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A Class of Algebraical Identities and Arithmetical Equalities.
By B. B. ELLIOTT. Read and received March 14th, 1901.

1. An arithmetical equality of universal application may or may
not have as its basis a fact of algebraical identity. For instance, one
which has is Gauss's

where the numbers d are the divisors of n, and, for an n whose dis-
tinct prime factors are p, qt ..., t, <j> (n) denotes Euler's indicator

nil— - ) ( l ")•••(•"• 7")' which is the expression for the

number of numbers prime to and not exceeding n. This is an
identity inp, q, ..., t when n and the divisors d are given their ex-
pressions as products of primes—a different identity of course for
one n from what it is for another of different algebraic form as a
product of primes. It is just possible that the class of identities
which follows, productive of a class of arithmetical equalities in-
cluding the one above mentioned, may have hitherto escaped
notice.

Let jP|, p2, p3, ... be a set—either finite or infinite—of distinct
symbols which obey the ordinary laws of algebraic combination, and
let p,-,ps,pt, ... be any chosen finite selection from them ; and in a
product such as / 1 \

suppose that there is a factor corresponding to each of the whole

set PUPHPSI ••• • Denote by

where p, <T,T, ... are positive integers, the part of the direct expan-

sion o f

in descending positive zero and negative powers of the jp's which
involves no negative power of any p—the integral part, let .us say.
It is also of course the integral part of

( 1 \ tit / 1 \ m / 1 \ m

l-i) 1--L 1-1 ...;
pr I \ p,l \ pt/B 2
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and for the values 0, 1, at any rate, of vi is the whole of this product.
The parameter ???• of an Fm is for the present unrestricted.

The following is an identity for any on:—

where the summation covers all combinations of integral and zero
values of p\ <r\ r\ ... such that

0 < p ' < p , 0 < c / < c r , 0 < r ' < r , ....

We have in fact

rP>Tt •••1T f1" —) " '= ^ (f'pfpt •••) + fractional terms ; ^x;

and in this identity the integral parts of the two sides must be
identical. This gives at once the case of (A)

Now multiply (1) by II (1 ) , thus obviously getting

MA - n (i-1)""' = 2 {tfpfp?... n (i-1)"' ]
+ fractional terms.

The identification of the integral part of the left in this with that of
the right gives (A) in its generality.

2. It is also possible, for any m, to express /''ll + 1 linearly in terms
of FJs. From

+ fractional terms

-f fractional terms, (2)

where n (pf p^"P]" •••) stands for 0 if any one of p", <r", r", ...
exceeds 1, and for 1 or —1 if none of them exceeds 1, according as
the number of them equal to 1 is even (zero reckoned even) or odd,
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we obtain at once by identification of integral parts

/ 1 V"Now multiply (2) by II (1 1 , and then use the fact that the

integral parts of the identical expansions of the two sides must be
themselves identical. The result is that, for any in,

3. We can now apply arithmetically the identities (A) and (B).
Let P\,pi,ps, ... be all the prime numbers 2 ,3 ,5 , ..., and let
PnP»i Ph ••• b e those of them which ai-e factors of a number

The numbers 'ffpfp] ... are the divisors d, each once, of n. The
central F, Fo (n), of n is n itself. Fx (n) is the indicator

of n. F_] (ii) is the ordinary expression

for the sum of the divisors of n. The above has proved, by con-
sideration of algebraical identities, a class of arithmetical equalities,
of which one is the well known

and of which the general expression is

JB
1. . . (»)=SF.(( l)> (C)

and also the reversed class

.Fm+1 (n) = S/i {-) Fm (d), (D)

where /u. (s) has its ordinary arithmetical definition as 0, or 1, or —1
according as s has a square factor, or an even (including zero), or an
odd, number of unrepeated prime factors.



() Prof. E . B. Elliott on a Olass of [March 14,

The law of formation of Fm (n) needs no restatement. As examples
of it we may write down, for instance,

I).)

4. We can readily write down sums for which the expressions are
Fm (n) for negative integral values of m. Whatever m be in (C),

we may replace, by the same law, each Fin^ (d) by 2-Fmt2 (8) for all
divisors 8 of d. In the double sum obtained 8 is in turn every
divisor of n, and Fmta (8) occurs as many times as there are divisors

d of n which 8 divides, i.e., i(/0 (-5-) times, where i//0 means the

number of divisors of its argument. Thus, changing notation,

for all divisors d of n.
Let us now replace each .Fmt2 (d) by the corresponding 2 ̂ ,,,+3 (8).

We deduce, writing d in place of 8, that

Fm (n) = %Fm.3 (d)

where d is in turn each divisor of ?i, and, for each d, the numbers

(Z,, d3, ... are the "Aof-r) divisors of 11 which have d for a divisor,

i.e., •'-*• , ~ , ... are the «A0 (-r ) divisors of n whose conjugates
ctj dt \ d I

have d for a divisor, i.e., the i/»0 ( ~ J divisors of y . Write this

where i/̂ 8)(n) is defined as 2i^0(d) for all divisors d of n.

Let us further define generally, for any positive integer N,

as S^*-"^) ,
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with, to begin with,

We obtain by continued repetition of the above process

Here m is still unrestricted. But give it the negative integral value
—JV, and remember that F(d) = d, and there results the sum equal
to F_x («) of which we were in search, namely,

^ ) (F)

a formula of which the early cases are

&c, &c.

It remains to exhibit i^1 (») numei'ically, for any positive integral
n and T̂. If, expressed as a product of prime factors,

we have ^ («) = ^0 00 = 0» +1) (* +1) (r +1) ... .

Consequently ^2> («) = 22S ... (p'+l)(<r' + l ) ( r ' + l ) ....

for the ranges 0<P'<P, 0<<r'<<r, 0 ^ r' < r,

l £ ± S
1.2 1.2 1.2
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Next, in like manner,

,(3., , _ (p + l)(p + 2)(P + 3) (<T+1)(<T+2)
• ° w T72T3 172:"3

and generally

(« + N)l (T+N)\
*° W " 7 n V ! <r\N\ r\N\ "" W

The sum (F) is then definitely given as a sum of multiples of
divisors d for any n. As a simple example we may write down

2̂ .3 (12) = l

__! 3 . 4 2 . 3 , 0 / 2 . 3 \ 2 , o 3 . 4 , , 2 . 3 , R 2 . 3
= l o o +2 (o) +t3r2 +4E2+6r2
= 18 + 1 8 + 1 8 + 1 2 + 1 8 + 1 2

= 96,

which is correctly equal to 12 (1 + — + • J (1 + - J.

5.. We still desire the summation for which FN(n), for a positive
integral N, is the expression.

By (D) we have, for any m,

where the definition of ft (s), for tiny number s, may be stated that
it is the signed unit which is the coefficient of s in the expansion of
the product _. .. .

n (l-p),
for all primes p, if the product equal to s actually occurs in the ex-
pansion, and is otherwise zero. Let us further define

H'»> (s)

as the coefficient of s, if it actually occurs, and zero otherwise, in the
expansion of the product

We have, by a repetition of the reduction (I)),
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for all divisors d of «, Avliere , - , ... are the divisors of -y .

Now the sum in brackets here is the coefficient of the product of

primes - - as it occurs in the product of II (1—p) and 11(1— p); in

Other words, it. is p.('l) (-^ ), the coefficient of -\ as and if it occurs as
\ a / a

t product of primes or as 1 in the expansion of the product 11(1— p)*.
thus

= 2Fm.,(tJ) (coefficient of -J in product 11(1— jp)2II(l—p) j

(H)

Now give to the unrestricted in the value of the positive integer
N. This produces our desired result, namely,

(K)

It should be noticed that all numbers F_y(n) are positive, but that
this is not the case with all numbers FN(n).

6. A second method of reversing the equality (C) so as to obtain
an expression linear in F,,,.iS for an Fm, Avhich is at first sight
different from (D), is the extension of one given by Grlaisher {Phil.
Mag., 1S84) and Hammond {Messenger, 1891) for expressing <p (w),
i.e., Fx («), linearly in terms of 1, 2, 3, ..., n, i.e., in terms of Fo (1),
F0(2), Fo (3), ..., F0(n). Write down the n equalities (C) for the
values 1, 2, 3, ..., n of n. They furnish n linear equations for the
determination of Fm (1), Fm (2), Fm (3), ...,' Fm (n). Fm(l) occurs
Avith coefficient 1 in all the equations, Fm (2) -with coefficient 1 in the
second, fourth, &c, Fm (3) in the third, sixth, &c, and so on, and,
lastly, Fm (?i) with coefficient 1 in the last only. Thus the determ-
inant of the right-hand sides is unity, and Fm (n) is equal to a
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determinant of n8 constituents, whose first w—1 columns—or say
rather rows—are

1, 1, 1, 1. 1, 1, 1, 1, 1. ....

0, 1, 0, 1, 0, 1, 0, 1, 0, ...,

0, 0, 1, 0, 0, 1, 0, 0, 1, ...,

0, 0, 0, 1, 0, 0, 0, 1, 0, ...,

&c, &c,

and whose w-th row is

^ , - , ( 1 ) , Fm_x(2), JF—, (3), - , *•..-, (n).

By means of (E) it is easy in like manner to write down a determ-
inant expression for Fm (n), with a last row consisting of

Fm.N(l), Fm.y(2), Fm.»(3), .... FM_»(v),

and first n—1 rows consisting of i//(JV'''s of numbers up to n, with
zeroes in places as above.

7. Another easily proved determinant theorem includes the one
known as H. J. S. Smith's (Proc. Lond. Math. Soc, Vol. vn., p. 208),

i.e, JP1(n)F1(n-l)JP'1(n-2) ... 2^(1),

is equal to the determinant of ?i2 constituents in which the con-
stituent in the r-th row and s-th column, for each r and s, is </,.„ the
Gr.C.M. of r and s. The more general fact as to our functions is that

JR.' (n) Fm ( n - 1 ) Fm ( n - 2 ) ... Fm (1)

is equal to the result of replacing in Smith's determinant each gn by
K-t tin)-

To prove it take, from (C),

Fm-i (g™) = SjPm (S), for divisors 3 of gm,

= 2 F (d), for divisors d of n,
where F (d) denotes Fm (d) or 0 according as d does or does not
divide r. Hence, by the Dedekind-Liouville theorem of reversion,

F(n) = 2/u (— ) Fm.l (g,d), for divisors of n;

i.e., the right-hand side is equal to Fm (n) or 0 according as n does or
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does not divide r. Now take the determinant A,, in which the type
constituent is Fm.x (</„). As

the value of A,, is not altered when we replace the w-th column by

the sum of the multiples /' ( - r ) of the various cZ-th columns, for

divisors d of n. The last constituent in the column thus becomes
Fm (»)> a s n divides n, and the r-th constituent for any r<n becomes
0, as n does not divide r. Thus

An = Fm (n) A,,_,,

where the formation of A,,.,, of (n—I)* constituents, is according to
the same law as that of A,,. Repeating this argument n — 1 times,
and noticing that

A1 = Fm.1 ( l ) = l = F m ( l ) .

we have, as stated,

A,, = Fm (n) Fm ( n - 1 ) Fm ( n -2 ) ... Fm (1).

The proof is of course applicable when instead of Fm, Fm.l we have
any two arithmetical functions \, X which are such that for every n

X(n) = a X (d) .

Probably the theorem in its generality ought to be regarded as
known. A generalization of his theorem given by Smith himself
(loc. cit.) produces it with the aid of Dedekind's reversion.*

8. Let us examine more closely the linear expression for an Fin in
terms of •FH,_,'8 which is exhibited in determinant form in §6.
Though in form very unlike the expression (D), it may be seen to
be really equivalent to it. As far as I know it has not been noticed
even that the Grlaisher-Hammond determinant expx*ession for <p («)

is really the same as the expression 2/x f-y) d- The statement of

this is, in accordance with what we have seen, a case of the more
general statement as to the expressions for an Fm in terms of Fm.^s ;
and this again is a class of cases of the more general statement that,
if we have two arithmetical functions A («), % (n) such that for

* [The theorem has beeu given explicitly by Ceaaro, Nonvelles Annates (3), v., p. 44.]
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the two apparently different reversions of this

..., 11, 1, 1, 1, 1, 1, 1, 1,

0, 1, 0, 1, 0, 1, 0, 1,

0, 0, 1, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0, 0, 1,

A (1), \ (2), X(3), X(4), X(5), X(6), X(7), X(8), .... X(n)

are in effect the same, the functions X (r) for r's which do not divide
n being mere superfluities in the last row.

We will prove that 2/x f --J X (d) is a factor of the determinant,

and that the other factor is unity. This will be shown, since

H (1) = 1,

if we can prove that, by adding to the last column multiples AM — )
\ tfc /

respectively of the other d-t\\ columns, we can reduce all the con-
stituents but the last in the «-th column to zero. For, except in the
last vow, all constituents below and to the left of the principal
diagonal vanish, and those in tlie principal diagonal are units.

Let <p,.3 denote 0 or 1 according as r and s are unequal or equal.
The constituent G',.s in the r-th row and .s-th column (r<n) is 0 or 1
according as s is not or is a multiple of r. Thus

Cr, = 2<l>,6, for divisors 8 of s,

or, with changed notation, G\,, = 2<̂ ,.,,.

Now this necessitates that

and consequently that the right-hand sum vanishes except for r = n.
This proves what was required. It has incidentally found the values
—some zero, some 1, and some —1—of the determinants of n—1
rows and columns which are obtained by omitting single columns
from the first u — 1 rows of the determinant x (n)-

Of course the whole determinant need not be written as one of n,
but only as one of i^0(«)) i'ows and columns. -Of the numbers
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1, 2, 3, ..., n let 1, dz, ds, ..., n be those, in order, which are divisors
of w, and e,, ft>, es, ... those which are not. The numbers of f2's and
e's are ^0 (n) and n—i]/0 (») respectively. In the various e-th rows
the constituents in the various d-th. columns are all zero—for no e
divides any d. Accordingly the determinant is the product of two
determinants of orders ijso(n) and n — tf/0(n), the former containing
the constituents at intersections of the various d-th rows and the
various d-th columns, and the latter those at intersections of e-th
rows and e-th columns. The latter determinant is equal to unity—
for the constituents in its principal diagonal are units, Avhile those
below and to the left of that diagonal are all zero. The former is a
determinant of order î 0 (w), which has for its last row

A(l), A (<*,), A(rf3), ..., A 00 .

What the multipliers of these are, in the expansion of the determinant,
has been completely seen above.

With regard to the particular application to arithmetical functions
i1,,,, F,n.v we ai'e then assured that the Glaisher-Hammond deter-
inant method adds no essentially new information to that afforded
by the algebraical identities which we dealt Avith at the outset.

9. A known fact of some generality (cf. Bachmann, Encyclopddie,
Band I., p. 650) is that, if A,, Xi, A2, x* a r e ^o u r arithmetical functions
siich that, for all numbers n.

iOO X , 0 ) A, («) = 3 X J (d),

then * X l (•£) Xs (d) = SX, (j) K 00-*

This has an interesting application to our functions Fm. Since

F,,,-i («) = SFm (d) and J^., («) = ^ P ( 1 (<0,

it gives that

* A very convenient way of rendering visible such transformations of rumina-
tions is to arrange elements in a square array and equate their sum taken by rows
to their sum taken by columns. Thus, if we take a row and a column for each

divisor of n, and place, in each d row, xi (^ Xi \~~) o r ® U1 ^ i e 5-coliunu accord-
ing as d is or is not a divisor of 5, the two different ways of adding elements give
the equality here before us. Most familiar arithmetical equalities can be made clear
in this sort of way.
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In particular ZFm (- | ) F.m(d) = 2F,.m (- |) Fm.x (d)

'taking m integral in this, we get

* ( f ) F-»W = *F*-i ("f ) *\-»(d) = 2F*.t (-|) ^ ^

So, too, 2 ^ t l ( i ) P^Cd) = a J1, (j) Fo (d)

^., (- |) F.,r (d) = SF, (-j) i?1-, (d)

and more generally

for any positive or negative ?•.
These equalities can be at once stated in other terms by means of

(F) and (K).

10. In conclusion the remark may be made that examples may
with ease be written down of other identities than those in §§ 1, 2
which yield expressions for simple arithmetical sums. For instance,
take

tfrpi'P? . . . n ( l - ~ ) ' = 2 (p;p>;>;T' . . .) + fractional terms,

where 0<f>'<p, 0<cr'^a, 0<T'<T, &c.
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The non-fractional part on the right is the sum of the squares of the

algebraic divisors of $p°pT
t .... Upon multiplication by n (1 )

this yields an identity which gives

integral part of expansion of p*/'p*apfT ... II (1 -\ J

= 2 j integral part of expansion of p2? p^p2,7 ... n (1 ] >.

Now take the prime numbers for the p'a, and any number

thus getting

( i \ -i

1 H 1 integral in p'n, when n is expressed as a

product of jp's,

= 2^ (d3), for all divisors d of n ;
a result which may also be written

= Stty (d) =

whex'e 0i (^) denotes the sum of the numbers prime to and not
exceeding d, and S, 8' denote the sums of the divisors of na which are
and are not respectively products of even (including zero) numbers
of unequal or equal prime factors.

In like manner the integral parts, when n is replaced by its ex-
pression as a product of primes, of the expansions of

p pl

&c, &c,

are 2^ (d») =? 2d> (d

20 (d4) =SrfVW

&c, &c.




