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supposing the pressure to follow the law (31) applicable when

2r>a,is s .
12 g g 5 _ 7
j; ;.E.llvrr dr—W

The work required to generate a cavity for which 2r>a is
therefore less than if the ultimate law prevailed throughout
by the amount

mia’ < 1 1 1 )_ ma’

1018 35)72.9.7

[To be continued.]

: (33)

XXXV. On some Problems in the Kinetic Theory of Gases.
By 8. H. BurBury, F.R.S.*

Maxwell’s Law of Distribution.
1. WHEN a gas or mixture of gases is at rest in the

normal state, the distribution of velocities among
the molecules may be defined thus:—Take an origin O, and
let the vector velocity of each molecule be represented by a
line drawn from O. Then the number per unit of volume of
molecules of mass M, whose velocities are represented by lines
from the origin to points within the element of volume dQ
at P, is

}LM 4 —hM .OP2 .
N (?) ¢ aQ;

where N is the number of molecules of mass M in unit of
volume, and % is the mean kinetic energy of a molecule.

2. I shall employ two other variables :—

Let V denote the vector velocity of the common centre of
gravity of two molecules whose masses are M and m. Call
this their common velocity.

Let R denote the velocity of M, » that of m, relative to this
common centre of gravity. Then the velocity of M is the
resultant of V and R, that of m is the resultant of V and ».

The relative velocity of M and m is R+, and shall be
denoted by p, so that

R_m  M4m Re M+m
r W PT Ta = M "

3. The molecules whose velocities are represented by lines

#* Communicated by the Author.
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from the origin to points within the element of volume dQ at
P shall be said to have velocities OP (dQ). Or if we give to
dQ any particular formn, as w?dwdS, o being OP and dS
being a small solid angle, we may speak of the velocities OP
(w*dwdS). If A p,v be direction-cosines of the axis of a
cone containing the elementary solid angle dS, we may speak
of the direction A v dS as comprising all lines drawn from
the vertex of that cone and falling within it ; and Apve?® dw dS
as comprising all velocities between @ and dw in directions
within that cone.

4. In Maxwell’s distribution, if we consider all pairs of
molecules, M and m, lLaving common velocity V, and relative
velocity R+, for given V all directions of R or r are equally

probable.
Let 0C=V, POp=R+r, r
P0_m _R
p0 M~ 7

If OC be given, the number of the
airs in question for which the angle

POC lies between 8 and 6+d#@ is pro-

portional to 0

e— MM +PC2+m . pC2) sin I de.

Now
M.PC?4+m.pC2=MR?*+ms?>+ M +m V2

—2(M.R—m.7)V cos 6,

which is independent of 8 because MR—m»=0. The number
is therefore proportional to sin 8 d¢, and this proves the pro-
position.

5. If the molecules behave in their mutual encounters as elastic
spheres, then for given direction of the relative velocity before
encounter, all directions after encounter are equally probable.

I think it unnecessary to give a proof of this proposition.

6. (a) Every distribution of velocities among the molecules
which satisfies the condition that jor given V all directions of R
are equally probable, is undisturbed by encounters, or by the
mutual action of the molecules, and is therefore, in the absence
of external forces, stationary.

(b) No distribution whatever of velocities among the molecules
is undisturbed by encounters, or by the mutual action of the
molecules, unless it satisfies the condition that for given V all
directions of R are equally probable.

Of these theorems (a) corresponds to the well-known pro-
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position that Maxwell’s distribution is stationary. The con-
verse (b) is founded on Boltzmann’s proof (Sitzungsberichte,
Vienna, 1872), but is much simplified by using V and R for
variables.

We will prove these theorems, (a) and (b), first on the
hypothesis that the molecules are to be treated as elastic
spheres. We will suppose two classes of molecules having
mass M and m respectively. It will be sufficient if we prove
our propositions for the encounters of M with m.

Let F(ayz dedydz, or F.dxdydz, be the number per
unit of volume of molecules of mass M whose velocities are
represented by lines from the origin to points within the ele-
ment of volume dz dy dzat xy 2. Similarly A’y 2") do' dy’ d?/,
or f.da' dy' d2/, is the corresponding number for the m’s. If
zy z be denoted by P, and 2’ y'2’ by p, we will write I'p and
Jpfor F and f.

Let C be the point £9¢.  Consider all the pairs, M and m,

7 [ P

0

which have O C for common velocity. About C as centre
describe two spherical shells, one with radii R...R+dR, the

other with radii »...»+ % dR. Let P be a point in the first

shell. The common velocity being OC, and the velocity of M
being OP, the velocity of m is Op, where p is a determinate
point in the second shell, namely in PC produced so that
g—% =%{ And so f, can be expressed as a function of £7¢,
and of #y z, the coordinates of P.

The effect of an encounter between M and m under these
cirenmstances is, without altering V, to substitute for PCp
some other common diameter of the spherical shells as the
relative velocity. Let it be P’Cp’. Then all directions of
P’Cp’, given PCp, are equally probable.

The number of pairs M and m per unit of volume and time,
having OC for common velocity, for which the relative velocity

is PCp(d8) before, and P'Cp/(dS’) after, encounter, dS and
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dS’ being small solid angles, is
ds dy’
47

where s is the sum of the radii of M and .
The number of pairs for which it is P’Cp’(d¥’) before, and
PCp(dS) after, encounter is

as . dSay
i FpfpdS mws?p, that is Fpf, P ws’p.

If, then, Fpf,=Fp f;y, the number per unit of volume and
time of pairs for which the relative velocity turns, as the result
of encounter, from PCp to P’Cp’ is equal to the number for
which it turns from P’Cp’ to PCp. And if this is true,
given C, for every two directions of PCp, and for all positions
of C, it follows that the distribution of velocities is not affected
by encounters between M and .

Now Fpf, represents the chance that, given V=00, the
relative velocity shall have direction PCp. And we see that
if, given OC, this chance be the same for all directions through
C, the distribution of velocities is not affected by encounters.
So («) is proved.

If for some two directions of the diameter Fp £, £Fpf, we
proceed as follows, adapting Boltzmann’s proof.

Let
H={{{dadydzF(ay2)(log F(zyz)—1)
+{{§ dedy dzf (2y 2)(logf (2y 2) — 1),

the limits being in each case +w, or, as we will write it,

H={{{dzdydz{F (logF—1) +f(log f—1)} ;

dH dF df
W:Sﬁ‘dwdydz E—logF+ 7 logf}.

Now K is supposed to vary only by encounters between the
M’s and the m’s. Therefore

dl'p

di
where Tp is the number per unit of time of encounters with
the m molecules which the M molecules with velocity OP
undergo, and T'p is the number per unit of volume and time
of encounters between M and m from which M issues with
velocity OP. Now P being given, and the velocity of M
being OP, C or £7¢ may have any position whatever, and

Plil. Mag. 8. 5, Vol. 30. No. 185. Oct. 1890. Y

/
%—i—prp dS wsp, that is Fpf, ms’p,

then

=Tp—Ts;
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the position of p is determined by that of C. Hence
Te=Fe{{{dt dndims'of,,
= ﬁ‘jdf dn & ws*pFpfy s

and since all the directions of the relative velocity before
encounter are equally probable,

T’p=ﬂ:§ dE dn dfws’p —4—171—_ ‘S‘Svaj‘;, ds,

in which j‘de denotes integration for all directions of the
diameter, P’Cp’, of the spheres described about C, or £7¢

1
through P.  Let 5 SS Fp fdS be denoted by Fp f,, then,
given P,

d_]-‘k = ([§ d& dn dtwso(Fo fy —Faf),

and by symmetry /‘;' has the same value. In this equation

Jp and £, are supposed to be expressed as functions of £9¢

and the coordinates of P or P/,
In order to find OZTH’ we multiply g‘z by log Fp and % by

log fp, and then integrate over all positions of P in space. If
PCpand P’Cp’ be any two diameters of the spherical shells de-

scribed with radii R and » about C, —— H will contain the term
it (o T+ o) (Frd —Fefy)s
mstplog (Fef) (Fefy —Fefy).

By symmetry, as P’ is a position which P will assume in

that is

the integration, = will also contain the term
7T-S'2p lOg (FP'/}.;I) (pr;,—FP'f;,v).

And adding the two terms togethel dH — .~ contains the term

ws’p log oy Pf (FP/ —Fp /),

and will consist who]ly of a series of terms of that form.
Now this expression is necessarily negative unless

Fp fy =Fzrf,, and is then zero. Therefore T is necessarily
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negative unless Fp f,y =Fp fp for every two directions of the
diameter through C; that is unless, for given V, all direc-
tions of the relative velocity are equally probable. Now in
stationary motion H must be invariable with the time. There-
fore the motion is not stationary, or the distribution of
velocities is not unaltered by encounters, unless the condition
be satisfied. So (b) is proved.

7. We will next assume that the two molecules M and m
act on each other with finite forces. Then in the infinitely
short time dt the relative velocity is by their mutual action
during encounter turned through some small angle; and
generally also altered in magnitude, in such manner as that

Mm
M+m

3 p*+x = constant,
x being the potential of the mutual action.

Tt is not necessary to restrict the number of m molecules
which may simultaneously be in encounter with, and affect
the motion of, a given M. But by the superposition of small
motions, we may regard the total time-variation of the velocity
of M as the sum, or resultant, of the time-variation due to the
action of all the m molecules separately, each acting for the
time d¢. We can then prove that for any given class of M’s
with any class of m’s, as the result of their mutual action,

(% is negative unless the condition is satisfied, in which
case it is zero.

The mutual action is assumed to depend on the relative
positions, not on the velocities, of M and m.

We assume also the distribution to be uniform in space, so
that the number per unit of volume of any given class of
molecules is independent of the position.

Let, then, at any instant the distance between M and m be
between ¢ and ¢+dg.

Let the common velocity be OC=V, and let the velocity
of M be OP(R?dR dRS).

The velocity of m or Op is then determined by these con-
ditions. In order completely to define the motion we require
one other coordinate of position. Let it be #. Consequently
the number of pairs M and m satisfying these conditions at
any instant is Fp/,R? dR dS dg df. Call this the first state.

By mutual action V is not affected. The motion under
the influence of the mutual action is determinate, and after
time at the same variables shall be denoted by accented letters.
Then ¢, R/, &, & are functions of ¢, R, 8, 6, known if the

Y 2
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law of mutual action is known. Call this the second state.
The number of pairs, M and m, in the second state, at any
instant is Fy' £,/ R?dR/ d¥' dg' d¥'. )
Now by a known theorem (Boltzmann, Sitzungsberichte,
Vienna, 1871 ; Watson, ¢ Kinetic Theory of Gases,” Prop. 111.),

R2dR dS dq dd=R"dR d¥' d¢ df,
or, since
dg= —pdt, and d¢'=—p'dt,

R2dR d8d0 pde=R"?dR! dY dO plds.

The number of pairs which in unit of volume and time dt
pass by their mutual action from the first to the second state
18

F./, R?dR dS df pdt ;
and the number which so pass from the second state to the

first is
Fy' /;/ R2dR/ dS' df pldt.

FI"fp, =Fs fos

the number of pairs which pass from the first to the second
state is equal to the number which pass from the second to the
first in the same time, and this being true for all positions of
C and of P, the distribution of velocities is unaffected by the
mutual action of M and m.

If F¥' /y/£Fef,, then we form%%I as before, and it will as

before consist of a series of terms, each of the form

F
log e/ (B! i —Fu ),

and is therefore necessarily negative until for given C, Fp. f,,
becomes equal to Fpf, for all directions through C.

If therefore

8. The complete expression for d—qin case of elastic spheres

dt

is j.g df dn &g dem?p .R? ﬂ‘ds log (F/){F'7'—Ff,

where ﬁ‘ dS denotes integration over a spherical shell described
with radii R... R+dR about the point £ ¢ as centre, and

F’f! denotes the mean value of Ff for all positions of the
diameter of that shell.
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This may be put in the form

5‘ AA% rr da2r sin ay dRars?pR? j‘j‘ds log (FA(K'F—Ff),
0 Jo 0

where « is the angle made by OC with a given line—or,

changing the order of integration, - =

5 dVVQj‘ destRejmdaQW sina 5] dS log (Ff)(F'f' —FF).
0 0 0 k

9. In case of finite forces acting between the molecules, we
have no such simple expression as 7s’p to denote the number
per unit of time of encounters between two molecules with
relative velocity p. We might define an encounter to be a
case in which the relative velocity of two molecules is turned
by their mutual action through an angle exceeding a certain
limit, reckoning from the time when mutual action begins, to
a time when it has ceased, to be appreciable. If with that
definition we denote by ms?p the number of encounters per
unit of time, s is generally a function of p or of R. We
might use ws?p in this sense for any medium in which the
coincidence of two or more encounters for the same molecule
simultaneously is so rare as to be negligible.

10. The equation
prp= Fptf;,

—_ —rM .OP2
FP—CG Py
— (V o—hm.Op2
Jo =Clehm-0F%

where C, C' are constants, because if PCp, QCq be two
diameters of the spherical shells,

M. OP?4+mOp*=M.0Q*+mOq’

It is also satisfied by
FP — CG—hM(OP2+ %2 -2u0P cosﬂ),

is satisfied by

f; = e—hm(0p2+u2—2u0pcosﬁ’)’

where » is a constant line measured in any direction, and
B, B are the angles made by OP and Op with that direction,
because M.OP cos 8+m.Op cos B has the same value for all
directions of PCp. These are the values of Fpand f, when
both sets of molecules, M and m, have the same velocity, w,
combined with the velocities required by the kinetic theory
for a gas at rest.

A motion of this description is called by Professor Tait
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“mass motion.” I prefer to call it a motion of simple trans-
lation. Since the equation Fpf, =Fpf,is satisfied by such
a motion, the distribution of velocities is unaffected by en-
counters. As is otherwise also evident, because the motion
of translation does not affect the relative velocities, 1t is not
necessary that » should besmall. It may, for instance, be the
earth’s motion in space. If, however, u be very small in a
motion of this kind, the number per unit of volume of mole-
cules of mass M whose velocities are between o and w+ dw in
direction AuvdS is

hM\E
M (L?) € Mo?,? doo dS(1 4 2N Mwu),
the direction of u being taken for axis of .

On Disturbed States of ¢ Gas.

11. Thus far we have treated only of a gas at rest orin
simple translation, in both of which cases %-I:o. Both may
be regarded asnormal states. We come now to consider cer-
tain disturbances in which, by the action of external causes,
the gas is maintained in a state differing from the normal state.
We might suppose generally the number per unit of volume
of molecules of mass M having velocities A puve®do dS
to be

F(0)o’do dS,

and

F(o)=N (g)te—m‘"?{ 1+2C: Y},

where the Y’s are any spherical harmonic functions referred
to the origin, the C’s functions of w, and 2C,Y;is supposed
very small compared with unity. In the problems with which
we shall deal the harmonies will be of the first and second
orders only.

12. In such a system H differs from the minimum value
which it would have were there no external disturbing causes.
Encounters between the molecules tend to diminish H, and
so to reduce the system to the normal condition, and the rate
of diminution of H increases with the increase of the distur-
bance. If there be an external cause always producing the
disturbance at a constant rate, a state of steady motion will
be reached in which the disturbance is diminished by encoun-
ters as fast as it is increased by the operation of external

conditions. We shall denote by C%I the time-variation of H
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due to encounters, and by BEits, time-variation due to ex-

ot
ternal causes. In steady motion
dH | dH _
= T 5 =0.

In like manner for any other function, as F, ‘fTIj shall be

the time-variation due to encounters, % that due to exter-

nal causes, and the condition for steady motion is
dF oF_,
T
13. Let us consider the case of two sets of molecules, each

subject to a small disturbance.
For the M set let

F(w)=N (%w_):—mw?(l +X).
For the m set let
Fop) = (M) ehmi(1 4.2,

T
Here N and nare the numbers of molecules per unit volume
of the M and m sets respectively, and X and z represent the
disturbances.

Let us form the spherical shells described about C, with
radii R, » as in (6). Let PCp be any common diameter, and
w=0P, ¥=0p.

Let X5, x, be the values of X and x at P and p respectively.
In that case

Me® + my®= (M+m) V2 + MB? + ms®

M
= M+m)V2+ M-{impQ

= (M -+m) (Vo %R@).

and
— N3 rhan\% Mrmver ™ 2) —
F77 —Ff=Nn ("}:‘) (=) OV ) T (Ko ) ),

where

e L e 5,




Downloaded by [University of California, San Diego] at 16:51 28 June 2016

308 Mr. S. H. Burbury on some Problems

the integral being over the whole spherical surfaces, that is
for all directions of P/Cp’.

Also
log (Ff) = log {¥(OP).AOp} |

And therefore L
§§dS log (EA(F7—Ey)

=Na(7) () o s X a4 s = 7084

i (hm\t _, (v, MP
=) () e 0 ) am i Ty,

the last factor being the square of the mean minus the mean
of the square of Xp+a,, for all directions of PCp.
Hence we can find ‘%[ in the form

a3 _ . M‘“mNn(ﬂI (%m)f dv.v? _f dR72R x
0 0

dt m T
R Mm -
« e—-h(M+mV2+T\fm Pz)j da27r sin a {_X +af— X+ x)gl},
0

in which tm

R is written for p.

ExAMPLES.

14. Diffusion.~Two reservoirs, A and B, are connected by
a uniform horizontal tube. In A is a mixture of two gases,
gas M and gas m, in certain proportions. In B is a mixture
of the same two gases in different proportions. The tempera-
ture and pressure of the mixture are the same in either reser-
voir and at all points in the tube between them. Gas M is
of greater density in A than in B.

Then a stream flows through the tube, of M from A to B,
of m from B to A. If the proportions in which the gases are
mixed in the reservoirs be maintained constant, as if for
instance the reservoirs were of infinite extent, the stream
becomes steady.
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Let N be the number per unit of volume of molecules of
gas M, n the number for gas m, at any point in the tnbe.
By Avogadro’s law N +n is constant throughout, or taking
the axis of the tube for that of «,

dN _ da

dez ~  da’
The stream velocity is assumed to be very small compared
with the molecular velocity of mean square, The problem of
diffusion is to find the stream velocity.

Take as an element of volume in the tube a cylinder of
length éx, and whose base is unit area parallel to yz.

Let N be the number per unit of volume of molecules M
at the left-hand face (towards A) of that cylinder. Then the
number at its right-hand face is

dN
N+8$W’

The number of M molecules of the class A p v w® dodS which
enter the cylinder through its left-hand face in unit of time is

AN (h;_n—{) %e”"M"ﬂwadw ds.

that is N—b‘xd—?—z.
dz

The number of the same class which pass out of the cylinder
through its right-hand-face in unit of time is

dmy (RMNE s o .

dax) 7) € w’dw dS H

and therefore, but for encounters, the number of molecules M
of the class A v @® dw dS within our cylinder would be in-
creased in unit of time by the quantity

IMyidn, oo
X(?) %&ze w’de dS,

A(N—Sx

or the number per unit of volume would be increased by
MM\ dn _apo o
A ( - ) P w’dw dS.

Therefore
oF _ hM)%dn AMu?
3 7\(— Tz ©.

T
This is a zonal harmonic function of the first order about
the axis of z. In this case we shall assume

F=N (L) e g1 40g(at) §,
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where ¢(w?) is an undetermined function of w. The distur-
bance is of the first order.

15. Conduction of heat in a single gas.—Let there be a
horizontal tube, AB, filled with a single gas. Let the
temperature be higher at A than at B, and be maintained
constant at each of those points, and let the pressure be uni-

form throughout the tube, so that 7@1\? =P, a constant, pro-

portional to the pressure. With the same notation as in the
last example, let us consider the molecules of the class
Apuvo? dodS which enter the elementary cylinder from the
left in unit of time. Their number is, putting £ for /um,

AN (:% )%e—k“ﬁw:’dm ds.

The number of the same class which pass out of the ele-
mentary cylinder by its right-hand face per unit of time is

AN (if;- ) Y k%30 dS.

+ )»3:&;?- {N(ﬁ)ie‘k‘“} o’dw dS,
» ™

N and % being variable.

Therefore, but for encounters, the number of the class
within our elementary cylinder would be increased in unit of
time by

—xsxd%(N( EY o) a'do dS,

or the number of the class per unit of volume would be in-
creased in unit of time by

- ‘%l% (N (:C—T)T e"‘“’z) o’do dS ;

dk
da”

that is by

—e? ki 3 a 5
APe*e (— wdwdS(kw - —)

T 2
.
E-
For high values of w there is an increase, for low values a
diminution. This increase or diminution is in steady motion

compensated by encounters, because molecules with high
velocities are on average moving more to the right than to the

This is positive or negative according as kw?> or <
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left, and lose velocity in direction @ by encounters. Here

OF _ (£ i 10— )
E—XP(W € w(kw—é 0"
And we assume

F=N (’];—r):‘ye‘k”’2 (1 + X(I)(w'z))q

where ¢(w?) is an undetermined function. The disturbance
is of the first order.

16. Viscosity of a single gas.—A gas on either side of the
plane of 2z is uniform throughout as regards temperature
and density. On the negative side of the plane y = —a the
gas has, and is constrained to maintain, a constant velocity,
v, of simple translation in direction #. And on the positive
side of the plane y= +a, a constant velocity —v of simple
translation in that direction. The problem is to find the
quantity of # momentum which under those circumstances is
carried across unit area of the plane of £z per unit of time in
the positive direction by molecules crossing that plane.
Take any two planes parallel to 2z and distant 8y from each
other. Suppose for a moment that on the negative side of
the negative plane the gas has a velocity, v, of simple transla-
tion in direction #. Then the number of the class

A pv e’ dodS
per unit of volume is

N(%)% e %? w2dw dS {1 + 27\kwv}.

N

The number of this class which cross the negative plane in
the positive direction per unit of area and time is

I3
N (;r ) et w'de dS{p+ 22 ukwv}.

The number of the same class that cross the positive plane in
the positive direction per unit of area and of time is

]c %_k‘ﬁ 3 dv
N(;) € @’dwdS {p.+27u/dcm(v+8y@)},

And, but for encounters, the class within the layer between
the planes would gain in number per unit of volume and time
by the quantity
k; J —kw2 3 d'U
—N<7T> el dS M. 2ho 4
In steady motion the number of the class in question is
diminished by encounters by the same quantity.
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The motion of the gas is a motion of simple translation with
velocity v= —gy in direction #, where ¢ is constant, combined
with a disturbance of the second order symmetrical about the
plane #=y. In this case we should assume

F=N( %)Ye—w (1 +2p(0%)),

where ¢(w?) is an undetermined function, and
oF _ ANt - o dv
B_t— N(;) € )\.[J.Q]C(D @.

17. The complete solution of any problem of the kind would
have to be found from the equation

ar  oF _
dt ' ot

expressing the steadiness of the motion for each class of mole-
cules. It does not appear that in case of diffusion we can
obtain a solution by assuming the two gases to have a motion
of simple translation, one in one direction and the other in
the opposite.

Relation of Difusion &ec. to Temperature.

Without obtaining a complete solution of any of these pro-
blems, we can by means of the equation

determine the relation in which the solution, whatever it may
be, stands to the absolute temperature of the system.

18. When the disturbance is of the first order the solution
proposed is, using X to denote the disturbance as in (13),

X=Ag(h)p(Mat),
in which (%) is a function of 2 to be determined, and
¢(AMw?) is a function of AMw?, containing only odd positive
powers of ® 4/AM, as for instance
¢ (AMo?) =Co +/ LM + C, (AM)ie® + &e.,

where the C’s are numerical.

Similarly in dealing with two gases, we shall assume

w=Nx (k)¢ (hmy?),
and ¢’ has similar form. With these values of X and «,

§§ XdS=x(%) [ 2 (M),
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the integration being over the spherical surface, described
about C, as in (6).
Now, if A, g, v, be direction-cosines of OC, and OP=w,
Ao =2 (V—Rcos E)+ v/ 1—A2 Rsin E cos v,

where E is the angle OCP, and v is the angle between the
plane OCP and a fixed plane, and therefore the second term
disappears when we form the integral

i} dshe }’M“’ $ (AMo?)

Also, since 0>=V2+R2—2VR cos B, we may write, ex-
pressing Taylor’s theorem,
¢ (IMw?) __G__WRCOEEP<j:(ILMV2 [VZ.+ R?)
w vVEERe
where
d

P=gve

Thus we obtain
gb(kMVQ +R?)
VVELRE

The integration according to I can now be effected in a series,
and with the assumed form of ¢(AMw?) no negative powers

of V or R will appear. &S‘m dS can be treated in the same
way.

ﬁXdS =AcX (]l)j "dE27r sin BE(V—R cos E)e2VB cosEp 12—
0

By an extension of this method we might form C%Ftl: ina
series of positive powers of w, and we should then have
theoretically sufficient data for determining the coefficients
Co, Cy, &c. in the expression for ¢(AMw?) by equating to
zero the coefficients of powers of  in the expression

dFP ofp
-+ i =0.
In order to find x(%) we resume the discussion of the equation
dH | 9H
T 3 =0.

19. If in the expression
( (’””) y ave MYy j dRe ™ T Reg (IM VT R?)

all the integrations were effected, the result would be in-
dependent of h, whatever the form of ¢ might be. As we
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may express it, the above function is, as a function of 4, of
zero dimensions. Therefore, since X=Ay(2)p(LMw?) &c.,
the expression

k h
( M) ( m)j' dVe"‘M“‘mV‘VQ‘ dRe“" MFRRY 2

Xj de27 sin g X + af?
0

(X(h)_)g, the factor
Vh

must have, as a function of %, dimensions

v/}, appearing in the denominator on account of the intro-

. m . .
duction of 7s%, or ws? R, 7s? being in the cases now

considered independent of p.
In like manner the expression

IM ] -] — M
(L__> ( zm) J‘ AVe—hIFmny: V2 y dRe TR Qe 2 M; "R
0

T ™
x 5‘ da 27 sin « U_(XT@)QMS
0 .

will, as a function of 4, have dimensions (_X_(_]L:L
L

dH
And therefore 7 (see (18)) will, as a function of %, have

dimensions (X—(]i)_g .
vy

20. We have next to treat Balt{ in the same way. The re-

sult will be different for diffusion and for conduction of heat.
In diffusion

)

5= h(”f) Mgy

y , hm\? g2 dn
o = (o Vo

Also
log F=log { N(g)} — AMa? + Ay (W) b(AMor?),

log f=log { /m} }—]t?h\lfz+)\IX(/1>(I>’(]H)L‘\II‘2).
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Now if we form

m__‘m'dwdydﬁ{a log F + & logf}

the terms containing A or A’ in the first degree disappear, and
S0

( ) Z: (]lM) ffj‘d‘l’dy dz 7\.2€'th w‘ﬁ(/Ll\Iw )

+x(h) (’“”) {§ ditdyde\me=rmbnge ) (i),

where

o’ =a® +y* +2°,

Y=oy 4 2
/
As a function of A, this expression has dimensions ‘57? )
~/h appearing in the denominator in consequence of the
factors w and .

21. Now by virtue of the equation

di  oH _
@ T Y
% and ab_t will, as functions of 4, have the same dimensions.
2
And therefore in diffusion thl) has the same dimensions as
x(%)

Ng
"k or x(k) is a constant, independent of A.

But the stream of gas M through the tube, that is the rate
of diffusion for given space variation of density, is

N(Z A ¥ ‘ doe ey (h)b (KMo?),

and therefore varies as 7, 10T as the square root of the abso-

lute temperature This is a consequence of the assumption
that ars® is independent of R, and therefore holds only for
elastic spheres.

22. We will now treat conduction of heat in the same way.
Since the disturbance is of the first order, we shall as before
assume for the solution My {k)p(kw?), k being written for im.

Then ¢ II;Iwﬂl as a function of %, have the same dimensions as

before, viz. (x(k))?

Nk
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In forming %—I;Iwe have now the factor Pw%, instead of
wz:—Zas in diffusion. Also k= %, if T be the absolute tempera-~
ture and
dk _ _ 3dr_ _2,dr
de — ~ 2%z~ 3 da
We have now to compare two systems in each of which P is
constant throughout the tube, but has not necessarily the same
constant value in both systems, and % has different values in
the two systems.
We may make
(1) P the same, that is g
(2) N the same in both systems.

the same, in both systems.

In case (1) %I;, as a function of %, has dimensions #2 ?C,(@.

In case (2) it has dimensions kxé )
Now the flow of heat per unit of time through a section of
the tube, that is the rate of conduction, is

N(v_r) ( dwe " w'y (k) op(kw?),
0
and therefore varies

— 1
in case (1) as 4k, or as —=

V'
. 1 -
in case (2) as Vo VT

We have then the following result. Assuming that the
molecules may be treated, as regards their mutual encounters,
as elastic spheres, the rate of conduction of leat between
points of equal pressure but unequal temperature varies, as
between two systems with the same pressure, inversely, and
as between two systems with the same density directly, as the
square root of the absolute temperature.

23. When the disturbance is of the second order, as in the
problem of viscosity, the mean value of Ag, given E, is (sce

figure, § 6)

3 3/V—RcosEy* 1
5 C08 CcopP — or Q(_m—) -5

In order in this case to prevent the appearance of negative
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powers of V and R in the differentiation, we should assume
$(kw?) to consist of even powers of oV k.

As the result when all the integrations are effected, %I
(V)2
will be a function of % of dimension (—X‘/‘—k—%) . And%ﬁ]f of

dimensions x(k).
So we shouid obtain

g&%:x(k) or (k)= v/k.

But the excess of momentum carried in the positive

direction through unit area of the plane of @z, on which the
viscosity depends, varies as

(%)g Lw dwe="’ oty (k)p(ka?) ;
1

that is varies as vl the square root of the absolute

temperature.

24. The above results are obtained on the hypothesis that
ms? is independent of p or R, and therefore only on the
hypothesis that the molecules may be treated as elastic
spheres. On any other hypothesis os? is a function of R, and
as such will affect the integration according to R, and the

degree in % or &£ which dth—[ assumes as the result of that inte-
gration. For instance, if the molecules be centres of force

repelling one another with a force varying as 1—5,71'52 & }
In this case, in dealing with diffusionflgltE will be proportiongl
to (x(%))?, instead of (—)%%)2 as in the case of elastic spheres,
and the rate of diffusion would vary as /%, that is as the

absolute temperature, instead of as the square root of the abso-
lute temperature.

If the experiments from which it appeared that the rate of
diffusion varies as the square root of the temperature can be
relied on as giving exact, and not merely approximate,
results, they afford ground for the inference that molecules
of gases may, as regards their mutual encounters, be treated
as elastic spheres.

Phil. Mag. 8. 5. Vol. 30. No. 185. Oct. 1890. Z



