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Outline
• The Sun-Earth environment and some useful 

terms and parameters
• Conditions for “Incoherent” Scattering
• Conditions for “Coherent” Scattering
• Standard operation for EISCAT
• Scientific problems for the different altitude 

regions
• What else - what new?
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SOHO-MDI Intensity gram 
from Stanford University 
Solar Group

SOHO Extreme ultraviolet Imaging 
Telescope (EIT) He II 304 Å image 
from NASA Goddard Space Flight 
Center

The Sun today…

Yohkoh Soft X-ray Telescope 
(SXT) images from the Hiraiso
Solar Terrestrial Research 
Center/CRL (Japan)

SOHO Extreme ultraviolet Imaging 
Telescope (EIT) Fe XII 195 Å
image from NASA Goddard Space 
Flight Center (movie)



Anja Strømme, EISCAT School, Qingdao China 31. Okt 2006 4

Composition
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Ionospheric profiles - ESR data

Ne Ti, Te Vi
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Typical parameter plot

Note day-to-day 
variability in Ne

Precipitation effects

Dayside maxima in Ne  (and Te)

Ion heating events 
(Note Ti is almost 
independent of h at 
h > 130 km in 
events
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At high latitudes electron (and proton) with solar wind origin 
creates additional ionization, seen as aurora borealis/australis 

dispays 
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High latitudes are 
differentQuickTime™ and a

GIF decompressor
are needed to see this picture.
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EISCAT: 3 IS Radars + Heater
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The Sun-Earth environment

Coronal Mass Ejection (CME)
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CME 7. November 2004
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Ion outflow

Not a “one way” system - The interaction between the 
ionosphere and the magnetosphere is dynamic and complex
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The complex ionosphere
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Which parameters are varying, 
and how does that affect matters?
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The radar equation

C: System constant

c0: Speed of light

G: Gain

λ: Radar wavelength

Pt: Transmitted power

τp: Pulse length

σe: Scattering cross section    
of one electron

ne(r): Electron density

r: Range

k: Wave vector

λD: Debye length

Tr=Te/Ti: Temperature ratio 
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The radar equation

Predefined by nature
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The radar equation

Predefined by nature

Predefined by radar system



Anja Strømme, EISCAT School, Qingdao China 31. Okt 2006 18

The radar equation

Predefined by nature

Predefined by radar system

Varying with experiment
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The radar equation

Predefined by nature

Predefined by radar system

Varying with experiment

Varying with altitude and conditions



Anja Strømme, EISCAT School, Qingdao China 31. Okt 2006 20

Constrains
• Pulse length
• Degree of ionisation
• Distance 

– Long range R2 factor
– Short range Tx/Rx protector and ground clutter

• Debye length 
• Bragg condition?
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Farley Diagram
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Debye length dependence

The Debye length is increasing 
with altitude - from a few 
millimeter in the D-region up to 
meters in the magnetosphere
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Debye cutoff

Ion

Electron cloud

Debye length λD

λradar∝1/kradar

(λD/ λradar)2<<1

⇒ (kradar λD)2 << 1

⇒ Incoherent Scattering
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Debye cutoff

Ion

Electron cloud

Debye length λD
λradar∝1/kradar

(λD/ λradar)2>1

⇒ (kradar λD)2 > 1

⇒ Not Incoherent Scattering
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Debye Length Dependencies
Parameters
Ti: 1000 K
Te: 2000 K

Parameters
Ti: 1000 K
Te: 2000 K
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How about “coherent” scattering?
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Bragg scale

x

x

λ/2
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Bragg scale

x

x

λ/2



Anja Strømme, EISCAT School, Qingdao China 31. Okt 2006 29
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Bragg scale
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The Bragg condition for backscatter means that a radar can only 
observe structures in the refractive index with size close to the half 
radar wavelength. 
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Bragg condition
• The Bragg condition for backscatter means 

that a radar can only observe structures in the 
refractive index with size close to the half 
radar wavelength

• This is the case both for the thermal ion 
acoustic and Langmuir waves causing the 
“normal” double humped spectra - and for 
coherent structures and turbulent spectra
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EISCAT experiments
• EISCAT has in place experiments and code 

sets to study all these different regions and 
conditions

• Important to pick the right one for the 
phenomenon one wants to study    
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D-region
• Altitude range between ~70-100 km
• Very cold - specially in summer (mesopause)
• Generally low degree of ionization
• Affected by ground clutter
• Collision dominated single humped ion spectra
• Narrow spectral width - long correlation time
• Turbulent region due to breaking of gravity waves
• Region where to find Polar Mesospheric Summer 

Echoes (PMSE) and Polar Mesospheric Winter 
Echoes (PMWE)
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D-region
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Circulation patterns
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D-region
• Altitude range between ~70-100 km
• Very cold - specially in summer (mesopause)
• Generally low degree of ionization
• Affected by ground clutter
• Collision dominated single humped ion spectra
• Narrow spectral width - long correlation time
• Turbulent region due to breaking of gravity waves
• Region where to find Polar Mesospheric Summer 

Echoes (PMSE) and Polar Mesospheric Winter 
Echoes (PMWE)
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ground clutter...
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D-region
• Altitude range between ~70-100 km
• Very cold - specially in summer (mesopause)
• Generally low degree of ionization
• Affected by ground clutter
• Collision dominated single humped ion spectra
• Narrow spectral width - long correlation time
• Turbulent region due to breaking of gravity waves
• Region where to find Polar Mesospheric Summer 

Echoes (PMSE) and Polar Mesospheric Winter 
Echoes (PMWE)
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Ion-Neutral Collision Frequency
Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 500 K
Te: 500 K
Comp: 100% NO+

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 500 K
Te: 500 K
Comp: 100% NO+

Craig Heinselmann
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Ion Composition (O+ vs. NO+)
Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1500 K
Te: 3000 K
νin: 10-6 KHz

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1500 K
Te: 3000 K
νin: 10-6 KHz

Craig Heinselmann
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Ion Composition (O+ vs. H+)
Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1500 K
Te: 3000 K
νin: 10-6 KHz

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1500 K
Te: 3000 K
νin: 10-6 KHz

Craig Heinselmann
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D-region - problem:
• The width of the ion spectrum in the D-region 

will vary both as a function of collision 
frequency and ion composition - need more 
info in order to draw anything but velocity 
from the thermal IS spectra
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SIC - Positive Ion Chemistry
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SIC - Negative Ion Chemistry
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D-region
• Altitude range between ~70-100 km
• Very cold - specially in summer (mesopause)
• Generally low degree of ionization
• Affected by ground clutter
• Collision dominated single humped ion spectra
• Narrow spectral width - long correlation time
• Turbulent region due to breaking of gravity waves
• Region where to find Polar Mesospheric Summer 

Echoes (PMSE) and Polar Mesospheric Winter 
Echoes (PMWE)



Anja Strømme, EISCAT School, Qingdao China 31. Okt 2006 47

Polar Mesospheric Summer 
Echoes - PMSE
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PMSE / PMWE - when?
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NLC - often correlated to PMSE 

Billows Bands
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Relative location of NLC and 
PMSE
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Sedimentation of aerosols
gravity

~88 km; the mesopause, T < 100º
K

~82 km; NLC altitude, T ≈ 150º
K

altitude

temperature
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Sedimentation of aerosols
gravity

~88 km; the mesopause, T < 100º
K

~82 km; NLC altitude, T ≈ 150º
K

Subvisible charged ice 
aerosols

Visible charged ice 
aerosols

altitude

temperature
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With the naked eye, we can only see 
the tip of the iceberg
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With the naked eye, we can only see 
the tip of the iceberg

PMSE

NLC
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Heating modified PMSE

The heater turns the PSME off!
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The Overshoot effect

The heater turns the PSME off - but the density “overshootes”
right after heater on again!
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PSWE

•Weaker than PMSE

•Lower altitude than 
PMSE

•Not followed by NLC

•Not during extreme 
cooling
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E-region

...the aurora region...
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E-region
• Altitude region between ~100 - 150 km
• Collision gets less important
• Transition from single to double humped spectra
• Wider spectra than D-region
• Deposition region for auroral particles

– 2 keV (100 keV) electrons at about 130 km (85 km)
• Horizontal (Hall and Pedersen) currents
• Sudden changes in Ne and Te 
• Sporadic E
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E-region
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E-region deposition
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Aurora

QuickTime™ and a
PNG decompressor

are needed to see this picture.
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F-region
• Altitude region between ~200-2000(?) km 
• Collision less plasma
• Spectral width proportional to the local ion acoustic 

frequency for the radars k-vector
– can “easily” solve for several parameters

• Decreasing densities with altitude
• Generally increasing temperatures with increasing 

altitudes
• At high latitude a dynamic region which couples to 

the magnetosphere
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F-region



Anja Strømme, EISCAT School, Qingdao China 31. Okt 2006 65

Standard parameters found from IS 
ion line:

Ti/mi

Te/Ti

vi

•Ion temperature (Ti) to ion 
mass (mi) ratio from the width 
of the spectra
•Electron to ion temperature 
ratio (Te/Ti) from 
“peak_to_valley” ratio

•Electron (= ion) density from 
total area (corrected for 
temperatures)

•Ion velocity (vi) from the 
Doppler shift
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Ion Velocity
Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1000 K
Te: 2000 K
Comp: 100% O+

νin: 10-6 KHz

Craig Heinselmann
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Ion Mass
Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1500 K
Te: 3000 K
νin: 10-6 KHz

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1500 K
Te: 3000 K
νin: 10-6 KHz

Craig Heinselmann
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Ion Temperature
Parameters
Freq: 449 MHz
Ne: 1012 m-3

Te: 2*Ti
Comp: 100% O+

νin: 10-6 KHz

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Te: 2*Ti
Comp: 100% O+

νin: 10-6 KHz

Craig Heinselmann
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Electron/Ion Temperature Ratio
Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1000 K
Comp: 100% O+

νin: 10-6 KHz

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1000 K
Comp: 100% O+

νin: 10-6 KHz

Craig Heinselmann
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• Four basic parameters:
• Electron density
• Electron Temperature
• Ion temperature
• Ion velocity

• Raw data available for 
further analysis:
• shorter integrations
• different gating
• different weightings
• other parameters
• etc.

Summary Data

‘IS radar is the most powerful 
ground-based tool’
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Different conditions
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42 days of ESR data, 17. May-28. June 2004

1000 hours -
Continuous!
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Ion outflow
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ion outflow
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Ne

Ti

Te

Vi
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Type I ion outflow
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Magnetospheric studies
• Direct “incoherent” scatter from the 

ionosphere?
• Scattering off coherent structures in the 

magnetosphere
• Ionospheric response to magnetospheric 

processe
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Direct incoherent scattering?
• Due to the Debye cutoff - the frequency of 

most incoherent scatter radars are too high 
(have too short wavelength) to do incoherent 
scattering in the ionosphere. 
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Debye Length Dependencies
Parameters
Ti: 1000 K
Te: 2000 K

Parameters
Ti: 1000 K
Te: 2000 K

Craig Heinselmann
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Direct incoherent scattering?
• Due to the Debye cutoff - the frequency of 

most incoherent scatter radars are too high 
(have too short wavelength) to do incoherent 
scattering in the ionosphere. 

• However - the EISCAT HEATER (~4-8 MHz) 
could in theory receive “incoherent” scattering 
from magnetospheric regions (however very 
weak!) 
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Heating as an IS radar?
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Coherent Solar Wind(!) 
scattering

• Genkin and Erukhimov 1983 showed that a powerful and 
sensitive radar, operated in the upper HF range, may produce 
detectable echoes from ion-acoustic turbulence in fast solar 
wind streams. 

• A tentative experimental detection of such turbulence was 
made in the summer of 1986 with the Sura facility operated at 
9 MHz. Echo bursts with a Doppler shift of fDop≈19 kHz, a 
delay time of τ ≈1.2 s and an averaged scattered signal power 
of 2 x 10-14 W, were observed. The receiver bandwidth used 
was 1.5 kHz. The conjectured scattering region was on the 
day-side at a distance of 33 Earth radii. The solar wind 
velocity,  as determined from fDop, was estimated at about 400 
km/s. 

From “Radio Studies of Solar-Terrestrial Relationships”
by LOIS Science Team Edited by Bo Thidé 2002
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Coherent scattering in the 
magnetosphere

• Theoretical arguments by Ginzburg and Rukhadze 1975 suggest that the 
optimum scattering occurs when λradar ≈ 5λD. which means that a radar 
frequency of 85 MHz would yield maximum echoes from altitudes around 
3000 km; lower frequencies will scatter off magnetospheric ion-acoustic 
turbulence at higher altitudes. 

• The first tentative observation of coherent HF radar scattering off
magnetospheric ion-acoustic turbulence was made at the Russian Sura 
facility in 1991 by Gurevich et al. 1992. Later, in 1995, scattering off
magnetospheric turbulence at about 6000 km was observed in experiments 
performed at Tromsø where the EISCAT HF facility was operated in a 
radar mode. The echoes were typically a factor 10-20 weaker than the 
transmitted pulses. 

From “Radio Studies of Solar-Terrestrial Relationships”
by LOIS Science Team Edited by Bo Thidé 2002
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magnetosphere

closest  ESR/Cluster conjunction

 14 January 2001
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Small Scale Observations with 
the EISCAT Radars
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How small are “small scales?”

•In this talk, the term small scales refers to both 
spatial and temporal structures
Spatial: Significantly smaller than the radar 

beam 
horizontal width of ~10-100 meters

Temporal: Shorter than traditional pre-
integration time - on the order of a few IPP-
length

temporal variations of ~0.1 seconds
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Motivation for Small Scale Studies (1)
Guisdap does not fit ...or even worse: it does!
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Temporal......

Ion line spectra from the 
EISCAT Svalbard Radar 
for 4 consecutive 10s data 
dumps 

Motivation for Small Scale Studies (2)
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Grydeland et al. 2003 (GRL)

Grydeland et al 2004 (Ann. Geophys.)

Motivation for Small Scale Studies (3)
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Interferometry
B

An IS radar can not directly resolve 
structures smaller than the radar beam, 
given by beam width and pulse length

Observations with the ESR 2 antenna 
interferometer, estimating the horizontal 
size of the scattering structure to be on the 
order of a hundred meters. The increased 
scattering hence originates from as little 
as 0.3% of the scattering volume, giving a 
actual enhancement of 4 to 5 order of 
magnitudes. 

If coherent structures exist within the 
radar beam, interferometric methods can 
be used to resolve them
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Conclusion


