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Abstract 

In bimodal ridesharing, a private on-demand mobility service operator offers to drop off a passenger at a transit 

station, where the passenger uses the transit network to get to another transit station, and the service operator 

guarantees picking up the passenger to drop them off at the final destination. Such collaborations with public 

transport agencies present a huge potential to increase the ridership. However, most existing studies on dynamic 

dial-a-ride/ridesharing mainly focus on mono-modal cases only. We consider dynamic bimodal ridesharing 

problems where real-time information is available to anticipate future demand. A new non-myopic vehicle 

dispatching and routing policy based on queueing-theoretical approach is proposed and integrated with a non-

myopic idle vehicle repositioning strategy to solve the problem. Several experiments are conducted to test the 

effectiveness of this integrated solution method and measure the benefit of bimodal cooperation. The proposed 

model and solution algorithm provides useful tools for real-time operating policy design of shared mobility.       
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1. Introduction 

Collaborations between public transport agencies and private transport operators present a huge potential for 

leveraging the obstacles of using mobility-on-demand (MoD) services as suggested by the report (Murphy and 

Feigon (2016). Collaboration can be achieved by having the private service operator borrow the coexisting transit 

service’s capacity to lighten the operating costs of its fleet of vehicles, as shown in Fig. 1. For example, when a 

passenger makes a request to a private service operator to be picked up from the “origin” to be dropped off at the 

“destination”, the operator may choose to offer a bundled service option. Under this option, a vehicle would be 

dispatched to pick up the passenger and drop them off at an entry station in a transit system, where they would 

take it to get to an agreed upon exit station. Upon arrival, another vehicle would pick them up and drop them off 

at the final destination. It is a win-win strategy. The passenger gets a seamless service option in which a single 

fare is paid, likely at a much more discounted rate than if they were dropped off door-to-door by the operator 

(especially if the distance is far enough and well-served by an existing transit system). The transit system gets 

higher ridership and can serve riders that may typically be discouraged by the high last mile access costs. Lastly, 

the operator saves on operating costs for transporting along a path that is already well served by existing transit 

system capacity. 

 

 
Fig. 1 Illustration of bimodal ridesharing in collaboration with a coexisting transit system 

 

The collaborative system described does not currently exist as an option from private operators yet. However, 

collaborative partnerships between MoD services and mass transit systems are increasing in number particularly 

to address the last mile transit problem (Djavadian and Chow, 2017; Wang and Odoni, 2016). These initiatives 

suggest such partnerships can provide better connectivity and improve the efficiency and flexibility of the 

coexisting fixed-route transit service. Recently, multimodal ridesharing problems received increasing interests by 

considering vehicle operations policy design with collaboration of public transport services (Cangialosi et al., 

2016; Liaw et al., 1996; Ma, 2017; Masson et al., 2014). In this perspective, Liaw et al. (1996) considered a 

bimodal dial-a-ride problem and proposed a linear mixed integer programming model to find optimal vehicle 

routes and schedules for paratransit service. Cangialosi et al. (2016) proposed a mixed integer linear programming 

model to find multimodal trips which minimize a cost function of riders’ desired departure and arrival time 

deviation, number of intermadal transfers and number of matches between riders and drivers. Masson et al. (2014) 

considered a static dial-a-ride problem with the presence of a set of transfer points. They proposed an adaptive 

large neighborhood search metaheuristic to find approximate solutions. However, none of these studies anticipated 

future states of vehicles and future demand to desgin anticipative online vehicle dispatching and routing policy. 

For this issue, some authors proposed non-myopic vehcile dispathing using real-time information to anticipate 

future requests in vehicle dispatching and routing decisions (Bent and Van Hentenryck, 2004; Hyytiä et al., 2012; 

Ichoua et al., 2006; Sayarshad and Chow, 2015; Thomas, 2007, among others).        

 

Another important issue is related to the idle vehicle relocation problem as it presents a considerable running cost 

for shared mobility systems (Sayarshad and Chow, 2017; Vogel, 2016). This issue has drawn increasing attention 

in recent years for shared mobility systems (Bruglieri et al., 2017; Nourinejad et al., 2015; Santos and Correia, 

2015; Sayarshad and Chow, 2017). The idle vehicle relocation problem can be divided into two vast approaches 

according to whether or not the system anticipates future states for their relocation decision policy design. If the 

relocation decision policy anticipates future requests to look ahead, the policy is called non-myopic approach. In 

this perspective, Sayarshad and Chow (2017) proposed a non-myopic idle vehicle relocation policy based on a 

queueing-theoretical approach for real-time optimal idle vehicle relocation. The problem is formulated as a mixed 

integer linear programming (MILP) problem for which a Lagrangian decomposition (LD) heuristic is proposed. 

The result shows the non-myopic approach can significantly decrease system operating costs in comparison to 

myopic approaches using New York taxi data. Similarly, Zhang and Pavone (2016) proposed a queueing-



theoretical model to rebalance idle vehicles for autonomous MOD systems in a network.  

 

This is the first study to consider non-myopic dynamic dispatch that can assign two vehicles to a passenger by 

dropping the passenger off at a transit system. This is also the first study to integrate non-myopic dispatch and idle 

vehicle repositioning in a bimodal network. We study these two methodological contributions using computational 

experiments to provide insights on how to select algorithm parameters to obtain effective results. The rest of paper 

is organized as follows. Section 2 presents the methodology for solving non-myopic bimodal dynamic dial-a-ride 

problem. By extending classical mono-modal dial-a-ride problems, we consider possible bimodal paths using both 

dial-a-ride operating vehicles and transit services. A non-myopic queueing-theoretical based vehicle dispatching 

method is applied to take into account additional delays of on-board passengers. In Section 3, we propose a non-

myopic idle vehicle rebalancing model to optimize idle vehicle relocation decision by considering delay in the 

system. Section 4 reports the numerical results of the proposed methods. Several scenarios related to myopic/non-

myopic vehicle dispatching policy, variation of demand and idle vehicle relocation policy are tested. Finally, we 

conclude this study and pave the way to future extensions.   

2. Non-myopic bimodal dynamic vehicle dispatching and routing policy   

We consider a bimodal dynamic dial-a-ride problem with the presence of one operator for dial-a-ride services. The 

problem is modeled on a complete graph 𝐺(𝑁, 𝐸), where 𝑁 is a set of nodes and 𝐸 is a set of links. Each node 

represents the location of a pick-up/drop-off point of ride requests, assumed randomly distributed. Travel time 𝑡𝑖𝑗 

is shortest path travel time from node i to node j. For each node 𝑖 ∈ 𝑁, we assume request arrivals follow a Poisson 

process with arrival rate 𝜆𝑖. Let  𝜇 denote the service rate of vehicles, representing number of served trip requests 

per time unit. Note that 𝜇 depends on operator’s dispatching and routing policy, arrival rate of customers and 

vehicles’ positions, etc. Both arrival and service rates may be updated over time in an online system. The operation 

of the system is assumed as follows. 

 The operator uses a fleet of homogeneous capacitated vehicles 𝑉 = {𝑣1, 𝑣2, … , 𝑣|𝑉|} to serve ride requests. A 

dispatching center makes decisions according to its operating policy for vehicle dispatching and route 

planning.  

 Following past studied (Hyytiä et al., 2012; Sayarshad and Chow, 2015), we assume there is no time window 

constraints associated to the requests. All customers’ requests need to be served. One can either extend the 

proposed method by including such constraints (e.g. maximum waiting time or delay of passengers, see 

Alonso-Mora et al. (2017)) to take into account customer inconvenience or demand elasticity or assume that 

the demand arrival rate would equilibrate accordingly.     

 We consider a generalized bimodal dial-a-ride service in which an operator determines in real-time trip 

requests to be served by using operating vehicles only (direct trip) or by using both operating vehicles (as last 

mile feeders) and Mass Rapid Transit (MRT) services. For the latter case, we assume there are at most two 

intermodal transfers for a customer’s origin-destination trip. No transfer is allowed between two different 

vehicles (Liaw et al., 1996). In this case, a customer initial request is then divided into three segments: a pre-

transit trip (from origins to an entry station of MRT system), in-transit trip (from an entry stations to an exit 

stations), and post-transit trip (from an exit station to a customer’s destination). Each pre-transit trip or post- 

transit trip is supported by one individual vehicle. Travel time estimation of in-transit trips can be based on 

the headway information of MRT service lines. For simplicity, the capacity constraint of MRT vehicles is not 

considered in this study.  

The integrated algorithm and new contributions made are highlighted in Fig. 2. The strategy is initiated by three 

different events. Each time a new passenger makes a request, the system runs a nonmyopic dynamic dispatch that 

considers the option of loading passengers onto the transit system, using a proposed algorithm defined as P1.  If 

the passenger is routed to a transit system, then when that passenger arrives at the exit station the service will run 

another dispatch algorithm (without the option of re-assigning to transit station), which is essentially the dynamic 

dispatch algorithm from Hyytiä et al. (2012). Vehicles that have completed their service become idle. Initiate P2 

at each idle vehicle relocation interval (e.g. 5 minutes) to determine an optimal zone to assign idle vehicles. The 

nonmyopic idle vehicle repositioning is based on the model proposed in Sayarshad and Chow (2017). 

4.1. P1: Non-myopic vehicle dispatching policy on a bimodal transport network 

The considered problem is a bimodal dynamic dial-a-ride problem in the presence of a MRT network. When a new 

request arrives, a decision needs to be made by considering passengers’ origin-destination travel times over two 

options: a direct trip served by an operating vehicle or a bimodal trip served by using vehicles and the MRT system. 



 

Fig. 2 Integrated strategy with functional components (rectangles) and initiating events (gray rounded rectangles) 

We assume full compliance of passengers for the proposed routing policy of the operator. Given the pick-up and 

drop-off locations of requests, we propose a new non-myopic vehicle dispatching and routing approach derived 

from Hyytiä et al. (2012) for solving the dynamic DARP problem. In the new model, we also consider the option 

of routing to a transit station. Before explaining the new model, we provide an overview of the original model. 

In the dynamic DARP, vehicles’ dispatching and routing is updated in real-time to respond new arrival requests. 

To anticipate future states of the system and make optimal routing decision, Markov decision process provides a 

theoretical framework to model DARP and determines optimal operating policy under stochastic demand (Howard, 

2007). Let 𝑥𝑡
𝑣 be the state of vehicle 𝑣 at time 𝑡, characterized by the remaining route assigned to it. The state of 

all vehicles constitutes the state of the system at time t, denoted as 𝑥𝑡. The optimal assignment of a new arrival 

request to a vehicle can be formulated as the Bellman equation as follows (Howard, 2007; Sayarshad and Chow, 

2015):  

𝑉𝑡(𝑎𝑡) = min
𝑥𝑡

(𝐶𝑡(𝑎𝑡 , 𝑥𝑡) + 𝛼𝐸[𝑉𝑡+1(𝑥𝑡+1)|𝑥𝑡])                                                                                                   (1) 

where 𝑉𝑡 is the negative value of operating policy at time t. 𝐶𝑡 is the immediate cost of taking action 𝑎𝑡 under 

current state 𝑥𝑡. 𝐸[𝑉𝑡+1(𝑥𝑡+1)|𝑥𝑡] is the expected value of futre state 𝑥𝑡+1. 𝛼 is a discount coefficient. The difficulty 

is determining the exact expected value of future states necessities full knowledge of future states of the system. 

As it is not possible to enumerate all possible future states conditioned on all possible actions to obtain exact 

expected value of 𝑉𝑡+1(𝑥𝑡+1), several approximate methods have been proposed based on the approximate 

dynamic programming methods (Secomandi, 2001; Ulmer, 2017). However, these approximate methods tend to 

be limited to one or two step look-ahead (Sayarshad and Chow, 2015). Hyytiä et al. (2012) proposed an infinite 

horizon approximation of the expected value of future states of the system to solve the DARP. It has been shown 

the non-myopic vehicle dispatching and routing policy can effectively reduce overall operating cost and 

passengers’ riding time (Hyytiä et al., 2012; Sayarshad and Chow, 2015), although poor performances can also be 

observed in some cases (Chow and Sayarshad, 2016). The non-myopic vehicle dispatching policy is based on 

minimizing additional insertion cost of a new request, taking into account approximate delay over long-term time 

horizon (Hyytiä et al., 2012) in Eq. (2). 

 argmin𝑣 ,𝜉[𝑐(𝑣, 𝜉 ) − 𝑐 (𝑣, 𝜉′)]                                                            (2) 

where 𝜉′ is the current tour of vehicle 𝑣. 𝜉 is a new tour after inserting a new request. 𝑐(𝑣, 𝜉) is a cost function 

taking into account steady state delay in the system, defined as  Eq. (3). 

𝑐(𝑣, 𝜉) =  𝛾𝑇(𝑣, 𝜉) + (1 − 𝛾)[𝛽𝑇(𝑣, 𝜉)2 + ∑ 𝑌𝑝(𝑣 , 𝜉)𝑝∈𝑃𝑣
]                                                                 (3) 

where 𝑇(𝑣, 𝜉) is the length (measured in time) of tour 𝜉. 𝑌𝑝(𝑣 , 𝜉) is service time (waiting time plus in-vehicle 

travel time) for passenger 𝑝. 𝑇(𝑣, 𝜉) is related to system cost. ∑ 𝑌𝑝(𝑣 , 𝜉)𝑝∈𝑃𝑣
 is related to customers’ 

inconvenience.  𝛾 is a conversion coefficient between customer cost and system cost. 𝛽 is the degree of look-ahead 

parameter: when 𝛽 = 0, the methodology becomes purely myopic.  

We use the re-optimization-based TSPPD insertion algorithm (Mosheiov, 1994) to solve the pick-up and delivery 

problem for a new tour 𝑇(𝑣, 𝜉). This algorithm first finds a minimum-cost Hamiltonian tour for all drop-off 

locations of on-board customers, and then inserts pick-up locations one-by-one with cheapest cost in the 
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Hamiltonian tour by satisfying a set of constraints. The latter includes: a) a passenger’s pick-up point needs to be 

visited before its drop-off point (ordering constraint), b) number of passengers on board cannot exceed the capacity 

of vehicles. As we assume all passengers need to be served, there is no time window constraints associated with 

pick-up and drop-off times. The TSPPD algorithm first uses Christofides’s heuristic (Christofides, 1976) to find 

an approximate of TSP (Traveling Salesman Problem) tour. The obtained solution guarantees a worse case of 1.5 

times of cost of best tour. To improve the solution quality, a 2-opt local search (Croes, 1958) is applied. Note that 

one can apply the state-of-the-art heuristics to obtain better solutions for the DARP (Agatz et al., 2012; Parragh et 

al., 2010; Parragh and Schmid, 2013). Numerical studies showed using the non-myopic vehicle dispatching 

approach can effectively reduce total system operation cost and average passengers’ riding time (Hyytiä et al., 

2012; Sayarshad and Chow, 2015; Zhang and Pavone, 2016). 

The proposed non-myopic vehicle dispatching and routing algorithm for solving bimodal dynamic DARP is 

described in Table 1. The proposed method considers both non-myopic vehicle dispatching policy and non-myopic 

idle vehicle relocation policy to reduce overall system operating cost and passengers’ travel time in the system.    

Table 1 Bimodal non-myopic vehicle dispatching and routing algorithm 

1. Upon arrival of a new request 𝑛, update positions and service statuses of every vehicle from the time of previous request 𝑛 − 1 

2. Compute a fastest option for request n. Two options are considered: direct trip and bimodal trip. For direct trip, travel time between 

origin and destination of a request is considered. For bimodal option, we first determine k-nearest MRT stations to the origin and to 

the destination of a request. Travel time on a bimodal path sums up travel time from origin to entry station, waiting time at entry 

station, in-transit travel time, waiting time at exit station, and travel time from exit station to destination. The least bimodal travel 

time is the least travel time path connecting origin and destination using one k-nearest entry station and one k-nearest exit station.  

3. Update the drop-off point of request n if that request uses a bi-modal option 

4. For each vehicle, compute a new tour by inserting the request n by the TSPPD algorithm (Mosheiov, 1994). Assign the vehicle with 

the non-myopic policy (eq. (2) and (3)). 

5. Update 𝜉𝑛 as the new tour for that assigned vehicle, while keeping the other vehicles’ tours the same as before. 

6. Allocate idle vehicles based on the idle vehicle assignment policy (described later) for each relocation time interval (5 min.)   

3. P2: Idle vehicle relocation policy in M/M/k queueing systems 

Table 2 Notation for the idle vehicle relocation problem 

�̅� Number of zones 

𝜆𝑖 Arrival rate at zone i during last relocation epoch h-1, estimated by a three-step moving average method 

𝜇𝑗 Service rate at zone j during last relocation epoch h-1, estimated by a three-step moving average method  

𝑡𝑖𝑗 Travel time from zone 𝑖 to zone 𝑗 

𝑟𝑖𝑗 Relocation cost from zone 𝑖 to zone 𝑗 

𝐵   Number of total idle vehicles at the beginning of epoch h (index h is dropped) 

𝐶𝑗 Maximum possible number of idle vehicles at zone j   

𝑦𝑗 Number of idle vehicles at zone j at the beginning of relocation epoch h (index h is dropped) 

𝜃 A conversion scalar 

𝜌𝛼 Utilization rate constraints for a reliability level 𝛼 

Decision variable 

𝑊𝑖𝑗 Flow of idle vehicle relocation from zone i to zone j for relocation epoch h (index h is dropped) 

𝑋𝑖𝑗 Customers arrive at zone i served by idle vehicle at zone j if set as 1   

𝑌𝑗𝑚 m-th idle vehicle comes to serve customers located at zone j  

𝑆𝑖 Dummy variable representing the supply of idle vehicles from zone i 

𝐷𝑗 Dummy variable representing the demand of idle vehicles to zone j 

 

For idle vehicle relocation, we model the problem as a multiple server location problem under stochastic demand 

(Sayarshad and Chow, 2017). We aim to rebalance the locations of idle vehicles given stochastic demand such that 

total rebalancing operation cost, customers’ inconvenience (travel time) and queueing delay of customers are 

minimized. The idle vehicle rebalancing is executed at the beginning of each relocation time interval (e.g. 5 

minutes). Let us divide the entire service region 𝒜 into a number of zones. The objective is to determine flow of 

idle vehicles rebalancing from zone 𝑖 to 𝑗 for each relocation epoch. Note that for simplification of notation, we 



drop off relocation epoch index h since the problem is solved independently for each relocation epoch. The non-

myopic optimal idle vehicle relocation model is stated as follows.      

 

𝑍1 = 𝑚𝑖𝑛    ∑ ∑ 𝜆𝑖𝑡𝑖𝑗𝑋𝑖𝑗𝑗∈�̅�𝑖∈𝑁 + 𝜃 ∑ ∑ 𝑟𝑖𝑗𝑊𝑖𝑗𝑗∈𝑁𝑖∈�̅�                                                                                         (4) 

Subject to 

∑ 𝑋𝑖𝑗

𝑗∈𝑁

= 1, ∀𝑖 ∈ 𝑁 (5) 

𝑌𝑗𝑚 ≤ 𝑌𝑗,𝑚−1, ∀𝑗, 𝑚 = 2,3, … , 𝐶𝑗 (6) 

∑ 𝜆𝑖𝑋𝑖𝑗

𝑖∈𝑁

≤ 𝜇𝑗 [𝑌𝑗1𝜌𝛼𝑗1 + ∑ 𝑌𝑗𝑚(𝜌𝛼𝑗𝑚 − 𝜌𝛼𝑗,𝑚−1)

𝐶𝑗

𝑚=2

] , ∀𝑗 ∈ 𝑁 (7) 

𝑋𝑖𝑗 ≤ 𝑌𝑗1, ∀𝑖, 𝑗 ∈ 𝑁 (8) 

∑ ∑ 𝑌𝑗𝑚

𝐶𝑗

𝑚=1𝑗∈𝑁

= 𝐵   (9) 

∑ 𝑊𝑖𝑗

𝑗∈𝑁

= 𝑆𝑖  , ∀𝑖 ∈ 𝑁  (10) 

∑ 𝑊𝑖𝑗

𝑖∈𝑁

= 𝐷𝑗  , ∀𝑗 ∈ 𝑁 (11) 

𝑆𝑗 ≤ 𝑦𝑗 ,             ∀𝑗 ∈ 𝑁                                                                                                                                        (12) 

−𝐷𝑗 − 𝑆𝑗 − 𝑦𝑗 + ∑ 𝑌𝑗𝑚

𝐶𝑗

𝑚=1

≤ 0, ∀𝑗 ∈ 𝑁 (13) 

𝑋𝑖𝑗 ∈ {0,1} 
(14) 

𝑌𝑗𝑚 ∈ {0,1} (15) 

𝐷𝑗 , 𝑆𝑗 , 𝑊𝑖𝑗 ≥ 0 (16) 

 

The objective function minimizes total travel time from idle vehicle locations to demand locations and total idle 

vehicle relocation cost. Eq (5) describes customers at zone i can be served by one and only one idle vehicle. Eq. 

(6) is an order constraint which states (m-1)-th idle vehicle is relocated before m-th idle vehicle. Eq. (7) is a delay 

constraint for an idle vehicle representing when a customer arrives at an idle vehicle, there will be no more than b 

other customers waiting on a line with a probability more than service reliability 𝛼. The higher the value of 𝛼 is, 

the lower the queue delay for customers. Eq. (8) ensures the allocation of customers to only an idle vehicle. Eq. 

(9) ensures total available idle vehicles. Eq. (10) and (11) is the dummy variables representing the supply and 

demand of idle vehicle flows. Eq. (12) ensures initial available idle vehicles at node j must equal or greater than 

total relocated idle vehicles from j. Eq. (13) ensures total idle vehicle at node j after relocation must be equal or 

greater than total vehicles from j to serve customers. Eq. (14-16) are binary and non-negativity constraints. Note 

that given a user-defined reliability 𝛼, 𝜌𝛼𝑗𝑚 of Eq. (7) represents the coefficient of the utilization rate constraint 

for reliability rate 𝛼, m servers (idle vehicles) and b customers in a queue, determined exogenously by finding the 

root of the following equation (Marianov and Serra, 2002, 1998; Sayarshad and Chow, 2017): 

∑ ((𝑚 − 𝑘)𝑚! 𝑚𝑏 𝑘!⁄ )𝑚−1
𝑘=0 (1 𝜌𝑚+𝑏+1−𝑘⁄ ) ≥ 1 (1 − 𝛼)⁄           (17) 

 

The queue delay represents the non-myopic consideration, if we relax Eq. (7) the model becomes myopic.  

For comparison purpose, we consider three alternative policies to allocate idle vehicles. 

 Waiting policy: idle vehicles stay at their current positions until next customers arrive. 



 Busiest zone policy: idle vehicles move to the busiest zone center (i.e. with highest customer arrival rate in 

average) with a probability of receiving at least one customer at the busiest zone higher than a threshold 

(Larsen et al., 2004). The threshold is randomly selected within the range of (0.5,1]. Note that the coordinates 

of zone centers are calculated based on the center of gravity method (Thomas, 2007). 

 P2 

4. Computational experiments 

To test the effectiveness of the proposed strategy, we conduct a series of experiments on a test instance. The 

experiments are designed to validate the methodology, compare its performance against varying degrees of myopic 

strategies, and to evaluate the sensitivity of the strategy to different parameters. Note that we keep MRT system 

simple at the current stage without simulating the transit time table and vehicle runs. As a result, the passengers’ 

resulting wait times for next arrival train at the entry station is not taken into account.   

4.1. Test instance 

We consider a bounded region on a plan within a limited square (-10,-10)×(10,10), representing a 20 km × 20 km 

area shown in Fig. 3. The entire region is divided into 16 identical zones. Ride requests are assumed uniformly 

distributed in the region following Poisson process for customers’ arrivals with different scenarios. The 

dispatching center uses a fleet of capacitated vehicles for real-time dial-a-ride service requests. All vehicles are 

initiated at the center depot (0, 0). The fleet size is 40 vehicles. The maximum capacity of vehicle is 4 

passengers/vehicle. Vehicle speed is set as 36 km/hr. For transit system, a simple network with two transit lines 

interconnected via a central station, each line has 11 stations evenly spaced apart. We assume the speed of train is 

80 km/hr, and there is no capacity constraint of trains.  

 
Fig. 3 The test instance for bimodal dynamic dial-a-ride problem 

Two performance metrics are used to measure the performance of the proposed methodology: average travel length 

of vehicles (system operating cost) and average riding time per passenger (passengers’ inconvenience). The 

simulation period is set as 2 hours for all the experiments. The implementation is based by MATLAB using the 

discrete event simulation technique and the mixed-integer linear programming solver in the Optimization toolbox. 

The test data contains inter-arrival times of customers, x-y coordinates of pick-up and drop-off points of each 

request, and the coordinates of the transit stations. The test  instance is publicly available on the author’s open data 

library: https://github.com/BUILTNYU and https://github.com/MOBILITY-LISER. 

4.2. Experiment 1: influence of look-ahead parameter 𝛽 for the non-myopic vehicle dispatching policy 

Two policy parameters 𝛾 and 𝛽 influence the performance of non-myopic policy in Eq. (3). 𝛾 is a trade-off 

parameter to arbitrate by the operator between operating cost and customers’ inconvenience. 𝛽 is related to the 

degree of look-ahead in vehicle dispatching, which needs to be calibrated in order to find an adequate value (Hyytiä 

et al., 2012). Therefore, we set 𝛾 = 0.5 and focus on the test of the influence of 𝛽 on system performance. We set 

four sets of data points of 𝛽 as [1:10]*0.03268, [1:10]* 0.003049, [1:10]*0.0003198, and [1:10]*0.00003153. Note 

that the reference value 0.03268 is the inverse of mean vehicle travel length. The result in Fig. 4 shows non-myopic 

vehicle dispatching policy with non-zero 𝛽 value can effectively improve the system performance.  

https://github.com/MOBILITY-LISER/


4.3.     Experiment 2: Influence of policy parameter 𝜃 on the performance of idle vehicle relocation 

We test the influence of idle vehicle relocation policy parameter 𝜃 (Eq. (4)) on the system performance for arrival 

intensities of 5/12 and 10/12 customers/minute, respectively. The data points for 𝜃 are set from 0 to 1 with an 

interval of 0.1. The result in Fig. 5 indicates using a small value (0.1 or 0.2) of 𝜃 has better performance.    

 
Fig. 4 Influence of policy parameter 𝛽 on the performance of the system with respect to different customer arrival intensity 

 

 
Fig. 5 Influence of policy parameter 𝜃 on the performance of idle vehicle relocation  

4.4. Experiment 3: Influence of server utilization rate coefficient 𝜌𝛼 on the performance of the system 

We test the influence of server utilization constraint coefficient ρα𝑗𝑚   on the performance of non-myopic idle 

vehicle relocation. 10 data points of 𝜌𝛼𝑗𝑚 are tested: 1.(𝜌0.05,𝑗,40, 𝑏 = 0); 2.(𝜌0.05,𝑗,40, 𝑏 = 2); 3.(𝜌0.25,𝑗,40, 𝑏 = 0); 

4.(𝜌0.25,𝑗,40, 𝑏 = 2); 5.(𝜌0.5,𝑗,40, 𝑏 = 0); 6.(𝜌0.5,𝑗,40, 𝑏 = 2); 7.(𝜌0.75,𝑗,40, 𝑏 = 0); 8.(𝜌0.75,𝑗,40, 𝑏 = 2); 

9.(𝜌0.95,𝑗,40, 𝑏 = 0); 10.(𝜌0.95,𝑗,40, 𝑏 = 2). We test four arrival intensities as 5/12, 10/12, 20/12, and 40/12 

customers/minute. The idle vehicle relocation policy parameter 𝜃 is set as 0.2 based on the result obtained in 

Section 4.3. The result in Fig. 6 shows that using (𝜌0.25,𝑗,40 with 𝑏 = 2) (label ‘4’ in the figure) has best system 

performance for non-myopic idle vehicle relocation for three scenarios 𝜆 = 10/12, 20/12 and 40/12. For 𝜆 =
5/12, 𝜌0.25,𝑗,40 with 𝑏 = 2 has very close performance as the best performance (𝜌0.05,𝑗,40 with b=2). Therefore, 

we retain 𝜌0.25,𝑗,40 with 𝑏 = 2 to set up Eq. (7) for non-myopic idle vehicle relocation for the experiment 4.  

4.5. Experiment 4: Influence of different vehicle dispatching and idle vehicle relocation policy on the system 

performance 

Finally, we evaluate the influence of different vehicle dispatching policy and idle vehicle relocation policy on the 

system performance. Five scenarios are tested as follows: 1. Mono-modal operating policy: using operating 



vehicles only, no collaboration with transit services; 2. Bimodal operating policy without idle vehicle relocation 

policy: we use the bimodal non-myopic vehicle dispatching and routing algorithm (Table 1) without idle vehicle 

 
Fig. 6 Influence of 𝜌𝛼𝑗𝑚 on the performance of the system with respect to different customer arrival intensity 

relocation. 3. Bimodal operating policy with busiest zone idle vehicle relocation policy; 4. Bimodal operating 

policy with myopic idle vehicle relocation policy: we relax the queuing delay constraint (Eq. 7) for idle vehicle 

relocation; 5. Bimodal operating policy with non-myopic idle vehicle relocation policy. We use non-myopic idle 

vehicle relocation model to rebalance idle vehicles. The policy parameter 𝜌𝛼𝑗𝑚 is obtained by finding the root of 

Eq. (17) with 𝛼 = 0.25 and b=2 for m=1,…,40 (fleet size in the experiments). The other parameters are set as 

follows:𝛾 = 0.5, 𝛽 is set between 0.000737 and 0.0152 for different arrival intensities of different scenarios. The 

idle vehicle relocation policy parameter 𝜃 is set as 0.2. We test the five scenarios with respect to different arrival 

intensities. The result in Fig. 7 shows bimodal non-myopic vehicle dispatching and non-myopic idle vehicle 

relocation policy (label ‘5’ in the figure) has best performance for different arrival intensities.  

 
Fig. 7 Influence of vehicle dispatching and idle vehicle relocation policy on the performance of the system  

5. Conclusions 

In this study, we propose a non-myopic bimodal real-time vehicle dispatching algorithm with idle vehicle 
relocation to improve operating cost and passengers’ riding time on a bimodal network. The proposed non-myopic 
method is based on a queueing-theoretical approach which estimates the queue delay over infinite horizon. For 
idle vehicle relocation, we propose a mixed integer linear programming model to take into account customer’s 
travel cost to the server (idle vehicle), spatial queueing delay and relocation cost. The numerical study shows the 
proposed non-myopic approach in both vehicle dispatching and idle vehicle relocation outperforms the myopic 
one as well as non-relocation policy and busiest-zone based relocation policy. Moreover, the numerical study 
shows that bimodal collaboration improves the system performance when using only operating vehicles only. 
Future extensions includes simulating the transit time table and vehicle runs of the MRT system and using open 
taxi data and transit networks in New York City to test the performance of the proposed method with real data.              
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