
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Effective Extensible Programming:
Unleashing Julia on GPUs

Tim Besard, Christophe Foket and Bjorn De Sutter, Member, IEEE

Abstract—GPUs and other accelerators are popular devices for accelerating compute-intensive, parallelizable applications. However,
programming these devices is a difficult task. Writing efficient device code is challenging, and is typically done in a low-level programming
language. High-level languages are rarely supported, or do not integrate with the rest of the high-level language ecosystem. To overcome
this, we propose compiler infrastructure to efficiently add support for new hardware or environments to an existing programming language.
We evaluate our approach by adding support for NVIDIA GPUs to the Julia programming language. By integrating with the existing
compiler, we significantly lower the cost to implement and maintain the new compiler, and facilitate reuse of existing application code.
Moreover, use of the high-level Julia programming language enables new and dynamic approaches for GPU programming. This greatly
improves programmer productivity, while maintaining application performance similar to that of the official NVIDIA CUDA toolkit.

Index Terms—Graphics processors, very high-level languages, code generation

F

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no longer be accessible.

1 INTRODUCTION

To satisfy ever higher computational demands, hardware
vendors and software developers look at accelerators, spe-
cialized processors that are optimized for specific, typically
parallel workloads, and perform much better at them than
general-purpose processors [1], [2], [3], [4], [5]. Multiple hard-
ware vendors are working on such accelerators and release
many new devices every year. These rapid developments
make it difficult for developers to keep up and gain sufficient
experience programming the devices. This is exacerbated by
the fact that many vendors only provide low-level toolchains,
such as CUDA or OpenCL, which offer full control to reach
peak performance at the cost of developer productivity [6].

To improve developer productivity, programmers com-
monly use high-level programming languages. However,
these languages often rely on techniques and functionality
that are hard to implement or even incompatible with
execution on typical accelerators, such as interpretation,
tracing Just-in-Time (JIT) compilation, or reliance on a
managed runtime library. To remedy this, implementations
of high-level languages for accelerators generally target a
derived version of the language, such as a restricted subset
or an embedded Domain Specific Language (DSL), in which
incompatible features have been redefined or adjusted.

Modern extensible languages offer the means to realize
such programming language derivatives [7]. For example,
Lisp-like languages feature powerful macros for processing
syntax, Python’s decorators make it possible to change the
behavior of functions and methods, and the Julia program-
ming language supports introspection of each of its Inter-
mediate Representations (IRs). However, these facilities do
not encourage reuse of existing compiler functionality. Most
derived languages use a custom compiler, which simplifies

• T. Besard, C. Foket and B. De Sutter are with the Department of
Electronics and Information Systems, Ghent University, Belgium.
{tim.besard,christophe.foket}@ugent.be
Corresponding author: bjorn.desutter@ugent.be

the implementation but hinders long-term maintainability
when the host language gains features or changes semantics.
It also forces users to learn and deal with the inevitable
divergence between individual language implementations.

This paper presents a vision in which the high-level
language compiler exposes interfaces to alter the compilation
process (Section 2). Implementations of the language for
other platforms can use these interfaces together with other
extensible programming patterns to ensure that source code
is compiled to compatible and efficient accelerator machine
code. To demonstrate the power of this approach, we have
added such interfaces to the reference compiler of the Julia
language (Section 4), and used it to add support for NVIDIA
GPUs (Section 5). We show that the resulting toolchain makes
it possible to write generic and high-level GPU code, while
performing similar to low-level CUDA C (Section 6). All code
implementing this framework is available as open-source
software on GitHub, and can be easily installed using the
Julia package manager. Our contributions are as follows:

• We introduce interfaces for altering the compilation
process, and implement them in the Julia compiler.

• We present an implementation of the Julia language
for NVIDIA GPUs, using the introduced interfaces.

• We analyze the performance of CUDA benchmarks
from the Rodinia benchmark suite, ported to Julia.
We show that code generated by our GPU compiler
performs similar to CUDA C code compiled with
NVIDIA’s reference compiler.

• We demonstrate high-level programming with this
toolchain, and show that Julia GPU code can be highly
generic and flexible, without sacrificing performance.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

Host
Source code

Device
Source code

extensive
code reuse

Back-end

High-level
IR

Low-level
IR

Back-end

Middle-end

High-level
optims

Front-end
extensions

Middle-end
extensions

Low-level
optims

Front-end
Main compiler Device package

Figure 1. Abstract overview of the proposed toolchain.

2 VISION

Our proposed solution to the difficulty in integrating high-
level languages and accelerators is a set of interfaces to
the high-level language’s general purpose compiler, that
provide fine-grained access to the different IRs and to the
processes that generate and optimize those IRs. With these
interfaces, developers can influence the existing language
implementation and, e.g., improve compatibility with new
hardware or run-time environments without the need for a
custom compiler or an embedded language subset.

Figure 1 shows an overview of the proposed toolchain.
An external device package uses the introduced interfaces
to add support for new hardware, without modifying the
existing language implementation. For example, it could
refuse to generate code for certain language features, such as
exceptions or dynamic memory allocations, or replace their
code with compatible or optimized alternatives.

Such a setup has multiple advantages. For one, it keeps
the existing language implementation stable, while new
implementations can be developed independently as external
packages. This makes it easier to experiment, as these
packages do not need to meet the support, quality, or
licensing requirements of the existing implementation. It
also makes it easier to cope with the rapid development pace
of accelerator hardware, providing the means for vendors to
contribute more effectively to the language ecosystem.

Another important advantage is the ability to reuse
the existing language implementation, whereas current
implementations of high-level languages for accelerators
often reimplement large parts of the compiler. For example,
Numba is a JIT compiler for Python, building on the
CPython reference language implementation. As Figure 2
shows, the Numba compiler takes Python bytecode and
compiles it to optimized machine code. Due to the high-
level nature of Python bytecode, the Numba interpreter and
subsequent compilation stages duplicate much functionality
from CPython: CFG construction, type inference, liveness
analysis, and implementations of built-in functions. As a
result, each release of Numba is tailored to the specifics
of certain CPython versions [8], and needs to be updated
when changes are made to the language implementation. The
semantics of code also differ slightly depending on whether
it is interpreted by CPython or compiled with Numba [8],
further impeding compatibility with existing Python code.

minimal
code reuse

Parser

Codegen

High-level
optims

AST

CPython Numba

Host
Python code

Device
nopython code

CPU
interpreter

High-level
optims

Codegen

Low-level
optims

GPU
codegen

LLVM IRBytecode

Interpreter

Numba IR

Figure 2. CPython and Numba compilation processes for host and device.

Our proposed compiler interfaces make it possible to
share functionality between an existing language imple-
mentation and external derivatives, avoiding needless reim-
plementation of compiler functionality by reconfiguring
the existing compiler to generate code that is compatible
with the platform at hand. This not only facilitates external
language implementations, but also improves compatibility
with existing code as it avoids the inevitable differences
between individual compiler implementations.

In some cases, even more reuse of existing infrastructure
than suggested in Figure 1 is possible. When the back-end
compiler used in the general-purpose tool flow can also target
accelerators, there is no need to reimplement a device back
end in the device package. Instead, that existing back-end
compiler can then be used for host and device code. Even if
this is not the case, it might not be necessary to reimplement
a full device back end in the device package: If third-party
device code generators can be reused, the device back end
only has to translate the low-level IR code to an IR accepted
by that third-party code generator.

Conceptually, the compiler interfaces shown in Figure 1
are generally applicable. Their actual instantiation, however,
will be specific to the host language and accelerator at hand.
We expect further research into such interfaces to generalize
the design and improve reusability across languages and
accelerators. For now, we will design the interfaces around a
single language and accelerator platform.

For this work, we chose to target Graphics Processing
Units (GPUs), massively parallel accelerators with a dis-
tinctive enough architecture to make optimization worth-
while, yet broadly usable for many kinds of applications
(as explained in Section 3.1). Specifically, we focus on
NVIDIA GPUs with the Compute Unified Device Architec-
ture (CUDA), because of the mature toolchain and hardware
availability. We target this hardware from the Julia program-
ming language, a high-level technical computing language
built on the Low-Level Virtual Machine (LLVM) compiler
framework. As we explain in Section 3.2, this language is a
good fit for accelerator programming, while offering flexible
tools to extend the language, e.g., for the purpose of targeting
new hardware. Furthermore, given its use of LLVM, and
LLVM’s capabilities to target both CPUs and CUDA GPUs,
we will not need to reimplement a device back end ourselves,
as mentioned above.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

3 BACKGROUND

3.1 GPU Accelerators

GPUs are massively parallel accelerators that can speed up
compute-intensive general-purpose applications. However,
that generality is constrained: Most GPUs need to be treated
like a coprocessor (with separate memory spaces, controlled
by a host processor, mostly unable to perform input/output
operations, etc.), and can only efficiently execute codes
that exhibit specific kinds of parallelism. As a result, GPUs
are relatively hard to program: Programmers have to deal
with the intricacies of coprocessor programming, and need
experience with parallel programming to assess if and how
specific problems can be solved effectively on a GPU.

At the same time, vendor-supported development en-
vironments for programming GPU accelerators typically
work with low-level programming languages. NVIDIA’s
CUDA, for instance, uses CUDA C, while AMD and Intel
GPUs are programmed using OpenCL C. The constructs in
these low-level languages map closely to available hardware
features, making it possible to reach peak performance,
as potentially costly abstractions are avoided. However,
the lack of such abstractions also complicates GPU pro-
gramming, not only requiring parallel programming skills
and domain knowledge to map the problems, but also
low-level programming competence and GPU hardware
know-how for the actual implementations [6]. Furthermore,
due to a lack of abstractions, these implementations are
often hardware-specific, or perform significantly worse on
different hardware [9]. Libraries like CUB [10] or Thrust [11]
aim to raise the abstraction level and portability using
C++ templates, but fall short due to the low-level nature
of C++ and limited applicability across vendor toolkits.

Rather than programming accelerators directly, develop-
ers can also use optimized host libraries that are called from
the host processor and not directly from the device. Hard-
ware vendors provide such libraries, implementing popular
interfaces like BLAS [12] and LAPACK [13]. There also exist
third-party libraries like ArrayFire [14] and ViennaCL [15]
that abstract over devices and platforms. These libraries
typically export a C Application Programming Interface
(API), which eases their use outside of the vendor-supplied
development environment. For example, the CUDA BLAS
library cuBLAS [16] can be used from Python [17], Julia [18],
Octave [19], etc. However, compilers for these languages
cannot reason about code in the libraries, and they cannot
optimize code across calls to it. Moreover, library-driven
development requires programming in terms of abstractions,
which are typically coarse-grained to amortize the cost of
configuring the accelerator, initiating execution, etc. Most
libraries are also unable to compose their abstractions with
custom device code. As a result, library-based programming
can be unfit for implementing certain types of applications.

Using high-level languages to program accelerators di-
rectly provides a middle ground between high-level host
libraries and direct programming with vendor toolkits: Direct
programming can offer fine-grained control over compilation
and execution, while the use of a high-level language and
its abstraction capabilities can improve programmer pro-
ductivity. However, existing implementations of high-level
languages for accelerators do not integrate well with the rest

Listing 1
Single-dispatch polymorphism and branches that leads to unstable

functions, returning differently-typed objects based on run-time values.

1 function intersect(a::Rect, b) # returns Rect or Line
2 if isa(b,Rect)
3 return c::Rect
4 else if isa(b,Line)
5 return c::Line
6 end
7 end
8 function intersect(a::Line, b) # returns Rect or Line
9 return c

10 end

Listing 2
Functionality of Listing 1 expressed through multiple dispatch, with

narrowly-typed methods.

1 function intersect(a::Rect, b::Rect) # returns Rect
2 return c::Rect
3 end
4 function intersect(a::Rect, b::Line) # returns Line
5 return c::Line
6 end

of the language. Some come in the form of an embedded DSL,
such as PyGPU or Copperhead [20], [21], which programmers
have to learn and to which they have to adapt their code.
Continuum Analytics’ Numba [8] reimplements support for
a subset of the Python language that is appropriately called
nopython because it does not support many of the high-
level features of Python because these features do not map
well onto GPUs, while duplicating compiler functionality
from the CPython reference implementation as shown in Fig-
ure 2. Our proposed interfaces serve to avoid this duplication,
and integrate with the existing language implementation
for the purpose of improved code compatibility and more
effective compiler implementation.

3.2 Julia Programming Language
Julia is a high-level, high-performance dynamic program-
ming language for technical computing [22]. It features
a type system with parametric polymorphism, multiple
dispatch, metaprogramming capabilities, and other high-
level features [23]. The most remarkable aspect of the
language and its main implementation is speed: carefully
written Julia code performs exceptionally well on traditional
microprocessors, approaching the speed of code written in
statically-compiled languages like C or FORTRAN [24], [25].

Julia’s competitive performance originates from clever
language design that avoids the typical compilation and exe-
cution uncertainties associated with dynamic languages [26].
For example, Julia features a systemic vocabulary of types,
with primitive types (integers, floats) mapping onto machine-
native representations. The compiler uses type inference to
propagate type information throughout the program, tagging
locations (variables, temporaries) with the type known at
compile time. If a location is fully typed and the layout of
that type is known, the compiler can often use stack memory
to store its value. In contrast, uncertainty with respect to
the type of a location obligates variably-sized run-time heap
allocations, with type tags next to values and dynamic checks
on those tags as is common in many high-level languages.

Similarly, types are used to express program behavior
and eliminate execution uncertainty by means of multiple

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Host
Julia code

Device
Julia code

extensive
code reuse

LLVM PTX
back-end

GPU stdlib

CUDAnative.jl

GPU runtime

Front-end
extensions

Julia
middle-end
extensions

GPU compiler

LLVM
middle-end
extensions

LLVM CPU
back-end

LLVM.jl

Parser

2

1

3

4

5

AST

Low-level
optims

High-level
optims

Lowering

Codegen

Julia IR

LLVM IR

Julia compiler

Figure 3. Schematic overview of the compilation process for Julia GPU
code with CUDAnative.jl, building on the existing compiler by means of
extension interfaces. Dashed arrows indicate generic interactions, while
solid arrows represent the flow of code.

dispatch or multimethods. This type of function dispatch
selects an appropriate method based on the run-time type
of all of its arguments, and is a generalization of single-
dispatch polymorphism (e.g., as seen in C++) where only the
object on which a method is called is used to disambiguate a
function call. For example, Listing 1 does not use multiple
dispatch and defines intersect methods that only dispatch
on the first argument, returning differently-typed objects
by branching on the type of values. Conversely, Listing 2
defines multiple methods that dispatch on all arguments, and
consequently are more narrowly-typed in terms of arguments
and returned values. In the case of a sufficiently typed call,
this enables the compiler to dispatch statically to the correct
method and avoid run-time branches, possibly even stack-
allocating the returned value if its layout is known.

The combination of this design and aggressive special-
ization on run-time types enables the Julia compiler to
generate mostly statically-typed intermediate code, without
the need for JIT compilation techniques traditionally used
by high-level language implementations (tracing, specula-
tive execution, deoptimization, etc.). This allows the Julia
developers to outsource the back-end part of the compilation
flow to existing compiler frameworks for static languages. In
particular, the Julia IR is a good fit for the LLVM compiler
framework, which is commonly used as a basis for industrial-
strength compilers for static languages [27]. The Julia com-
piler targets this framework by emitting LLVM IR as the
low-level IR from Figure 1, and uses the vast array of LLVM
optimization passes (often tailored for or assuming statically-
typed straight-line IR) to optimize code and ultimately
compile it to high-performance CPU machine code. The
left part of Figure 3 shows this existing Julia compilation tool
flow. In the remainder of this paper, we refer to it as the main
compiler because it is the part of the flow that will generate
machine code for the main, general-purpose CPU(s) that
serve as a host to accelerators. The last main processing step,
CPU code generation, is implemented entirely by means of
LLVM. To facilitate interactions with this C++ library, those
parts of the Julia compiler that interface with LLVM are also
written in C++, making it possible to directly invoke its APIs.

Table 1
Existing metaprogramming interfaces in Julia to access compiler IRs.

Access Modify
1 AST 3 3

2 Julia IR 3 3

3 LLVM IR 3 3

Machine code 3 indirectly

As a testament to the performance this design can achieve,
most of the Julia standard library is written in Julia itself
(with some obvious exceptions for the purpose of reusing
existing libraries), while offering good performance [24], [25].
The managed runtime library is only required for dynamic
code that might trigger compilation, and certain language
features such as garbage collection and stack unwinding.

Coincidentally, this design also makes the language
well-suited for accelerator programming. Such hardware
often features a different architecture and Instruction Set
Architecture (ISA), operating independently from the main
processor, with control and data transfers happening over a
shared bus. In many cases, this makes it hard or impossible
to share code, such as runtime libraries, between host and
device. With Julia, however, it is entirely possible to write
high-level code that boils down to self-contained, static IR, a
prerequisite for many accelerator programming models.

In addition, Julia features powerful metaprogramming
and reflection capabilities, as shown in Table 1. Source code
can be introspected and modified using macros, or using
the parse and eval functions. The high-level Julia IR
is accessible with the code_lowered and code_typed
reflection functions, and can be modified with generated
functions. These mechanisms are powerful, flexible, and
user-friendly, because they have been co-designed together
with the source language and the tool flow in support
of metaprogramming and reflection, and because Julia is
a homoiconic programming language, i.e., code can be
accessed and transformed as structured data from within
the language. As such, these interfaces already offer some
of the flexibility required to target new hardware, e.g., to
define constructs with non-standard semantics or special
code generation without the need for new language features.
As we will discuss in the next section, however, their support
does not yet suffice for targeting accelerators like GPUs.

Low-level LLVM IR can be inspected by invoking
code_llvm and injected via the llvmcall metapro-
gramming interface. Machine code is accessible through
code_native and can be inserted indirectly as inline as-
sembly in LLVM IR. These interfaces are much less powerful
and flexible, however. Most importantly, the interfaces to
LLVM IR only pass string representations of the IR code.
This generic and neutral form of interface fits the separation
of concerns between Julia and LLVM. It suffices for the main
compiler because (i) metaprogramming and reflection do
not require interfaces at the LLVM IR level, (ii) llvmcall
is currently only used to inject small, literal snippets of
LLVM IR, e.g., to add support for atomics, and (iii) the main
compiler is implemented mostly in C++, and thus has direct
access to the LLVM IR builder interfaces.

However, as we will discuss in the next section, these
string-based interfaces to the lower-level IRs do not suffice
for targeting accelerators from within device packages.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

4 EFFECTIVE EXTENSIBLE PROGRAMMING

As discussed in Section 2, we propose to integrate high-level
programming languages with accelerator hardware by means
of extension interfaces to the existing compiler that was, and
will continue to be, developed by and large to target general-
purpose hardware. The existing interfaces to manipulate the
different IRs as discussed in the previous section provide a
good starting point, but they do not yet suffice.

First, although they make it possible to improve compati-
bility with accelerators by manipulating general purpose IR
or generating compatible IR from scratch, they fall short in
reusing and repurposing the main compiler’s IR-generating
components. Section 4.1 proposes our solution to make the
compiler generate accelerator-optimized IR in the first place.

Secondly, the string-based interfaces to the lower-level
IRs do not let the device package reuse main compiler
functionality to generate and inject low-level IR code. As
targeting accelerators such as GPUs requires more than
injecting predetermined code snippets, this lack of reuse
is problematic. Section 4.2 presents a solution to this issue.

4.1 Front-end IR Interfaces
As a starting point to generate accelerator code, the language
should offer access to the different representations of source
code in the compiler, such as syntax trees, IRs, and machine
code. This makes it possible to implement functionality that
cannot be expressed in the source language by manually
emitting intermediate code, without the need to alter the
language or compiler. It can also be used to transform IR,
or use it as a starting point for further compilation. In the
case of the Julia programming language, there already exist
several metaprogramming interfaces that provide access to
those intermediate forms of code, as shown in Table 1.

For the purpose of external language implementations,
simply having access to the code generated for each IR
level is insufficient. In addition, access to the IR code
should be augmented with access to the very processes that
generate that code. For example, when compiling code for an
environment that does not support the Julia runtime library,
the compiler needs to avoid calls to it. A typical case is that
of exceptions, which rely on the runtime for stack unwinding
and error reporting. In the main Julia compiler, these calls
to the runtime are generated as part of the code generation
process that lowers Julia IR to LLVM IR. To generate code
that does not require the runtime library without altering
the code generation process, the compiler needs to rid the
Julia IR from exceptions, or remove calls to the runtime from
the generated LLVM IR. Both approaches are fragile, because
they involve modeling behavior of the main compiler and
duplicating functionality from it.

To overcome this problem and improve the reusability
of the compiler, we added the four interfaces from Table 2
that offer additional control over code generation processes.
More specifically, both the lowering of Abstract Syntax Trees
(ASTs) to Julia IR, and Julia IR to LLVM IR can now be
altered through parameters and hooks to reconfigure or
replace individual components of these code generation
processes. Applied to the above example of code generation
without a runtime library, a so-called CodegenParam could
be used to disallow exceptions altogether, or alternatively a

Table 2
Additional interfaces to the Julia compiler
for controlling code generation processes.

Reconfigure Replace
AST - -

4 Julia IR InferenceParams InferenceHooks

5 LLVM IR CodegenParams CodegenHooks

Machine code - -

CodegenHook could change the generated code not to rely
on the runtime library. The GPU back end from Section 5
uses these interfaces to replace or customize code generation
functionality for exceptions, dynamic memory allocation
such as garbage collection, and other functionality that
typically requires runtime support libraries, Of course, the
nature of these parameters and hooks are specific to the
language and its compiler, but the approach is generic and
enables extensive reuse of existing functionality.

For now, we have only introduced such interfaces to
the processes that generate Julia and LLVM IR; The parsing
phase that converts source-code to an AST is superficial and
generic enough not to need adjustment for GPU execution,
while machine code generation is extremely target-specific
and does not offer many opportunities for reuse.

4.2 Back-end IR Interfaces
The codegen step in the main compiler translates (i.e., lowers)
Julia IR constructs into LLVM IR. The C++ part of the
codegen implementation directly invokes LLVM IR builder
interfaces to do so; the part implemented in Julia itself uses
the aforementioned string-based interfaces.

For the device package in support of an accelerator target,
we want to avoid both mechanisms as much as possible. The
string-based approach is too fragile, and the C++ approach
is not productive enough for the developer of the device
package. This developer can be expected to be an expert
in Julia and in his targeted accelerators, but not in C++
programming or C++ APIs. For this reason, we strive for
providing the necessary interfaces and functionality that
lets developers create new language implementations (for
accelerators) in the Julia language itself, and that shields
them from as many LLVM details as possible. This greatly
lowers the required effort to support new hardware, as
much less code is required when the necessary accelerator-
oriented compiler functionality can be written in a productive
programming language. As a testament to the value of this
goal, the GPU support presented in Section 5 only requires
about 1500 lines of code (LOC).

Furthermore, no changes to the language’s compiler
are then required, which enables the distribution of the
new language implementations (i.e., the device packages)
independent from the existing implementation, e.g., with a
built-in package manager. The new implementation can be
quickly iterated and improved upon, while keeping the core
language and its compiler stable. Such a development model
is especially interesting for accelerator vendors, where the
rapid pace of hardware developments necessitates frequent
changes to the toolchain. This contrasts with the relatively
slow developments in host compilers and with sometimes
conservative upgrade policies by system administrators.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

To facilitate interactions with LLVM, we have created
the LLVM.jl package, which is available at https://github.
com/maleadt/LLVM.jl. It provides a high-level wrapper to
the LLVM C API, using Julia’s powerful Foreign Function
Interface (FFI) to interact efficiently with the underlying
libraries. The package can be used to inspect, modify or emit
LLVM IR. It greatly improves the usability of the extension
interfaces that operate at the LLVM IR level. In addition, the
package enables reuse of back-end compiler functionality that
are part of LLVM, including the vast array of optimization
passes that are part of LLVM, or the many back ends to
generate machine code from LLVM IR.

As an example of using LLVM.jl for the purpose of imple-
menting the necessary lowering from Julia IR to LLVM IR,
Listing 3 shows how to implement a custom function for
loading values from a pointer using the LLVM.jl interfaces.
In Julia IR, accessing, e.g., an element in an array, is modeled
with a call to the unsafe_load function. This function is
implemented in the standard Julia library. Its body contains a
call to an intrinsic function that is recognized by the codegen
processing step in the main Julia compiler, which then lowers
it to appropriate LLVM IR code.

Implementing an optimized version of unsafe_load
for loading values on accelerators using the same intrinsics
mechanism would similarly require the introduction of one
or more intrinsics in the main compiler, and writing the
necessary lowering support in C++ using LLVM APIs. This
is cumbersome, inflexible, and unproductive.

By contrast, the code in Listing 3 shows how to load
a value from a pointer with Julia metaprogramming and
the LLVM.jl package.1 It is implemented using a generator
function, declared with @generated on line 2, which builds
the expressions that should be executed at run time. Gener-
ator functions are invoked during type-inference, for every
combination of argument types the function is invoked with.
In this case, this function generates LLVM IR and returns an
llvmcall expression that injects the code into the compiler,
effectively returning the IR that will have to be executed
in the application. Note that this is much stronger than
using macros: on line 3, the pointer argument p is not only
known by name, but its type Ptr{T} as determined by type
inference in the Julia compiler is also known to the generator
function, with T being a type variable referring to the actual
runtime element type of the pointer. The generated code
hence depends on the inferred types, and can be customized
and optimized for it at each invocation of load in the Julia
IR. In the next section, we will discuss how this can be
exploited to generate memory accesses optimized for the
different types of memories in a GPU memory hierarchy.

Without the LLVM.jl interface, the load function body
would have been full of string manipulations, which would
have been a nightmare in terms of code readability. More-
over, it would have contained cases for every supported
pointer type, and the optimization for, e.g., different types of
memories, would be hard or impossible.

1. To avoid uninteresting clutter in our illustration of LLVM.jl,
we show a simplified load function instead of the full unsafe_load.

Listing 3
Using LLVM.jl to implement functions that generate their own IR,

specialized on the types of the arguments.

1 # loading a value from a pointer
2 @generated function load(p::Ptr{T}) where {T}
3 eltyp = LLVM.convert(LLVM.Type, T)
4
5 # create a LLVM module and function
6 mod = LLVM.Module("llvmcall")
7 param_typs = [LLVM.PointerType(eltyp)]
8 ft = LLVM.FunctionType(eltyp, param_typs)
9 f = LLVM.Function(mod, "load", ft)

10
11 # generate IR
12 LLVM.Builder() do builder
13 bb = LLVM.BasicBlock(f, "entry")
14 LLVM.position!(builder, bb)
15
16 ptr = LLVM.parameters(f)[1]
17 val = LLVM.load!(builder, ptr) # the actual load
18
19 LLVM.ret!(builder, val)
20 end
21
22 # inject the IR and call it
23 return :(llvmcall($f, $T, Tuple{Ptr{$T}}, p))
24 end
25
26 @test load(pointer([42])) == 42

5 CUDA LANGUAGE IMPLEMENTATION

To eat our own dog food, we used the infrastructure from
Section 4 to developed a GPU implementation of the Julia
programming language that targets NVIDIA hardware via
the CUDA toolkit. This implementation is an instantiation
of the device package shown in Figure 1. It is distributed
as a regular Julia package named CUDAnative.jl, which is
available at https://github.com/JuliaGPU/CUDAnative.jl,
and does not require any modifications to the underlying
Julia compiler. It supports a subset of the Julia language,
but that subset has proven extensive enough to implement
real-life GPU applications and build high-level abstractions.

The device package actually consists of three major
components, as shown on the right of Figure 3: a standard
library of GPU-specific functionality, a compiler to generate
GPU machine code from Julia sources, and a runtime system
to invoke the compiler and manage it together with the
underlying GPU hardware. Together with the main compiler,
which serves as a JIT compiler for host CPUs, this package
serves as a JIT compiler for CUDA GPUs.

5.1 Standard Library

The CUDAnative.jl standard library focuses on providing
definitions for low-level GPU operations that are required for
writing effective GPU applications. For example, to access
registers containing current thread and block indexes, define
synchronization barriers, or allocate shared memory.

Whereas many languages would implement these defini-
tions using compiler intrinsics – built-in functions whose
implementation is handled specially by the compiler –
the Julia programming language is expressive enough to
implement much of this functionality using Julia code itself.
Built-in functions might still be necessary to implement very
low-level interactions, but the amount of these functions and
their responsibilities are greatly reduced. For example, where
CPython implements the print function entirely in C as

https://github.com/maleadt/LLVM.jl
https://github.com/maleadt/LLVM.jl
https://github.com/JuliaGPU/CUDAnative.jl

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

part of the compiler, Julia only relies on a write function to
write bytes to standard output.

Even when the language isn’t expressive enough, intrin-
sics can be avoided by generating lower-level code directly
using the metaprogramming interfaces from Table 1. For
example, atomics are implemented with literal snippets
of LLVM IR and wrapped in user-friendly language con-
structs by means of macros. The GPU standard library in
CUDAnative.jl relies heavily on this type of programming,
with help from the LLVM API wrapper from Section 4.2 to
facilitate interactions with the LLVM IR.

Julia’s expressiveness and metaprogramming functional-
ity make it possible for most of the Julia standard library to be
written in Julia itself. This makes the standard library much
easier to extend or override, e.g., using type-based multiple
dispatch as demonstrated in Listing 2. CUDAnative.jl relies
on this extensibility to improve compatibility or performance
of existing language features, as the next section illustrates.

5.1.1 Pointers with Address Spaces

Pointer address spaces identify, in an abstract way, where
pointed-to objects reside. They may be used for optimization
purposes such as identifying pointers to garbage-collected
memory, or may have a physical meaning depending on
the hardware being targeted. In the case of Parallel Thread
Execution (PTX) code emitted for NVIDIA GPUs, address
spaces are used to differentiate between state spaces: storage
areas with particular characteristics in terms of size, access
speed, sharing between threads, etc. The PTX compiler will
use this information to emit specialized memory operations,
such as ld.global or st.shared. If no address space is
specified, untagged operations will be emitted (ld or st)
which make the GPU determine the state space at run time
by checking against a memory window. While implementing
initial CUDA support for Julia, we observed that these
untagged operations significantly lower the performance
of memory-intensive benchmarks.

LLVM already includes optimizations to infer address
space information across memory operations [28], but these
fall short when the memory allocation site is invisible. For
example, pointers can be passed as arguments to a kernel,
in which case the allocation happened on the host and is
invisible to the GPU compiler. This is very common with
GPU codes, where entry-point kernels often take several
(pointers to) arrays as arguments.

In Julia, pointers are represented by Ptr objects: reg-
ular objects with no special meaning, and operations on
these pointers are implemented using normal methods. As
such, we can easily define our own pointer type. Listing 4
shows how CUDAnative.jl provides a custom DevPtr type
representing a pointer with address-space information. By
implementing the excepted method interface, which includes
the unsafe_load method defined on line 7, DevPtr objects
can be used in place of Ptr objects. This then yields
specialized memory operations that perform better.

The implementation of unsafe_load in Listing 4 uses
the metaprogramming techniques explained in Section 4.2. A
generator function builds specialized LLVM IR and injects it
back in the compiler, with the relevant address-space-specific
load on lines 19 and 20. This allows to implement low-level

Listing 4
Implementation of optimized GPU pointers in CUDAnative.jl, building on

the example from Listing 3.

1 # custom pointer with address-space information
2 struct DevPtr{T,AS}
3 ptr::Ptr{T}
4 end
5
6 # loading an indexed value from a pointer
7 @generated function unsafe_load(p::DevPtr{T,AS},

i::Int=1)
where {T,AS}

8 eltyp = LLVM.convert(LLVM.Type, T)
9

10 # create a LLVM module and function
11 ...
12
13 # generate IR
14 LLVM.Builder() do builder
15 ...
16 # load from ptr with AS
17 ptr = LLVM.gep!(builder, LLVM.parameters(f)[1],

[parameters(f)[2]])
18 devptr_typ = LLVM.PointerType(eltyp, AS)
19 devptr = LLVM.addrspacecast!(builder, ptr,

devptr_typ)
20 val = LLVM.load!(builder, devptr)
21 ...
22 end
23
24 # inject the IR and call it
25 ...
26 end

functionality that cannot be expressed using pure Julia code,
without the need for additional compiler intrinsics.

Note how the DevPtr type from line 2 only contains a
single ptr field and as such has the exact same memory lay-
out as the existing Ptr type. The address space information
is only known by the type system, and does not affect the
memory representation of run-time pointers.

5.1.2 NVIDIA Device Library
Another important source of low-level GPU operations in
CUDAnative.jl is libdevice, a bitcode library shipped as
part of the CUDA toolkit. This library contains common
functionality implemented for NVIDIA GPUs, including
math primitives, certain special functions, bit manipula-
tion operations, etc. The CUDAnative.jl package provides
wrappers for these operations, compatible with counterpart
functionality in the Julia standard library. This often raises
the abstraction level, and improves usability. For example,
libdevice provides 4 different functions to compute the
absolute value: __nv_abs and __nv_llabs for respectively
32-bit and 64-bit integers, and similarly __nv_fabs and
__nv_fabsf for 32-bit and 64-bit floating-point values.
The Julia wrapper provides the same functionality, but as
different methods of a single generic function abs.

5.2 GPU Compiler

Together with the main Julia compiler, the CUDAnative.jl
infrastructure of Figure 3 instantiates the design from Fig-
ure 1, with respectively the Julia IR and LLVM IR as the
high and low-level IRs. Together with host Julia code, device
code is processed by the main compiler’s parser, which
lowers syntactical constructs and expands macros. Both
the host code and the device code can include application
code as well as library code, and there is no inherent

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

difference between either type of code. There is no need
for an explicit annotation or encapsulation of device code,
greatly improving opportunities for code reuse. For example,
barring use of incompatible language features, much of the
Julia standard library can be used to implement device code.

The main interface for calling functions on a
GPU resembles a call to an ordinary Julia function:
@cuda (config...) function(args...), where the
config tuple indicates the launch configuration similar
to the triple angle bracket syntax in CUDA C. Because
of the way @cuda is implemented in the GPU standard
library using metaprogramming, the Julia compiler invokes
the GPU compiler in CUDAnative.jl whenever such a call
occurs in the code. That GPU compiler then takes over the
compilation of the called code. Using the existing interfaces
from Table 1, the new interfaces from Table 2, and the
LLVM.jl wrapper, the GPU compiler configures and invokes
the existing main compiler components for lowering the
(expanded) AST into GPU-oriented Julia IR, for performing
high-level optimizations on it, for generating GPU-oriented
LLVM IR, and for performering low-level optimizations
on that IR. Through the new inferfaces, the execution of
these compilation steps is repurposed with new GPU-specific
functionality that is implemented in GPU extensions in the
CUDAnative.jl. For the front end, most of the GPU-specific
functionality actually resides in the GPU standard library as
discussed in the previous section; the front-end extensions in
the GPU compiler are therefore minimal.

The resulting low-level, GPU-optimized LLVM IR is then
compiled to PTX by means of the LLVM NVPTX back end,
which is again accessed with the LLVM.jl wrapper package
from Section 4.2. This use of an external GPU back-end
compiler rather than one embedded in the device package
diverges from the design in Figure 1, as was already hinted
in Section 2. For its CPU back end, the Julia compiler already
relies on CPU LLVM back ends. So any Julia distribution
already includes LLVM. The fact that LLVM can also generate
excellent PTX code for CUDA devices when it is fed well-
formed and optimized LLVM IR code [28], voids the need for
including a third-party GPU compiler or a reimplementation
thereof in the device package. Without putting any burden on
system administrators or users to install additional packages
or tools, we can simply reuse the LLVM PTX back end.

Before generating machine code, LLVM optimization
passes extensively optimize the LLVM IR. As part of that pro-
cess, Julia and CUDAnative.jl lower specific constructs and
optimize certain patterns. One optimization that drastically
improves performance, is rewriting the calling convention of
entry-point functions. Semantically, Julia passes objects of an
immutable type by copying, while mutable types are passed
by reference. The actual calling convention as generated by
the Julia compiler also passes aggregate immutable types by
reference, while maintaining the aforementioned semantics.
In the case of GPU code, this means that not the aggregate
argument itself, but only a pointer to the argument will
be stored in the designated state space (see Section 5.1.1).
This space has special semantics that map well onto typical
function argument behavior —read-only access instead of
read-write, per-kernel sharing instead of per-thread— and
typically offers better performance than loading arguments
from other memories. However, by passing arguments by

Listing 5
Vector addition in CUDA C, using the CUDA run-time API.

1 #define cudaCall(err) // check return code for error
2 #define frand() (float)rand() / (float)(RAND_MAX)
3
4 __global__ void vadd(const float *a, const float *b,

float *c) {
5 int i = blockIdx.x * blockDim.x + threadIdx.x;
6 c[i] = a[i] + b[i];
7 }
8
9 const int len = 100;

10
11 int main() {
12 float *a, *b;
13 a = new float[len];
14 b = new float[len];
15 for (int i = 0; i < len; i++) {
16 a[i] = frand(); b[i] = frand();
17 }
18
19 float *d_a, *d_b, *d_c;
20 cudaCall(cudaMalloc(&d_a, len * sizeof(float)));
21 cudaCall(cudaMemcpy(d_a, a, len * sizeof(float),

cudaMemcpyHostToDevice));
22 cudaCall(cudaMalloc(&d_b, len * sizeof(float)));
23 cudaCall(cudaMemcpy(d_b, b, len * sizeof(float),

cudaMemcpyHostToDevice));
24 cudaCall(cudaMalloc(&d_c, len * sizeof(float)));
25
26 vadd<<<1, len>>>(d_a, d_b, d_c);
27
28 float *c = new float[len];
29 cudaCall(cudaMemcpy(c, d_c, len * sizeof(float),

cudaMemcpyDeviceToHost));
30 cudaCall(cudaFree(d_c));
31 cudaCall(cudaFree(d_b));
32 cudaCall(cudaFree(d_a));
33
34 return 0;
35 }

reference only the pointer will be loaded from parameter
space, and not the underlying objects. In other words, the
Julia array objects that themselves contain pointers to the
actual buffers to be manipulated by the GPU, are not moved
into designated GPU memories to optimize performance.

To solve this problem, we let the GPU compiler enforce an
adapted calling convention for entry-point kernel functions:
Immutable aggregates are now also passed by value, instead
of by reference. This does not change semantics as objects of
mutable types are still passed by reference. We implement
this change at the LLVM IR level by generating a wrapper
function that takes values as arguments, stores said values
in a stack slot, and passes references to those slots to
the original entry-point function. After forced inlining and
optimization, all redundant operations disappear. Finally,
the CUDAnative.jl runtime passes all immutable arguments
by value instead of by reference. This optimization yields
a speedup of up to 20% on memory-intensive Rodinia
benchmarks, as will be discussed in Section 6.3.

This optimization provides an excellent example of the
code reuse enabled by our tool flow design and the added
extension interfaces. Due to that reuse, the code to build the
wrapper function and perform the necessary optimizations
to inline the code requires less than 100 lines of Julia code.

5.3 CUDA API Wrapper

The CUDAnative.jl package provides functionality related
to compiling code for CUDA GPUs, but another important
aspect of GPU applications is to interface directly with the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Listing 6
Vector addition in Julia using CUDAdrv.jl and CUDAnative.jl.

1 function vadd(a, b, c)
2 i = (blockIdx().x-1) * blockDim().x + threadIdx().x
3 c[i] = a[i] + b[i]
4 return
5 end
6
7 len = 100
8 a = rand(Float32, len)
9 b = rand(Float32, len)

10
11 d_a = CUDAdrv.Array(a)
12 d_b = CUDAdrv.Array(b)
13 d_c = similar(d_a)
14
15 @cuda (1,len) vadd(d_a, d_b, d_c)
16 c = Base.Array(d_c)

device, e.g., to allocate memory, upload compiled code, and
manage execution of kernels. CUDA provides two mostly
interchangeable interfaces for this: the low-level driver
API, and the runtime API with higher-level semantics and
automatic management of certain resources and processes.

Listing 5 shows an example vector addition in CUDA C,
using the runtime API to initialize and upload memory,
launch the kernel, and fetch back results. The syntax for
calling kernels, vadd<<<...>>>(...), hides much of the
underlying complexity: setting-up a parameter buffer, initial-
izing the execution configuration, acquiring a reference to
the compiled kernel code, etc.

To improve the usability of the CUDA API from Ju-
lia, we have created CUDAdrv.jl, which is available at
https://github.com/JuliaGPU/CUDAdrv.jl. This is a pack-
age wrapping the CUDA driver API. It offers the same level
of granularity as the driver API, but wrapped in high-level
Julia constructs for improved productivity. Similar to the
runtime API, it automates management of resources and
processes, but always allows manual control for low-level
programming tasks. This makes the wrapper suitable for
both application developers and library programmers.

Listing 6 shows a Julia implementation of the vector
addition from Listing 5, using CUDAdrv.jl for all device
interactions. It shows how the API wrapper vastly simplifies
common operations: Memory allocation and initialization
is encoded through different constructors of the custom
Array type, API error codes are automatically checked
and converted to descriptive exceptions, GPU memory is
automatically freed by the Julia garbage collector, etc.

5.4 Run-time System

While no particular attention was paid so far to the fact
that the Julia compiler is a JIT compiler, the CUDAnative.jl
run-time system makes it possible to program GPUs using
dynamic programming principles, and to invoke those
programs almost at the speed of statically-compiled kernels.

Whereas calling a kernel from CUDA C is a fully static
phenomenon, our @cuda Julia macro enables a much more
dynamic approach. The GPU compiler is invoked, and hence
kernels are compiled, upon their first use, i.e., right before
an @cuda function call is first evaluated. At that point,
the invoked kernel and its functions are specialized and
optimized for both the active device and the run-time types

Listing 7
Lowered code generated from the @cuda invocation in Listing 6.

1 # results of compile-time computations
2 ## at parse time
3 grid = (1,1,1)
4 block = (len,1,1)
5 shmem = 0
6 stream = CuDefaultStream()
7 func = vadd
8 args = (d_a, d_b, d_c)
9 ## during type inference

10 types = (CuDeviceArray{Float32,2,AS.Global},
CuDeviceArray{Float32,2,AS.Global}
CuDeviceArray{Float32,2,AS.Global})

11 partial_key = hash(func, types)
12
13 # determine the run-time environment
14 age = method_age(func, $types)
15 ctx = CuCurrentContext()
16 key = hash(partial_key, age, ctx)
17
18 # cached compilation
19 kernel = get!(kernel_cache, key) do
20 dev = device(ctx)
21 cufunction(dev, func, types)
22 end
23
24 cudacall(kernel, types, args,

grid, block, shmem, stream)

of any arguments. For additional, later occurrences of kernel
invocations on arguments with different run-time types,
newly specialized and optimized code is generated.

The specialized host code that is generated from the
@cuda invocation in Listing 6 is shown in Listing 7. Lines
3 to 11 contain the result of compile-time computations:
Arguments to the @cuda macro are decoded during macro
expansion, and a generator function (not shown) precom-
putes values and determines the kernel function signature.
This signature can differ from the types of the objects passed
to @cuda, e.g., the invocation on line 15 in Listing 6 passes
CUDAdrv.Arrays, but the kernel is compiled for GPU-
compatible CuDeviceArray objects. The run-time conver-
sion of CUDAdrv.Array objects to their CuDeviceArray
counterpart happens as part cudacall on line 24.

In addition to recompiling specialized and optimized
kernels for changing run-time types, the CUDAnative.jl
runtime keeps track of the so-called method age, which
indicates the time of definition of the function or any of its
dependents. The concept of method age is already supported
in the main Julia compiler in support of dynamic method
redefinitions: Whenever a source code fragment is edited,
the containing method’s age changes, and the new version
will be used for future method calls.

CUDAnative.jl also supports this concept of age. At
run time, the method age and the active CUDA context
are queried. These determine whether a kernel needs to
be recompiled: A newer age indicates a redefinition of the
method or any callee, while the context determines the active
device and owns the resulting kernel object. These properties
are hashed together with the type signature, and used to
query the compilation cache on line 19 of Listing 7. In the
case of a cache miss, the kernel is compiled and added to
the cache. Finally, control is handed over to CUDAdrv.jl
on line 24 where cudacall converts the arguments and
launches the kernel.

The above calling sequence has been carefully optimized:
Run-time operations are avoided as much as possible, caches

https://github.com/JuliaGPU/CUDAdrv.jl

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

are used to prevent redundant computations, code is special-
ized and aggressively inlined to avoid unnecessary dynamic
behavior (e.g., iterating or introspecting arguments or their
types), etc. The fast path, i.e. when no device code needs to
be compiled, contains only the bare minimum interactions
with the Julia compiler and CUDA API. As a result, the time
it takes to launch a kernel is almost equivalent to a fully static
kernel call in CUDA C, despite all dynamic programming
capabilities. When code does need to be compiled, the
time it takes to do so is acceptably low for interactive
programming purposes. Both the kernel compilation times
and their launching times will be evaluated in Section 6.2.

The support for method redefinitions with CUDAnative.jl
makes it possible to program a GPU interactively, for
example using Project Jupyter, a popular programming
environment among scientists and teachers for programming
interactively in Julia, Python or R [29]. The environment
centers around so-called notebooks, documents that can
contain both computer code, the results from evaluating
that code, and other rich-text elements. The contents of
these notebooks can be changed or evaluated in any order
and at any time, requiring a great deal of flexibility from
the underlying execution environment, e.g., to recompile
code whenever it has been edited. CUDAnative.jl makes it
possible to use this highly dynamic style of programming in
combination with GPUs, for example to develop GPU kernels
by iteratively redefining device methods and evaluating the
output or performance.

This capability provides an excellent demonstration of
the advantages of (i) our vision of adding interfaces for main
compiler repurposing, and (ii) our implementation of CUDA
support by means of a pure Julia device package. This enables
tight integration of GPU support into the existing compiler,
which in turn makes the integration of GPU support in a
project like Jupyter seamless, both for the developers of the
GPU support, and from the perspective of Jupyter users, who
get the same interactivity for host programming and GPU
programming. All that was needed was a careful design of
the compilation cache, which was needed anyway, and 5
lines of code to include the method age in the hashes used
to access the cache.

6 EVALUATION

To demonstrate the full capabilities of this framework,
we present a three-fold evaluation: First we evaluate the
computational overhead of JIT compilation compared to
the static reference CUDA C toolchain. Then we use a set of
standardized benchmarks to assess the run-time performance
overhead of using CUDAnative.jl for GPU programming.
The Julia implementations of these benchmarks are ported
over from CUDA C, maintaining the low abstraction level
in order to accurately determine performance differences
caused by the programming infrastructure itself, rather than
implementation choices.

The final part of the evaluation serves to illustrate the
high-level programming capabilities of the infrastructure, for
which we have implemented kernels using typical high-level
programming constructs as used by Julia programmers. We
demonstrate how these constructs can be applied to GPU
programming, without sacrificing performance.

em
pty

va
dd

pe
ak

flo
ps

re
du

ce
0

2

4

6

se
co

nd
s

first

em
pty

va
dd

pe
ak

flo
ps

re
du

ce
0

10

20

30

40
m

illiseconds
subsequent

reference

Figure 4. Compilation times of various GPU kernels to PTX code. First
and subsequent timings are taken with CUDAnative.jl, while the reference
measurements represent compilation with the NVRTC compiler library.

6.1 Experimental Set-up
CUDA C code is compiled with the NVIDIA CUDA compiler
version 8.0.61, in combination with NVIDIA driver 375.66
and Linux 4.9.0 from Debian Stretch (64-bit). Julia measure-
ments are done with Julia 0.6, except for the compilation time
measurements from Section 6.2.1 where a prerelease version
of Julia 0.7 is used to reflect recent improvements in package
load times. All Julia packages in this evaluation are publicly
available: CUDAnative.jl version 0.5, CUDAdrv.jl 0.5.4 and
LLVM.jl 0.5.1 using LLVM 3.9. Our test system contains an
NVIDIA GeForce GTX 1080 GPU, two quad-core Intel Xeon
E5-2637 v2s CPUs, and 64GB of DDR3 ECC memory.

6.2 JIT Compiler Performance
As described in Section 5.4, the CUDAnative.jl run-time
system checks before every kernel launch whether the JIT
compiler needs to generate new device code. For this to
be usable in both an interactive setting, where methods or
their invocations change frequently, and in static applications
with deterministic call behavior, two metrics of compiler
performance are important: (i) the time it takes to generate
PTX code from Julia sources, and (ii) the run-time overhead
to implement the aforementioned dynamic behavior.

6.2.1 Code Generation
Figure 4 visualizes the time it takes to compile instances of
different types of kernels to PTX code: an empty kernel, the
vector addition from Listing 6, a peakflops benchmark that
relies on the CUDA device library, and a high-level reduction
that specializes based on a function operator argument (that
will be discussed in Section 6.4). Individual instances of these
kernels are identical but treated as unique, i.e., they do not
hit the various caches in Julia or CUDAnative.jl, but trigger
a full recompilation for every invocation. This process is
purely single-threaded: neither the existing Julia compiler
nor CUDAnative.jl make use of multithreading. Figure 4
shows on the left how the very first GPU compilation suffers
from a significant penalty. This can be attributed to Julia JIT-
compiling CUDAnative.jl and its dependencies for the host
processor. Lowering this compilation time is an active area
of development for the Julia compiler team and is expected
to improve in future releases.

The first-time compilation penalty increases with the
complexity of the kernels, as more advanced kernels trigger

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Table 3
GPU and CPU execution times for an empty kernel, measuring

respectively time between CUDA events surrounding the kernel, and
wall-clock time to record these events and launch the kernel.

GPU time CPU time
CUDA C (6.12 ± 0.71) µs (12.49 ± 1.48) µs

CUDAdrv.jl (6.97 ± 0.70) µs (12.50 ± 0.80) µs
CUDAnative.jl (8.17 ± 0.82) µs (13.77 ± 0.97) µs

the compilation of more functionality from CUDAnative.jl.
The subsequent timings on the right are much lower, and
show how (i) Julia generates high-quality host code for
CUDAnative.jl, with zero-cost FFI abstractions for interacting
with the LLVM and CUDA libraries, and (ii) CUDAnative.jl
has been carefully optimized to generate device code effi-
ciently. For example, loading and linking the CUDA device
library only happens when required by the kernel, with
intermediate results cached for future compilations.

The reference timings on the right represent the time it
takes to compile equivalent CUDA C code. We measured
this directly using the NVRTC library, as the nvcc compiler
binary spends significant time loading libraries and discov-
ering a host compiler. CUDAnative.jl compares favorably
against the CUDA C toolchain, but exhibits worse scaling
behavior as Julia source code is considerably more complex
to analyze [30]. As mentioned before, compilation times are
expected to improve with future Julia versions. Furthermore,
we believe that the relatively low complexity of typical GPU
applications will mask this behavior.

6.2.2 Kernel Launch Overhead
With statically compiled CUDA C code, the run-time
cost of launching a kernel is dominated entirely by the
CUDA libraries and underlying hardware. In the case
of CUDAnative.jl, Section 5.4 described how launching a
kernel entails many more tasks with the goal of a highly
dynamic programming environment: converting arguments,
(re)compiling code, instantiating a CUDA module and
function object, etc. These code paths have been carefully
optimized to avoid run-time overhead as much as possible.

To determine this overhead, we launch an empty kernel
and measure the elapsed execution time, both on the GPU
using CUDA events and on the CPU using regular wall-clock
timers. Table 3 shows these measurements for statically-
compiled C code using the CUDA driver API, Julia code
performing the exact same static operations with CUDAdrv.jl,
and dynamic Julia code using CUDAnative.jl to compile and
execute the empty kernel. Neither of the GPU and CPU time
measurements show significant overhead when only using
CUDAdrv.jl, thanks to Julia’s excellent generated code quality
and zero-cost FFI. With CUDAnative.jl, which internally uses
CUDAdrv.jl, minimal overhead is introduced by the check
for the current method age. We consider this negligible: In
the case of realistic kernels it is dwarfed by the time to copy
the kernel parameter buffer to the device.

6.3 Low-level Kernel Programming
To asses the raw performance of GPU kernels written in
Julia, we have ported several CUDA C benchmarks from the
Rodinia benchmark suite to CUDAnative.jl [31]. These ports

str
ea

mclu
ste

r nn

ba
ck

pr
op bfs

leu
ko

cy
te

pa
rtic

lefi
lte

r

pa
thfi

nd
er

ho
tsp

ot nw lud
0%

20%

40%

60%

80%

100%

lin
es

of
co

de

CUDA Julia
device
host

Figure 5. Lines of host and device code of selected Rodinia benchmarks,
normalized against the total LOC of their CUDA C implementations. On
average, the Julia - CUDAnative.jl versions are 32% shorter: device code
is reduced by 8%, while the amount of host code is reduced by 38%.

nn

ba
ck

pr
op nw bfs

str
ea

mclu
ste

r

ho
tsp

ot

pa
rtic

lefi
lte

r

pa
thfi

nd
er

leu
ko

cy
te lud

−4%

−2%

0%

1%

−0.50%

sp
ee

du
p

vs
C

U
D

A
C

Rodinia
geomean

Figure 6. Kernel performance of CUDAnative.jl vs CUDA C.

are available at https://github.com/JuliaParallel/rodinia/.
Porting GPU code is a non-trivial effort, so we have focused
on the smallest benchmarks of the suite, taking into account
use of GPU features that are or were not yet supported by
the CUDAnative.jl infrastructure, such as constant memory.

6.3.1 Lines of Code
To accurately determine performance differences that result
from using the Julia language and the CUDAnative.jl com-
piler, we maintained the low-level semantics of the original
CUDA C kernel code, whereas for the host code we applied
high-level programming concepts and used the API wrapper
from Section 5.3. This is clearly visible in Figure 5, which
shows significant reductions in lines of code for the host
part of the benchmarks, while the amount of device code
decreases much less. Even so, this low-level style of Julia
still significantly improves the programming experience,
with, e.g., dynamic types, checked arithmetic, an improved
programming environment, etc.

6.3.2 Kernel Performance
Figure 6 visualizes the performance difference between
kernels implemented in Julia using CUDAnative.jl and their
reference Rodinia CUDA C implementations. The results
are obtained by running the CUDA C and Julia versions of
each benchmark multiple times, measuring the execution
times of every GPU kernel using the nvprof profiling tool
from the CUDA toolkit. Memory transfers and other host-
side operations are excluded from these timings. The mean

https://github.com/JuliaParallel/rodinia/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

Listing 8
Using CuArrays.jl to perform a fused broadcast on the GPU.

1 X = CuArray(rand(42))
2 f(x) = 3x^2 + 5x + 2
3 Y = f.(2 .* X.^2 .+ 6 .* X.^3 .- sqrt.(X))

Listing 9
Equivalent CUDA C kernel code for the fused broadcast in Listing 8.

Host code has been omitted for brevity, and would be similar to Listing 5.

1 __device__ double f(double x) {
2 return 3*pow(x, 2) + 5*x + 2;
3 }
4 __global__ void kernel(double *X, double *Y, int N) {
5 int i = blockIdx.x * blockDim.x + threadIdx.x;
6 if (i < N) Y[i] = f(2*X[i]+6*pow(X[i],3)-sqrt(X[i]));
7 }

execution time per kernel is then estimated by maximum-
likelihood fitting a lognormal distribution [32], [33], and
the total execution time of each benchmark is the sum
of its kernels’ mean execution times. Figure 6 shows the
speedup of the thus measured Julia total execution time
over the CUDA C total execution time, with error margins
determined by propagating the distributions’ variances
across operations [34]. The average speedup is computed as
the geometric mean, visualized by a dashed horizontal line.

On average, we measure a slowdown of 0.50% compared
to CUDA C kernels compiled with nvcc. This is close to the
relative speedup of 0.8% as achieved by gpucc on a wider
range of Rodinia benchmarks [28]. As gpucc is built on the
same LLVM back end as CUDAnative.jl, we can conclude
that using Julia for low-level GPU kernel programming does
not incur a substantial slowdown.

6.4 High-level GPU Programming
To demonstrate the high-level programming potential of this
infrastructure, we use CuArrays.jl [35] (not to be confused
with the lightweight array type provided by CUDAdrv.jl).
This package defines an array type for data that lives on the
GPU, but exposes host-level operations that are implemented
using the infrastructure from this paper to execute on the
device. For example, constructing a CuArray object will
allocate data on the GPU using CUDAdrv.jl, adding two such
host objects together will queue an addition kernel on the
GPU using CUDAnative.jl, etc. Certain other functionality is
implemented using optimized host libraries like cuBLAS or
cuDNN, but that is not relevant to the work in this paper.

The example from Listing 8 shows how to load the
CuArrays.jl package, generate input data and upload it
to the GPU on line 1, defining an auxiliary function for
the sake of this example on line 2, and finally a series
of element-wise operations including a call to the newly
defined function on line 3. These operations, prefixed by a
dot to indicate the element-wise application, are syntactically
fused together into a single broadcast operation [36]:
Y = broadcast(x -> f(2x^2+6x^3-sqrt(x)), X)
where the first argument is a lambda containing the fused
operations from line 3. The implementation of broadcast in
CuArrays.jl then compiles this function using CUDAnative.jl,
inlining calls to both the lambda and underlying function f.

Conceptually, broadcasting a function over GPU arrays
like CuArray is straightforward: each thread processes a

Listing 10
Reducing an array of custom objects on the GPU.

1 # illustrational type that implements addition
2 struct Point{T}
3 x::T
4 y::T
5 end
6 +(a::Point{T}, b::Point{T}) where {T} =
7 Point(a.x+b.x, a.y+b.y)
8
9 data = [Point(rand(Int64)%100, rand(Int64)%100)

for _ in 1:42]
10 X = CuArray(data)
11 Y = reduce(+, #=neutral element=# Point(0,0), X)

single element, the grid can be constructed relatively naively,
there are no cross-thread dependencies, etc. However, the
actual implementation relies on several advanced properties
of the Julia language and compiler. For one, Julia specializes
functions on the types of its arguments (which includes
the shape of each container). This makes it possible to
write generic code, nonetheless compiled to statically typed
assembly without type checks. Furthermore, every function
in Julia has its own type. This permits use of higher-order
arguments, even user-defined ones as in Listing 8, that still
result in specialized code without, e.g., indirect function calls
or calls to the runtime. In fact, the PTX code generated from
Listing 8 is identical to that generated from the equivalent
CUDA C code of Listing 9, with the exception of slightly
different inlining decisions made by the various compilers.
The amount of source code, however, is dramatically reduced:
Kernels can be expressed much more naturally, and API
interactions (not shown in Listing 9 for the sake of brevity)
disappear for most use cases.

Where broadcast is a relatively simple operation, the
CuArrays.jl package also implements other data processing
algorithms optimized for GPUs. One noteworthy such algo-
rithm is reduce, with a parallel implementation based on
shuffle instructions [37]. These provide a means to exchange
data between threads within the same thread block, without
using shared memory or having to synchronize execution.
The implementation of shuffle in CUDAnative.jl exposes a
fully generic interface that specializes on the argument types,
whereas even the official CUDA C intrinsics are limited to
certain primitive types. As a result, reducing a CuArray
offers the same flexibility as described for broadcast.
Listing 10 demonstrates reducing an array of custom objects
using the + operator (more complex operators are supported
but would make the example more confusing). Again, the
invocation on line 11 compiles to a single kernel specialized
on each of the arguments to reduce. This specialization
includes generating sequences of 32-bit shuffle instructions
to move the 128-bit Point{Int64} objects between threads,
courtesy of a generated function producing LLVM IR with
LLVM.jl as explained in Section 4. The final abstraction
completely hides this complexity, however, and demonstrates
how metaprogramming can be used to selectively override
function behavior and use LLVM.jl to tap into the full
potential of the underlying compiler.

The abstractions from this section are idiomatic Julia
code, made possible by the CUDAnative.jl JIT compiler.
CuArrays.jl demonstrates the power of such abstractions,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

by combining the convenience of a host library containing
predefined abstractions, with the flexibility and performance
of manual device programming. This greatly improves pro-
grammer productivity, while offering the necessary expres-
siveness to target, e.g., GPUs or other parallel accelerators.

7 RELATED WORK

In recent times, many developments have added support
for GPUs and similar accelerators to general purpose, high-
level languages without depending on a lower-level, device
specific language such as CUDA or OpenCL. One popular
approach is to host a DSL in the general-purpose language,
with properties that allow it to compile more easily for, e.g.,
GPUs. For example, Accelerate defines an embedded array
language in Haskell [38], while Copperhead works with
a functional, data-parallel subset of Python [21]. Parakeet
uses a similar Python subset, with less emphasis on the
functional aspect [39], whereas PyGPU specializes its DSL
for image processing algorithms [20]. Other research defines
entirely new languages, such as Lime [40], Chestnut [41]
or HIPAcc [42]. In each of these cases, the user needs to
gain explicit knowledge about this language, lowering his
productivity and impeding reuse of existing code.

Our work proposes compiler infrastructure that allows
writing code for accelerators directly in the high-level source
language, tightly integrated with the main compiler and
language ecosystem. Rootbeer targets similar programma-
bility with Java, but requires manual build-time actions
to post-process and compile kernel source code [43]. Jacc
features automatic run-time compilation and extraction
of implicit parallelism, but requires the programmer to
construct manually an execution task-graph using a relatively
heavy-weight API [44].

By extending the main compiler, we greatly reduce the
effort required to support new targets. This type of exten-
sible programming has been extensively researched in the
past [45], and has seen a recent revival [7], but to our knowl-
edge has not focused on extensibility of compiler processes
for the purpose of targeting new hardware and environments
with minimal code duplication. The Rust language has
experimental support for NVIDIA GPUs that does reuse
low-level LLVM infrastructure, but lacks integration with
the higher levels of the compiler and focuses on statically
compiling device code with little run-time interactions or
optimizations [46]. NumbaPro, being a Python compiler,
does target a much higher-level language and interface, with
corresponding run-time interactions like JIT compilation
based on the kernel type signature [8]. However, it uses
a custom Python compiler which significantly complicates
the implementation and is not fully compatible with the
Python language specification.

8 CONCLUSION AND FUTURE WORK

Conclusion: We presented an approach for efficiently
adding support for new hardware or other environments to
an existing programming language. We proposed a set of in-
terfaces to repurpose the existing compiler, while maximizing
reuse of functionality. We implemented these interfaces in the
compiler for the high-level Julia programming language, and

used that infrastructure to add support for NVIDIA GPUs.
We then used the Rodinia benchmark suite to show how
Julia can be used to write GPU code that performs similar
to CUDA C. By integrating with the existing compiler, code
compatibility is improved and many existing Julia packages
can be used on the GPU without extra effort.

Our work on CUDAnative.jl makes it possible to apply
high-level principles to GPU programming, for example
dynamically typed kernels or interactive programming tools
like Jupyter. Furthermore, CUDAnative.jl and its GPU JIT
compiler make it possible to create highly flexible, high-level
abstractions. The CuArrays.jl package demonstrates this,
with a interface that combines the convenience of host-level
libraries with the flexibility of manual device programming.

Status: Our changes to the Julia compiler’s interfaces
have been accepted, and are part of the 0.6 stable release.
The extension interfaces are already being used by other re-
searchers and developers to add support for more platforms
to the Julia compiler, from similar hardware like AMD GPUs,
to WebAssembly for targeting web browsers. These new
developments invariably make use of LLVM.jl, and often
mimic the design of CUDAnative.jl as a starting point.

Our packages are critical to large parts of the Julia GPU
infrastructure for NVIDIA GPUs. Furthermore, they work out
of the box with Jupyter, enabling interactive programming
and effective use of GPU hardware.

Future Work: We plan to improve support for GPU
hardware features, and create high-level abstractions that
maintain the ability to express low-level behavior. This
includes a unified approach to GPU memory types, id-
iomatic support for communication primitives, etc. We are
also working on compiler improvements to enable even
more powerful abstractions, for example contextual method
dispatch based on run-time device properties. This can both
enhance expressiveness of the abstractions, and improve
performance of the generated code.

ACKNOWLEDGMENTS

This work is supported by the Institute for the Promotion
of Innovation by Science and Technology in Flanders (IWT
Vlaanderen), and by Ghent University through the Concerted
Research Action on distributed smart cameras.

REFERENCES

[1] C. Kachris and D. Soudris, “A survey on reconfigurable accelerators
for cloud computing,” in Int. Conf. Field Programmable Logic and
Applications. IEEE, 2016, pp. 1–10.

[2] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “En-
abling FPGAs in hyperscale data centers,” in Proc. Int. Conf. Ubiqui-
tous Intelligence and Computing, Autonomic and Trusted Computing,
Scalable Computing and Communications. IEEE, 2015, pp. 1078–1086.

[3] S. Sarkar, T. Majumder, A. Kalyanaraman, and P. P. Pande, “Hard-
ware accelerators for biocomputing: A survey,” in Proc. Int. Symp.
Circuits and Systems. IEEE, 2010, pp. 3789–3792.

[4] G. Pratx and L. Xing, “GPU computing in medical physics: A
review,” Medical physics, vol. 38, no. 5, pp. 2685–2697, 2011.

[5] S. Aluru and N. Jammula, “A review of hardware acceleration for
computational genomics,” IEEE Design & Test, vol. 31, no. 1, 2014.

[6] X. Li, P.-C. Shih, J. Overbey, C. Seals, and A. Lim, “Comparing
programmer productivity in OpenACC and CUDA: an empirical
investigation,” Int. J. Computer Science, Engineering and Applications,
vol. 6, no. 5, pp. 1–15, 2016.

[7] D. Zingaro, “Modern extensible languages,” SQRL Report, vol. 47,
p. 16, 2007.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[8] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based
Python JIT compiler,” in Proc. 2nd Workshop LLVM Compiler
Infrastructure in HPC. ACM, 2015, p. 7.

[9] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra,
“From CUDA to OpenCL: Towards a performance-portable solution
for multi-platform gpu programming,” Parallel Computing, vol. 38,
no. 8, pp. 391–407, 2012.

[10] D. Merrill, “CUB: A pattern of “collective" software design,
abstraction, and reuse for kernel-level programming,” 2015, GPU
Technology Conf.

[11] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010.
[Online]. Available: https://developer.nvidia.com/thrust

[12] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of
level 3 basic linear algebra subprograms,” ACM Trans. Mathematical
Software, vol. 16, no. 1, pp. 1–17, 1990.

[13] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney
et al., LAPACK Users’ guide. SIAM, 1999.

[14] J. Malcolm, P. Yalamanchili, C. McClanahan, V. Venugopalakrish-
nan, K. Patel, and J. Melonakos, “Arrayfire: a GPU acceleration
platform,” in Proc. SPIE, vol. 8403, 2012, pp. 84 030A–1.

[15] K. Rupp, F. Rudolf, and J. Weinbub, “ViennaCL: A high level linear
algebra library for GPUs and multi-core CPUs,” in Intl. Workshop
GPUs and Scientific Applications, 2010, pp. 51–56.

[16] NVIDIA, “cuBLAS: Dense linear algebra on GPUs,” 2008. [Online].
Available: https://developer.nvidia.com/cublas

[17] Continuum Analytics, “Anaconda Accelerate: GPU-accelerated
numerical libraries for Python,” 2017. [Online]. Available:
https://docs.anaconda.com/accelerate/

[18] Julia developers, “CUBLAS.jl: Julia interface to cuBLAS,” 2017.
[Online]. Available: https://github.com/JuliaGPU/CUBLAS.jl/

[19] N. Markovskiy. (2014, 6) Drop-in acceleration of GNU
Octave. NVIDIA. [Online]. Available: https://devblogs.nvidia.
com/parallelforall/drop-in-acceleration-gnu-octave/

[20] C. Lejdfors and L. Ohlsson, “PyGPU: A high-level language for
high-speed image processing,” in Int. Conf. Applied Computing 2007.
IADIS, 2007, pp. 66–81.

[21] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: Compiling
an embedded data parallel language,” ACM SIGPLAN Notices,
vol. 46, no. 8, pp. 47–56, 2011.

[22] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” SIAM Review, vol. 59,
no. 1, pp. 65–98, 2017.

[23] J. W. Bezanson, “Abstractions in technical computing,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2015.

[24] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A
fast dynamic language for technical computing,” arXiv preprint
arXiv:1209.5145, 2012.

[25] T. Besard, B. De Sutter, A. Frías-Velázquez, and W. Philips, “Case
study of multiple trace transform implementations,” Int. J. High
Performance Computing Applications, vol. 29, no. 4, pp. 489–505, 2015.

[26] J. Bezanson, “Why is Julia fast? Can it be faster?” 2015, JuliaCon
India.

[27] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int Symp.
Code Generation and Optimization, 2004, pp. 75–86.

[28] J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. Pienaar,
B. Roune, R. Springer, X. Weng, and R. Hundt, “gpucc: An open-
source GPGPU compiler,” in Proc. Int. Symp. Code Generation and
Optimization. ACM, 2016, pp. 105–116.

[29] M. Ragan-Kelley, F. Perez, B. Granger, T. Kluyver, P. Ivanov,
J. Frederic, and M. Bussonnier, “The Jupyter/IPython architecture:
a unified view of computational research, from interactive explo-
ration to communication and publication.” in AGU Fall Meeting
Abstracts, 2014.

[30] J. Nash, “Inference convergence algorithm in Julia,” 2016.
[Online]. Available: https://juliacomputing.com/blog/2016/04/
04/inference-convergence.html

[31] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Int. Symp. Workload Characterization, 2009, pp. 44–54.

[32] J. R. Mashey, “War of the benchmark means: time for a truce,” ACM
SIGARCH Computer Architecture News, vol. 32, no. 4, 2004.

[33] D. M. Ciemiewicz, “What do you ‘mean’? Revisiting statistics
for web response time measurements,” in Proc. Conf. Computer
Measurement Group, 2001, pp. 385–396.

[34] M. Giordano, “Uncertainty propagation with functionally corre-
lated quantities,” arXiv preprint arXiv:1610.08716, 2016.

[35] M. Innes, “CuArrays.jl: CUDA-accelerated arrays for Julia,” 2017.
[Online]. Available: https://github.com/FluxML/CuArrays.jl

[36] S. G. Johnson. (2017) More dots: Syntactic loop fusion in Julia.
[Online]. Available: https://julialang.org/blog/2017/01/moredots

[37] J. Luitjens. (2015) Faster parallel reductions on Kepler.
[Online]. Available: https://devblogs.nvidia.com/parallelforall/
faster-parallel-reductions-kepler/

[38] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover,
“Accelerating Haskell array codes with multicore GPUs,” in Proc.
6th Workshop Declarative Aspects of Multicore Programming. ACM,
2011, pp. 3–14.

[39] A. Rubinsteyn et al., “Parakeet: A just-in-time parallel accelerator
for Python,” in USENIX Conf. Hot Topics in Parallelism, 2012.

[40] C. Dubach et al., “Compiling a high-level language for GPUs,”
ACM SIGPLAN Notices, vol. 47, no. 6, pp. 1–12, 2012.

[41] A. Stromme et al., “Chestnut: A GPU programming language for
non-experts,” in Proc. Int. Workshop on Programming Models and
Applications for Multicores and Manycores, 2012.

[42] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and
W. Eckert, “HIPAcc: A domain-specific language and compiler
for image processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 1, pp. 210–224, 2016.

[43] P. C. Pratt-Szeliga et al., “Rootbeer: Seamlessly using GPUs from
Java,” in Int. Conf. High Performance Computing and Communication,
2012, pp. 375–380.

[44] J. Clarkson, C. Kotselidis, G. Brown, and M. Luján, “Boosting Java
performance using GPGPUs,” arXiv preprint arXiv:1508.06791, 2015.

[45] N. Solntseff and A. Yezerski, “A survey of extensible programming
languages,” Annual review in automatic programming, vol. 7, 1974.

[46] E. Holk et al., “GPU programming in Rust: Implementing high-level
abstractions in a systems-level language,” in Parallel and Distributed
Processing Symp. Workshops & PhD Forum, 2013.

Tim Besard is a PhD student at Ghent University
in the Computer Systems Lab. He obtained his
MSc in Computer Engineering from University
College Ghent in 2011. His research focuses on
compilation techniques of high-level languages
for GPUs.

Christophe Foket is a post-doctoral researcher
at Ghent University in the Computer Systems
Lab. He obtained his MSc and PhD degrees
in Computer Science from Ghent University’s
Faculty of Engineering in 2009 and 2015. His
research focuses on compilation techniques of
high-level languages for GPUs.

Bjorn De Sutter is associate professor at Ghent
University in the Computer Systems Lab. He
obtained his MSc and PhD degrees in Com-
puter Science from Ghent University’s Faculty
of Engineering in 1997 and 2002. His research
focuses on the use of compiler techniques to
aid programmers with non-functional aspects of
their software, such as performance, code size,
reliability, and software protection.

https://developer.nvidia.com/thrust
https://developer.nvidia.com/cublas
https://docs.anaconda.com/accelerate/
https://github.com/JuliaGPU/CUBLAS.jl/
https://devblogs.nvidia.com/parallelforall/drop-in-acceleration-gnu-octave/
https://devblogs.nvidia.com/parallelforall/drop-in-acceleration-gnu-octave/
https://juliacomputing.com/blog/2016/04/04/inference-convergence.html
https://juliacomputing.com/blog/2016/04/04/inference-convergence.html
https://github.com/FluxML/CuArrays.jl
https://julialang.org/blog/2017/01/moredots
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

	Introduction
	Vision
	Background
	GPU Accelerators
	Julia Programming Language

	Effective Extensible Programming
	Front-end IR Interfaces
	Back-end IR Interfaces

	CUDA Language Implementation
	Standard Library
	Pointers with Address Spaces
	NVIDIA Device Library

	GPU Compiler
	CUDA API Wrapper
	Run-time System

	Evaluation
	Experimental Set-up
	JIT Compiler Performance
	Code Generation
	Kernel Launch Overhead

	Low-level Kernel Programming
	Lines of Code
	Kernel Performance

	High-level GPU Programming

	Related Work
	Conclusion and Future Work
	References
	Biographies
	Tim Besard
	Christophe Foket
	Bjorn De Sutter

