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Introduction

® Fluctuations always existing in dynamical systems even at steady state-conditions:

LGS Conceptual illustration of the possible time-
| fl dependence of a measured signal from a
“l f" dynamical system

Lt | X (r,t) = X, (x,) 4+ 6 (r, 1)
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® Fluctuations always existing in dynamical systems even at steady state-conditions:

Introduction

al (AU)

Sign

i Conceptual illustration of the possible time-
| fl dependence of a measured signal from a

dynamical system

” " ,: || _ X(r,t)= X, (rt)

» Fluctuations carrying some valuable information about the system dynamics

fluctuations
or “noise”
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Introduction

® Fluctuations could be used for “diagnostics”, i.e.:
— Early detection of anomalies
— Estimation of dynamical system characteristics

... even if the system is operating at steady-state conditions

6¢(r,w) “ G(r, rp,w)

6P(rp,w)

A

System transfer function
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Noise diagnhostics In huclear reactors

® Neutron detectors present both in-core and ex-core:

Ex-core neutron detectors —

>Advantage: “sense” perturbations even far away from the perturbations

>Disadvantage: western-type reactors do not always contain many in-core neutron
detectors
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Noise diagnhostics In huclear reactors

® Neutron noise diagnostics requires establishing relationships between neutron
detectors and possible perturbations

> Could be done using the neutron transport equation (Boltzmann equation)

> Simpler formalisms usually used for modelling nuclear reactor cores, such as the multi-
group diffusion approximation
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Noise diagnhostics In huclear reactors

® Procedure to solve the system of equations for noise applications:
— Splitting between mean values and fluctuations
— Linear theory because of the smallness of the fluctuations

— Assuming stationarity, use of frequency-domain
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Early development in noise analysis

® Oscillator experiments in the Clinton Pile at ORNL, USA

> Response in neutron flux corresponding to a local (but stationary) excitation of the
system deviating from point-kinetics: local component of the neutron noise (1949)
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Early development in noise analysis

® Detection of excessive vibrations of control rods in the Oak Ridge Research Reactor
and the High Flux Isotope Reactor (1971)

> Noise analysis was born

® First applications in commercial reactors:
— Core-barrel vibrations at the Palisades plant, USA (1975)
— Estimation of in-core coolant velocity in German BWRs (1979)

® Many other practical applications of noise analysis, generally aimed at detecting and
localizing anomalies
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Modelling of the induced neutron noise

® Induced neutron noise depending on:
— Reactor transfer function
— Noise source

> Importance of the noise source representation for diagnostic purposes
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“Absorber of variable strength”
type of noise source

® “Absorber of variable strength” = localized perturbation of which its amplitude varies in
time at a fixed position

® Induced neutron noise given by the following balance equation (2-group diffusion

theory):
7 005] = e 2 )
=, (r)6%, (r,w)+ o, (r) ;;: Eizg + () ZZ;Z Ei zg
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“Absorber of variable strength”
type of noise source

® In case of a point-like source:

0

5(1‘—1") 2
.

Gg 1(r,r’,w)

/
GgH2 (r,r ,w)

v, [D(r)v,]+3,, (rw)|x _

or

0

§(r—1')

> Green’s function
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“Absorber of variable strength”
type of noise source

» General solution to the original problem can be given by convolution integrals

6, (r,w) B f[GHl (r,r’,w)Sl (r’,w)—l—G%l (r,r’,w>52 (r’,w)] d’r’
69, (r,w) B f[GH2 (r,r’,w)S1 (r’,w)—FGQHQ (r,r’,w)5’2 (r’,w)]d?’r’
with
S, (r’,w) B / 0%, | (r’,w) NP8 (r’,w)
S, (r’,w) = ¢ <r/>52r (r ’w) +Q, (r/> 02, (r’,w> o <r ’w) 6v2j:,2 (r’,w>
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“Absorber of variable strength”
type of noise source

® Example of a localized “absorber of variable strength” @ 1kHz

Tirne= 0.00000 5

@/Q/

i

© C. Demaziere (Chalmers University of Technology)

o

Axial height [cm]

350

300

Mo
[£5)
=

P
=
[=]

=
o
=

-
=
=

50

Time= 0.00000 s

_______________________________

________________________________

________________________________

Time= 0.00000 s
T T

-0.01-0.005 0 0.005 0.01
Thermal neutron noise [AU]



CHALMERS DREAM

“Vibrating absorber” type of noise source

® Lateral movement of the absorber represented as (weak absorber):

65, (r,t) = 10z - zo)[(5 (rxy —r —e (t)) ~6(r, - rpjxy)}

® A first-order Taylor expansion of the noise source would give for the induced neutron
noise (in the frequency-domain):

3, o.6) = —re()-Bo, .
with
&pg (r,w) = vrp,zyé (r, rp’xy,w>

2—g
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“Vibrating absorber” type of noise source

® Example of a vibrating control rod @ 0.2 Hz

Tirne= D.D..D.S 02
| nEn 0.05

-0 - /Q/ (2-D calculations)
20 ) I ﬁ

© C. Demaziere (Chalmers University of Technology)
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AXially-travelling perturbations

® Noise source represented in the time-domain as:

o (r, t) =0x (:13, Y, 2, t)

0, if (z,y) == (xo,yo)
— | 0, if (a:,y):(xo,yo) and z < z,
Z—2

Ty Yy Zgst — - 0], if (x,y):(xo,yo) and 2z > z,

0>

rem
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AXially-travelling perturbations

® Noise source represented in the frequency-domain as:

o (r, w) =0y (:1:, Y, 2, w)

0, if (x,y) == (:L'O,yo)
— | 0, if (x,y) = (:co,yo) and z < z,

z'w(z—zo)

o (xo,yo,zo,w)exp , if (x,y) = (xo,yo) and z > 2,

v
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AXilally-travelling perturbations

® Example of a travelling perturbation @ 1Hz

Time=0.00 s Time=0.00s
T

Time=0.00 5

Axial height [om]

© C. Demaziere (Chalmers University of Technology)
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Fuel assembly vibrations

® Different possible axial vibration modes for fuel assemblies:

Cantilevered beam

Simply supported
on both sides

Cantilevered beam
and simply
supported

Axial shape of the
displacement

d(z,t) in arbitrary
units as a function

of the relative core
elevation z

first mode in blue,
second mode in
orange

first mode in blue,
second mode in
orange

Oscillation
frequency

Ca.06-12Hz

Ca. 0.8 -4 Hz for
the first mode

Ca. 4 — 10 Hz for
the second mode

Ca. 0.8 —4 Hz for
the first mode

Ca. 5- 10 Hz for
the second mode
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Fuel assembly vibrations

® Fuel assembly vibrations described at the pin level:
— Can be modelled as “vibrating absorbers”
— Can be modelled as “absorbers of variable strength” !

® Fuel assembly vibrations at the nodal level can only be modelled as “absorber of
variable strength” !
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Fuel assembly vibrations

® Lateral vibrations represented as:
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Fuel assembly vibrations

® In e.qg. the x-direction, one has:

Region | Region Il Region Il
I I I —

a b T

with static cross-section between Regions Il and Il given as:

A [1 ~0(z - b)} .. +0(z—b)S

a,g, 11T
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Fuel assembly vibrations

® For atime-dependent boundary:
b(zt)=b, +¢,(2t)

one obtains after a first-order Taylor expansion in the time-domain:
Z:g (:1:7 z,t)

:p—@@—%ﬂz +@@—%pkwf+%@@5@_%ﬂgwﬂ_z

a,g,11 a,g, 111

> Noise source in the frequency-domain:
622’9 (SI;’, z,w) =€ (z,w)é(w — bo)[Emg’H — Ea’gm}

> Point-like source!
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Pendular core barrel vibrations

® Core barrel vibrations can be seen as a relative displacement of the active core with

respect to the reflector: e, (21) d(z1)
N2
> ex(z;t)
* *
% % x x X X X
% % % % %
% X
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Pendular core barrel vibrations

> Same technique as for fuel assembly vibrations can be used:

D (x, z) =h (z) ;6@: — xn>:2avg’x; — Za,g’x::

5Zi7g (y,z) = h(z)Zé(y — ym) :Ea,g,ym — Za,g,y;;:

m

> Point-like source!



CHALMERS DREAM

Estimation of the induced neutron noise

® Generically, the induced neutron noise is given as (e.g. in 2-group theory):

60, (r,w) B -L”G’Hl (r,r’,w)Sl (r’,w) +G, (r,r’,w)52 (r’,w)] dr’
3, 1] 6], () 6 )5,
with
S, (1, 0x (1, vy, (1,
s, Eiz; = (<)%, () + 0 () s, Eiz; &) 5:2; Eii;
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Estimation of the induced neutron noise

... Or given as:
56, (rs) = —re()- B, (v
with

&pg (r,w>: Vr% G (r,r w)

w2770 p.ay’

> In essence, only the Green’s function is needed



CHALMERS DREAM

Estimation of the induced neutron noise

® The Green’s function can be estimated:
— Either deterministically
® Using diffusion theory

G (r,r’,w) B 6(r—r') 0
[Vr : [D (r)vr} + Edyn (r,w)] X GZ_; (r,r’,w) — 0 N or 6(1‘ B r’) g
® Using transport theory
0V, 45, (row)|x| () jo(r - r’)g(ﬂ -, X

G (r, Q.r', Q’,w)

g—2
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Estimation of the induced neutron noise

® Comparisons diffusion/transport (discrete ordinates) for perturbations in capture cross-
sections in both energy groups at 1 Hz (OECD/NEA C3G2 benchmark configuration)
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© H. Yi and A. Mylonakis (Chalmers University of Technology)
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Estimation of the induced neutron noise

® The Green’s function can also be estimated:

— probabilistically using an equivalence to subcritical problems (demonstrated
hereafter on diffusion theory in 2 energy groups):

66, (r,w)| |80 (r,w) N 5" (r,w)
5, (r,w)| |80 (rw)| |64y (rw)




CHALMERS DREAM

Estimation of the induced neutron noise

— Although the whole problem is solution of:
09, (r,w) B S, (r,w)

{v-[p(x)V]+3,, (rw)}x l% ARl
The coupling to the imaginary (real, respectively) part of the neutron noise when

solving for the real (imaginary, respectively) balance equations is treated as
additional noise sources

Slml or i (r,w) Re or Im {51 (r,w)}
S;eal orm (I‘,w) Re or Im {S1 (r,w)}

> Induced neutron noise;
(5gbfeal or i (r,w) f G, (r,r’,w)S{eal or i (r’,w) +G, (r, r’,w)Sml or i (r’,w) d’r’
real or 1m — [~ / real or im / . 7
JoX (r,w) f - (r,r ,w)Sle ' (r ,w) +




CHALMERS DREAM

Estimation of the induced neutron noise

® Comparisons diffusion/transport (Monte Carlo) for perturbations in all cross-sections in
both energy groups at 1 Hz (infinite system of 11 pins with central perturbation)
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Conclusions and outlook

® Many successful past applications of noise analysis for core diagnostics

® Most of the past applications use simple models of the reactor transfer function or no
model at all

® Taking full advantage of noise analysis requires:
— A correct modelling of the noise source
— The estimation of the reactor transfer function
— Its inversion
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Conclusions and outlook

® CORTEX: CORe monitoring Technigues and Experimental validation and
demonstration — EU funding.

S g EE—— N g—

Core rnomtormg technlques and
experimental validation and demonstration

— Chalmers coordinating the project
— 20 partners (18 from EU + 1 from Japan + 1 from USA)

http://cortex-h2020.eu

- This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
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Conclusions and outlook

® Method to be developed in CORTEX:

s
— ‘3

SIGNAL PROCESSING \

MACHINE LEARNING
USING SIMULATIONS
AS TRAINING DATA

- This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
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Conclusions and outlook

® CORTEX aims:
— Developing high fidelity tools for simulating stationary fluctuations
— Validating those tools against experiments to be performed at research reactors

KR-2

Tl! DRESDEN

m—rhe

CROCUS reactor @EPFL, Switzerland AKR-2 reactor @TU Dresden, Germany

- This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
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Conclusions and outlook

® CORTEX aims:
— Developing high fidelity tools for simulating stationary fluctuations
— Validating those tools against experiments to be performed at research reactors

— Developing advanced signal processing and machine learning techniques (to be
combined with the simulation tools)

— Demonstrating the proposed methods for both on-line and off-line core diagnostics
and monitoring

- This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
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Conclusions and outlook

® Core diagnostics leading to improved reactor safety and becoming increasingly
important

® CORTEX project potentially having a large impact if successful
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“Vibrating absorber” type of noise source

® Lateral movement of the absorber represented as (weak absorber):
52@72 (r, t) = 0 (z — ZO>[(5(I‘W —r —E€ (t)) — 6(1‘@ — rmy)
® A first-order Taylor expansion in the time-domain gives:
62@2 (r,t) = —~0 (z — z())e(t) 8 (rxy — rp)xy)

and in the frequency-domain:
52@2 (r,w) = —7«9(2 — zo)e<w) - 5'(1‘@ — rmy)
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“Vibrating absorber” type of noise source

» Induced neutron noise:
6q§ rw fG rrw rwd?’r’:ffGﬁ r.r zw (r zw)erxy’dz'
:—fye fG rr wé’(r/—r )dey’
with

(r r w) fG (r | w) 2z —zo)(bzO (rxy/,z’)dz’

> Integrating by parts gives:
56, (r0) = e ) S, (v

with &pg (r,w) = vrp,zy GA2_>9 (I‘, rp,xy’w)



CHALMERS DREAM

Fuel assembly vibrations

® Lateral vibrations represented as:
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Fuel assembly vibrations

® In e.qg. the x-direction, one has:

Region | Region Il Region Il
I I I —

a b T

with static cross-section given as:

Z:g (:1:) = [1 — @(:1: — b)} Za’gﬂ + © (:z: — b)Za’gM
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Fuel assembly vibrations

® For atime-dependent boundary:
b(zt)=b, +¢,(2t)

one obtains after a first-order Taylor expansion in the time-domain:
Z:g (:1:7 z,t)

:p—@@—%ﬂz +@@—%pkwf+%@@5@_%ﬂgwﬂ_z

a,g,11 a,g, 111

> Noise source in the frequency-domain:
622’9 (SI;’, z,w) =€ (z,w)é(w — bo)[Emg’H — Ea’gm}

> Point-like source!
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Fuel assembly vibrations

® Factorizing the noise source as:

(ne)ze () and o (aw)=c (u)nl
leads to
0, (maw)= e ()65, (0.2) and &% (y20)=¢ (w)62 (12)
with
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Estimation of the induced neutron noise

— Although the whole problem is solution of:
09, (r,w) B S, (r,w)

{v-[p(x)V]+3,, (rw)}x l% ARl
The coupling to the imaginary (real, respectively) part of the neutron noise when

solving for the real (imaginary, respectively) balance equations is treated as
additional noise sources

Slml or i (r,w) Re or Im {51 (r,w)}
S;eal orm (I‘,w) Re or Im {S1 (r,w)}

> Induced neutron noise;
(5gbfeal or i (r,w) f G, (r,r’,w)S{eal or i (r’,w) +G, (r, r’,w)Sml or i (r’,w) d’r’
real or 1m — [~ / real or im / . 7
JoX (r,w) f - (r,r ,w)Sle ' (r ,w) +
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Estimation of the induced neutron noise

with the modified Green'’s function solution of;

I/ZMO (r) A+ W’ (1 — ﬂ) VZMO (r) A+ W’ (1 — 5)

| Vr . Dl,(é)(r) i 0(r> vr n _za,l,o (I'> — Er)o (I‘) + k@ff \2 4 W k@ff \2 + T [ ggﬂl (:Z;’i;
DL e 0 alnr
o (r — r’) 0
T 0 o (S(r — r’)
g=1 9=2




CHALMERS DREAM

Estimation of the induced neutron noise

and with the modified noise sources defined as:

L v 2510 (r) wBA Vg (r) wBA |
Slreal (I‘,Cd) _ Re {Sl (r,w)} N _U_l o keff W2 + )2 - keff W 4 )2 y Im {5¢1 (I’, w)}
S ! (r,w) Re {51 (r,w)} 0 W Im {6@ (r,w)}
'U2

W V2 (r) wBA V20 (r> wBA |

| keff Wt + N\ k@ Wt + M\

0 =
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