -3 k d;x" 

We have now to compare two systems in each of which P is 
constant throughout the tube, but has not necessarily the same 
constant value in both systems, and k has different values in 
the two systems. 

We may make 
N 

(1) P the same, that is ~ the same, in both systems. 

(2) N the same in both systems. 
5H In case (1) ~ ,  as a function of k, has dimensions k 2 X(~) 

In case (2) it has dimensions k %(k) - _ - .  

Now the flow of heat per unit of time through a section of 
the tube, that is the rate o f  conduction, is 

and therefore varies 
1 

in case (1) as 4/~ or as 4/7r, 

1 
in case (2) as V---~,or as ~/¥. 

We have then the following result. Assuming that the 
molecules may be treated, as regards their mutual encounters, 
as elastic spheres, the ~'ate of  conduction of  heat between 
points of equal pressure but unequal temperature varies, as 
between two systems with the same pressure, inversely, and 
as between two systems with thesame density directly, as the 
square root of the absolute temperature. 

23. When the disturbance is of the second order, as in the 
problem of viscosity, the mean value of X~, given E, is (see 
figure, § 6) 

3 ~ 1 3 { V - - R c o s E ~  ~ 
~cos C O P -  2, or ~\. ~ / 2" 

In order in this case to prevent the appearance of negative 
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in the Kinetic Tlwory of Gases. 317 

powers of V and R in the differentiation, we should assmne 
~b(kto ~) to consist of even powers of tov//c. 

As the result when all the integrations are effeeted, d____H dt 

will be a function of k of dimension (X(k))~ And ~ H  
dimensions ~(k). ~/~ ~ t -  of 

So we should obtain 

(x(k))~- x(k) or x(k)= ,/k. 

But the excess of momentum carried in the positive 
direction through unit area of the plane of xz, on which tile 
viscosity depends, varies as 

1 
that is varies as ~ ,  or as the square root of the absolute 

temperature. 
24. The above results are obtained on the hypothesis that 

~rs ~ is independent of p or R, and therefore only on the 
hypothesis that the molecules may be treated as elastic 
spheres. On any other hypothesis 7rs ~ is a function of R, and 
as such will affect the integration according to R~ and the 

d t t  
degree in h or k which -~- assumes as the result of that inte- 

gration. For instance, if the molecules be centres of force 

repelling one another with a force varying as 1.7rs~ ~ 1. 
dtt  P"" P 

In  this case, in dealing with diffusion-~- will be proportional 

to (X(I~))~, instead of (x(h))~ ~Tt as in the case of elastic spheres, 

1 that is as the and the rate of diffusion would vary as ~ ,  

absolute temperature, instead of as the square root of the abso- 
lute temperature. 

I f  the experiments from which it appeared that the rate of 
diffusion varies as the square root of' the temperature can be 
relied on as giving exact, and not merely approximate, 
results, they afford ground for the inference that molecules 
of gases may, as regards their mutual encounters, be treated 
as elastic spheres. 

.Phil. Mat. S. 5. ¥ol .  30. No. 185. Oct. 1890. Z 
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