DATA FOR THE STUDY OF SEX-LINKED INHERIT-ANCE IN DROSOPHILA

T. H. MORGAN AND ELETH CATTELL

From the Zoölogical Laboratory, Columbia University

In recent years a new fact in Mendelian inheritance has come to light, which while it obscures the Mendelian expectation based on *independent* segregation of the factors of inheritance, shows that the main Mendelian principles are by no means invalidated; for, they too are manifest, but obscured by the linkage or coupling of certain factors. When certain somatic characters are associated with sex, as in Drosophila, we have the best opportunity, as yet afforded, for studying in its simplest form this sort of 'associative' inheritance; for, in certain combinations, the relation between linkage and breaking of the linkage ('crossingover' as we shall call it) is shown at once by the male flies which indicate without complication the kinds of eggs that the F₁ female In certain combinations both males and females give produces. this result. Such cases are those in which the sperm of the F_1 generation contains only sex-linked recessive or 'absent' characters.

In the following account we shall describe certain experiments in which three linked characters (in addition to sex) are involved; namely, red eyes, versus no red or white eyes; the black factor for body color (giving black or gray flies), versus its absence (which gives yellow or brown flies); and the factor for long wings versus the absence of that factor (which gives miniature wings). These characters show various strengths of linkage, i.e., the number of times any two of them hold together differs for each combination. This relation will be discussed after the data have been given.

Since these sex-linked factors follow the distribution of the sexchromosomes we may think of them as contained in these chromosomes (X) when present, or absent from the chromosomes when the absence of the factor is involved. In the male-producing sperm, where no X is present, the sex-linked characters are always absent. A corollary to this point of view involves the crucial point of the chromosome theory of linkage (Morgan, '11). In the female two X-chromosomes are always present. If one of them contains two of the factors in question, such as the factor for $red^{1}(R)$ and that for long wings (L), and the other X-chromosome contains no factor for red (absence of red or W) and short wings (or S) it is possible for interchange (or 'breaking,' or 'crossing-over') between RL and WS to take place. How often this may occur depends on the strength of the linkage of the factors involved (which one of us has tried to interpret as due to their position in the chromosomes). But in the male, on the other hand, no such interchange is theoretically possible, and the results show that none occurs. It is this simple and consistent relation that gives 'point' to the chromosomal interpretation.

In order to have a basis for interpreting the more complicated cases we will first give the results of an experiment where only two contrasted characters, black and yellow, are involved. In this experiment no question of linkage is involved, since the factor for black and that for yellow are not in the same chromosome. The experiment also gives information showing the viability of the gray, black, yellow and brown flies.

When black females were mated to yellow males all the offspring were gray (N). These inbred gave the following results:

	LRB 9 by LRY 7
Fı	$LRN \varphi = 50$ $LRN \sigma^7 = 60$
F_2	LRN $\varphi = 316$ LRN $\sigma^7 = 153$ LRB $\varphi = 104$ LRB $\sigma^7 = 48$ LRY $\sigma^7 = 164$ LRBr $\sigma^7 = 40$

¹ In reality the presence of C gives red and its absence c white

٠

The analysis is as follows:

	yBBrX – yBBrX Bla YbBrX – YbBr Yell	ck ♀ low ♂
F ₁	yBBrXYbBrX Gra yBBrXYbBr Gra	5
Gametes	$ \begin{array}{ccc} YBBrX &- yBBrX &- YbBrX &- y\\ F_1 & YBBrX &- yBBrX &- YbBr &- y \end{array} $	00
\mathbf{F}_2	YbBrXyBBrX Gray ♀ YbBrXyb	DBr Gray ♂ DBr Gray ♂ DBr Black ♂ DBr Yellow ♂ DBr Yellow ♂ DBr Yellow ♂
Summary	y of F ₂ Bla	ay 73 llow 73 ack 71 own 71

The numbers fairly approximate to expectation. The reciprocal cross is as follows:

	LRB ₆ ⁷ by LRY 9
F ₁	$\begin{array}{rcl} \text{LRN} & \emptyset &=& 89 \\ \text{LRY} & {}_{\mathcal{O}^{7}} &=& 59 \end{array}$
F2	LRN $\varphi = 212$ LRN $\sigma^7 = 197$ LRB $\varphi = 79$ LRB $\sigma^7 = 69$ LRY $\varphi = 181$ LRY $\sigma^7 = 188$ LRBr $\varphi = 44$ LRBr $\sigma^7 = 71$
The analysis follows	:: · · · · · · · · · · · · · · · · · ·
	bBrX – YbBrX Yellow ♀ BBrX – ybBr Black ♂
Fı	YbBrXyBBrX Gray ♀ YbBrXybBr Yellow ♂

THE JOURNAL OF EXPERIMENTAL ZOÖLOGY, VOL. 13, NO. 1

Lemotor R.	– YbBr	х -	- yb	BrX – Y BrX – Y	7bBr		Eggs Sperm
Summary of F ₂	Gray Black Yellow Brown	♀ ♀	_	Gray Black Yellow Brown	ଦୁ ଦୁ ଦୁ ଜୁ ଦୁ ଦୁ	3 1 3 1	

The results agree again fairly well with the expectation. The numbers of gray males and females are quite close. This correspondence between the sexes holds throughout, although the females exceed the males in the grays and blacks, while the males are in excess in the yellows and browns.

In the next case also the same two characters are involved, viz., yellow and black, but combined with short (miniature) wings and white eyes. The analysis is the same as in the last case, and need not be repeated:

SWB ♀ by SWY ♂

]	P ₁	SWN SWN			
	F2	SWN SWN SWB SWB SWY SWBr	Q 0 0 0 0	$173 \\ 111 \\ 44 \\ 149$	· · · · · · · · · · · · · · · · · · ·

The reciprocal cross was also made:

	SWY $\sigma^7 = 88$	
F_1	SWN $\varphi = 69$	
	SWN $\varphi = 68$	
	SWN $\sigma = 71$	
F1	SWB $\varphi = 10$	
	SWB $\sigma^7 = 11$	
	$SWY \ Q = 38$	
	SWY $\circ = 64$	
	$SWBr \ Q = 12$	
	SWBr $\sigma^7 = 11$	

SEX-LINKED INHERITANCE IN DROSOPHILA

CROSSES INVOLVING TWO SEX-LINKED CHARACTERS

In the following crosses black and yellow body-color, white and red eyes are involved. In these cases there are only two sexlinked factors, viz., the factor for black and the factor for red (and their respective absences). In reality, it is the color-producer, C, and not red color, R, that is the factor involved in the eye-color inheritance; but with this explanation no misunderstanding will arise if we use the symbol R for red eye and W for its absence.

In the first case long winged, white eyed, black females were crossed with long winged, red eyed, yellow males. If all the female classes were realized in F_2 there would be many more classes than actually appear, but owing to the linkage between W and B from the grandmother, and R and b from the grandfather there will be only eight large classes. The smaller classes represent the breaking of the linkage or 'crossing-over:'

LRY ♂ by LWB ♀

LRN 244Q \mathbf{F}_1 LWN 253ð LRN = 1549Q LRB 490Q 1120 LWN Q LWN 1283ð F_2 LWB Q 368 LWB ð 451LRY or = 1042 \cdot LRBr $\sigma =$ 217 LRN $\sigma =$ 3 LWY $\sigma^{7} =$ 1 LRB $\sigma^{7} =$ 1

The analysis is as follows. The factor for Brown (Br) is here omitted:

	WByX WByX White black ♀ • RbYX WbY Red yellow ♂	
F ₁	WByXRbYX Red gray ♀ WByXWbY White gray ♂	
Gametes of F ₁	WBYX – WByX – RbYX – RbyX WBYX – WByX – WbY – Wby	Eggs Sperm
\mathbf{F}_2	Gray white♀3Gray white♂3Gray red♀3Yellow red♂3Black white♀1Black white♂1Black red♀1Brown red♂1	

There were five cases of crossing-over of color factors in the males, in a total of 2993 males; approximately, once in 600 times. The crossing-over was between Rb and WB. Each time that the crossing-over occurs one way, there should be on an average a counter-cross the other way. Thus, when an interchange between Rb and WB takes place the combination RB will occur as often as Wb. We should expect, therefore, to find a balance in the results, except in so far as accident or death obscure the output. In the present case the cross-over RB survived four times (giving 3, LRN and 1, LRB), while the counter-cross Wb survived only once. Three of the counter-crosses are not represented. The result can probably be explained by the lower viability that exists for the Yellow-whites.

The reciprocal cross is given below. There were also eight large classes but no cases of crossing-over. The numbers are much fewer than in the last case.

	LRY 9 by LWB 3
\mathbf{F}_{1}	$\begin{array}{rcl} \text{LRN} & \mathfrak{Q} &=& 255 \\ \text{LRY} & \sigma^7 &=& 262 \end{array}$
\mathbf{F}_2	LRN $\varphi = 111$ LRB $\varphi = 27$ LWN $\sigma^7 = 92$ LWB $\sigma^7 = 15$ LRY $\varphi = 71$ LRY $\sigma^7 = 127$ LRBr $\varphi = 10$ LRBr $\sigma^3 = 26$

The analysis is as follows:

	RbYX− RbYXRed yellow♀WByX− WbyWhite black♂
\mathbf{F}_1	RbYXWByX Red gray ♀ RbYXWby Red yellow ♂ ⁷
Gametes of F ₁	RbyX – RbYX – WByX – WBYX RbyX – RbYX – WbY – Wby
\mathbf{F}_2	Brown red \bigcirc 1Brown red \bigcirc 71Yellow red \bigcirc 3Yellow red \bigcirc 3Black red \bigcirc 1Gray white \bigcirc 3Gray red \bigcirc 3Black white \bigcirc 1

The result conforms fairly with expectation; the Yellow red running behind.

In the next crosses a third combination was present. Six large classes are expected.

LRB ♀ by LWY ♂ . LRN Q =57 \mathbf{F}_1 48LRN Q = 298LRN \circ = 158 LRBQ = 75 \mathbf{F}_2 LRB♂ == 54LWY 07 = 88 LWBr $\sigma^7 =$ 37 LWN $\sigma =$ 5

The analysis follows:

	RByX – RByX WYbX – WYb	
\mathbf{F}_1	RByXWYbX RByXWYb	Red gray Q
Gametes of F1	v	- WYbX - WybX - WYb - Wyb
\mathbf{F}_2	Gray red 9 6 Black red 9 2	

T. H. MORGAN AND ELETH CATTELL

There were five cases of crossing-over (males) in a total of 337 males. The cross-overs are all of one kind and result from the combination of W and B. The return crosses would be Redyellows and these did not appear. The Red-yellows are, in fact, less viable than the White-blacks.

In the reciprocal cross eight large classes are expected. Only two classes of crossing-over were found. This again indicates a close union between R and B:

.

	LRB $rac{1}{2}$ by LWY φ
\mathbf{F}_{1}	LRN $\varphi = 198$ LWY $\sigma^7 = 143$
F ₂	LRN $\varphi = 341$ LRN $\sigma^3 = 285$ LRB $\varphi = 153$ LRB $\sigma^7 = 84$ LWY $\varphi = 253$ LWY $\sigma^3 = 229$ LWBr $\varphi = 61$ LWBr $\sigma^3 = 61$
	$\begin{array}{rcl} \text{LWN} & \sigma^{7} &= & 6 \\ \text{LWB} & \sigma^{7} &= & 3 \end{array}$

The analysis follows:

	WbYX – WbYX White yellow ♀ RByX – Wby Red black ♂
\mathbf{F}_1	WbYXRByX Red gray ♀ WbYXWby White yellow ♂
Gametes of F ₁	WbyX - WbYX - RByX - RBYX WbyX - WbYX - Wby - WbY
F2	Brown white ♀ 1 Brown white ♂ 1 Yellow white ♀ 3 Yellow white ♂ 3 Black red ♀ 1 Black red ♂ 1 Gray red ♀ 3 Gray red ♂ 3

There were nine cases of crossing-over, all males, in 659 males and 818 females. In this cross since all the F_1 sperm, both female and male-producing, carry only recessive sex-linked factors,

86

both sexes count in the ratio. This gives 9 to 1477 or 1 to 164. These cases are all in one direction. The missing counter-crosses should be Red-yellows.

The remaining cross involves the same combinations as one of the preceding, but the R and B factors are present in the gray fly. Therefore no crossing-over would be visible. Six large classes are expected:

LWB ♂ by LRN ♀

	$LRN \varphi = 2714$	
	LRN σ = 1541	
P	LWN \circ = 1033	
F_2	LRB $\circ = 793$	
	LRB $\sigma^7 = 330$	
	LWB $\sigma^7 = 305$	
The end	ysis follows:	

F ₁	RBYXWByX Red gray ♀ RBYXWby Red gray ♂
Gametes of F ₁	RByX – RBYX – WByX – WBYX RByX – RBYX – Wby – WbY
\mathbf{F}_2	Gray red $\[mathcal{Q}\] = 6$ Gray red $\[mathcal{O}\] 3$ Black red $\[mathcal{Q}\] = 2$ Black red $\[mathcal{O}\] 1$ Gray white $\[mathcal{O}\] 3$ Black white $\[mathcal{O}\] 1$

In the last case no evidence of crossing-over in the eye factors is expected; for, the normal and black flies are alike in that they carry the sex-linked factor for black. The yellow factor, it is true, is absent from Black and present in Normal, but it shows no linkage with White or with Red, which is in accord with the hypothesis here followed. In the reciprocal cross eight large classes are expected, which occur. No crossing-over was expected or rather could have been observed even if it occurred:

\mathbf{F}_{1}	LWN (intermediate) \bigcirc 16 LRN (intermediate) \bigcirc 15	
F2	LRN $\[mathcal{P}] = 1647$ LRN $\[mathcal{O}^3] = 1327$ LRB $\[mathcal{P}] = 449$ LRB $\[mathcal{O}^3] = 381$ LWN $\[mathcal{Q}] = 1171$ LWN $\[mathcal{O}^3] = 1280$ LWB $\[mathcal{Q}] = 379$ LWB $\[mathcal{O}^3] = 375$	

LWB 9 by LRN o

THE HEREDITY OF THREE CONTRASTED SEX-LINKED CHARACTERS

In the following crosses three contrasted sex-linked factors are involved, one for wings, one for eye color, and one for body color.

The factors involved are the same as those of the preceding crosses. Long wings (L) or normal wings contrast with miniature wings (S), recessive to the former. Two factors, both sexlinked, give, when both present, long wings, while miniature wings are due to the absence of one of them; the absence of the other producing the wing called rudimentary, but for simplicity the letters L and S may be used, if one remembers that L is in the X chromosome, and therefore present only in the femaleproducing sperm; while S merely means the absence of L, and alone stands for miniature wings.

The factor for red eyes (R) is also sex-linked (in the sense that the factor C is present); the absence of red is white eyes (W), which means that the factor C is absent; small c would express this condition more logically, but less graphically.

The black factor B is also sex-linked, and present, therefore, only in the female-producing sperm. Its absence is represented by small b. The factor for yellow (Y) is not sex-linked, and,

therefore, does not follow X in its distribution. Its absence is indicated by small y. In all there were five crosses with their reciprocals, or a total of ten combinations.

Three combinations, viz: the second, third and fourth gave some anomalous results and have been withdrawn in order that they may be repeated.

In representing the gametes of F_1 we have followed the plan of writing in the upper line of 'Eggs,' in the two middle terms, the two combinations that come direct from the paternal and maternal gametes, and at their sides, right and left, the eggs that come from the free distribution of Y and y. In the second line of eggs. written in similar sequence, are the crossing-over of long and short. The crossing of RB and Wb (or similar combinations) is not given. but can be readily conceived. It is the latter that gives the small classes of crossing-over for color (eve and body color) which follow the numerical data of the larger classes. The sperms are given in the third line of gametes and since by the hypothesis here followed no crossing-over in the gametes of the males is allowable. only one line (of four classes) is represented. In the sperm the yellow factor freely interchanges, since it shows no linkage with the sex-factor X. The results fully justify this assumption. Instead of writing out all the combinations of egg and sperm, a summary only of the expected results is given at the end of the analyses.

T. H. MORGAN AND ELETH CATTELL

SHORT, RED, BLACK BY LONG, WHITE, YELLOW

When the female, SRB is mated to the male LWY all the female offspring are long, red, gray; and the males are short, red, gray. The results for the next F_2 generation are given below:

F1	$\begin{array}{ccc} \text{LRN} & \wp & 98\\ \text{SRN} & \sigma^{7} & 80 \end{array}$
come commences in the set Winted	LRN $\varphi = 523$
	LRN $\sigma^7 = 146$
	LRB $Q = 110$
	$LRB \circ = 31$
	$SRN \circ = 292$
	SRN $\sigma^{7} = 242$
	$SRB \varphi = 53$
F_2	$SRB \sigma^{\dagger} = 82$
	LWY $\sigma' = 216$
	$LWBr o^{7} = 40$
	$SWY \sigma' = 85$
	$SWBr \sigma^7 = 30$
	LWN $\sigma = 2$
	LRY
	$SRY \sigma = 3$
	SWB $\circ^{\bullet} = 1$
The e	expectation is:
	SRByBrX – SRByBrX Short red black Q
	LWYbBrX – SWYbBr Long white yellow of
F1 ·	SRByBrXLWbYBrX Long, red, Gray 9
-	SRByBrXSWbYBr Short, red, Gray σ^2
	SRBYBrX – SRByBrX – LWbYBrX – LWbyBrX LRBYBrX – LRByBrX – SWbYBrX – SWbyBrX
Gametes of F ₁	LRBYBrX – LRByBrX – SWbYBrX – SWbyBrX J
OI Γ_1	SRByBrX – SRBYBrX – SWbyBr – SWbYBr Sperm

SRB ♀ by LWY ♂

L or SRN 9 6 S or LWY 7 3 L or SRB 9 2 S or LWBr 7 1 L or SRN 7 3 L or SRN 7 3 L or SRN 7 3

There were seven cases of crossing-over in color, all males, in . a total of 872 males, or 1 to 97. Of these seven, three represent one crossing-over (LWN and SWB), and four the counter-cross. In this instance the balance is held despite the lesser viability of the Red-yellows.

The crossing-over of long, L, (normal) and short, S, (miniature) is shown in the large classes. The linkage is so 'loose,' that these two characters appear almost as though no linkage existed, but an examination shows that where S is combined with RB, and L with Wb the classes of SRB are relatively larger than those of LRB; while conversely the LWY classes are larger than the corresponding SWY. A comparison of the records with the expectation makes this evident at once. It is most apparent in the males, where no complications exist. Thus LWY $\sigma^2 = 216$, while SWY $\sigma^2 = 85$; LWB $\sigma^2 = 40$, while SWB $\sigma^2 = 30$, and on the other hand SRN $\sigma^2 = 242$, while LRN $\sigma^2 = 146$; and the SRB $\sigma^2 = 82$, while LRB $\sigma^2 = 31$. The sum of the 'straight' males is 580, while that of the cross-overs is 292. The gametic ratio is therefore 2:1.

SHORT, WHITE, BLACK BY LONG, RED, YELLOW

When the female is SWB and the male LRY the offspring are LRN \Leftrightarrow and SWN \circ^{n} . The results in the next generation are given below:

			LRY 7	
Fı	LRN SWN	,		

LRN	Q		588
LRB	Ŷ	==	189
LWN	Ŷ	==	204
LWN	ീ	_	224
LWB	Q		98
LWB	o ⁷	=	95
SRN	ç		225
\mathbf{SRB}	Q		72
SWN	ç	_	410
SWN	്		418
SWB	Q	=	145
SWB	്		145
\mathbf{SRY}	♂	=	161
\mathbf{SRBr}	്	222	47
LRY	d'	=	419
LRBr	ീ	_	102
LRB	ਨਾ		1
SWY	ð		5
	-		-
(SWBr	Q		1)
LWBr	്	=	1

The expectation is as follows:

P ₁		SWBy I RYb		SWByX Yb			
$Gametes of F_1$	SWBYX - LWBYX -	- SWBy · LWBy	X - X -	LRYbX SRYbX	- 1	$\left. \begin{array}{c} \text{LRybX} \\ \text{SRybX} \end{array} \right\}$	Eggs
OF ET .	SWBYX -	SWBy	х –	$\mathbf{Y}\mathbf{b}$	- :	yb	Sperm
And the many second secon		SWN	ç 3	SWN	<i>3</i>	3	
		LRN	♀ З	LWN	₀7 :	3	
		SWB	♀ 1	LRY	o7	3	
73		LRB	♀ 1	\mathbf{SRY}	₀7 3	3	
F_2		SRN	ç 3	SWB	0 ⁷	1	
		LWB	♀ 1	LWB	o ⁷	1	
		LWN	Ç 3	LRBr	0 ⁷	1	
		\mathbf{SRB}	♀ 1	SRBr	0 ⁷¹	1	

There are seven cases of crossing-over in color. In addition there is one record of SWBr \circ which must be either an error, or a mutation, since both the female-producing sperm carry the factor for black, hence no brown females are possible. Omitting this single case there are seven cases of crossing-over in 1611 males. Of these one is one way (RB), and six in the opposite

 F_2

direction. The recessive RB combination may be obscured by the red, normal or black, female classes.

Concerning the cases of crossing-over for character of wing SWN $\sigma = 418$, while LWN $\sigma = 224$; SWR $\sigma = 145$, while LWB $\sigma = 95$. On the other side, LRY $\sigma = 419$, while SWY $\sigma = 161$; LRBr $\sigma = 102$, while SRBr $\sigma = 47$. The sum of the 'straight' males is 1081, and that of the cross-overs 527; or almost exactly 2 to 1.

The reciprocal cross is as follows:

S	SWB ♂ by LRY ♀
	LRN $\varphi = 121$ LRY $\sigma^2 = 76$
	$LRN \varphi = 808$ $LRB \varphi = 215$
	LWN $\sigma^2 = 191$
	LWB $\sigma^7 = 63$
12	$\begin{array}{l} \text{SWN} {}_{\text{O}}^{7} = 221 \\ \text{SWB} {}_{\text{O}}^{7} = 108 \end{array}$
\mathbf{F}_2	LRY Q = 442
	LRY $\sigma = 335$
	$LRBr \varphi = 76$
	LRBr $\sigma^7 = 73$
	$SRY \circ^7 = 118$
	$SRBr \sigma = 17$

The analysis follows:

P_1	LRYbX – LRYbX SWByX –yb
Gametes of F ₁	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	LRbyX - LRYbXybYb Sperm
	LRBr $\varphi = 2$ LRBr $\sigma^{\gamma} = 1$
	LRY $\varphi = 6$ SRBr $\sigma^2 = 1$
	LRB $\varphi = 2$ LRY $\sigma^2 = 3$
\mathbf{F}_{2}	LRN $\varphi = 6$ SRY $\sigma^3 = 3$
r 2	SWB $\sigma^7 = 1$
	LWB $\sigma^7 = 1$
	SWN $\sigma = 3$
	LWN $\sigma = 3$

Despite the large number of individuals (2677), there are no cases of crossing-over for color in the last case. If such occurred in the females, they would be masked by the presence of the dominant factor, R, present in all female-producing sperm. Concerning the crossing-over of wing characters, it will be noted that LRY $\sigma^2 = 335$, while SRY $\sigma^2 = 118$; and LRBr $\sigma^2 = 73$, while SRBr $\sigma^2 = 17$; and the on other hand, SWB $\sigma^2 = 108$, while LWB $\sigma^2 = 63$ and SWN $\sigma^2 = 221$, while LWN $\sigma^2 = 191$. The sum of the 'straight' cases is 737, while that of the cross-overs is 398, or approximately 2 to 1.

LONG, RED, BLACK BY SHORT, WHITE, YELLOW

When LRB females are paired with SWY males, the offspring are LRN σ 's and φ 's. The second generation is given below:

	$LRN \Leftrightarrow 94$	
\mathbf{F}_1	$\frac{1}{111}$	
F ₂	$LRN Q = 1819$ $LRN \sigma^{7} = 562$ $LRB Q = 463$ $LRB \sigma^{7} = 163$ $LWY \sigma^{7} = 279$ $LWBr \sigma^{7} = 78$ $SWBr \sigma^{7} = 194$ $SWY \sigma^{7} = 371$ $SRN \sigma^{7} = 266$ $SRB \sigma^{7} = 3$ $LRY \sigma^{7} = 3$ $LRY \sigma^{7} = 3$ $LRBr \sigma^{7} = 1$ $(LRY Q = 3)$	

The expectation is as follows:

D	LRByX	******	LRByX
P_1	SWYbX		$\dots Yb$

94

$\begin{array}{c} \text{Gametes} \\ \text{of } F_1 \end{array}$	LRBYX – LRByX – SWY SRBYX – SRByX – LWY	$egin{array}{ccc} { m bX} & - & { m SWybX} \ { m bX} & - & { m LWybX} \end{array} \end{array} ight brace { m Eggs}$
01 11	LRBYX – LRByX –Y	–y Sperm
	LRN ♀ 12 I	RN 3
	LRB Q 4 S	RN 3
	S	WY 3
F,	I	WY 3
F ₂	I	RB 7 1
	S	$RB rac{1}{2}$
	S	WBr ♂ 1
	I	RBr of 1

There were seven cases of crossing-over in 1466 males, and three cases in 2282 females. In the males the three crossings in one direction (LWN) are balanced by four crossings in the other direction (LRY, and LRBr). The three cases in the females (LRY) can not be explained by crossing-over in the eggs, since all female-producing sperms carry the factor for black, hence no yellow females are possible, unless one of these sperms should lose the B factor, which would be a mutation. Hence the case is due either to this, or to some error.

In the wing characters we find LRN $\sigma = 562$, while SRN $\sigma = 266$; LRB $\sigma = 163$, while SRB $\sigma = 53$. On the other hand, SWY $\sigma = 371$, while LWY $\sigma = 279$; SWBr $\sigma = 184$, while LWBr $\sigma = 78$. The sum of the 'straight' males is 1280, and the cross-overs 676, a ratio of about 2 : 1.

	LRB _{d³} by SWY ♀
\mathbf{F}_1	$\begin{array}{ccc} LRN & \bigcirc & 83\\ SWY & \sigma^7 & 79 \end{array}$
	LRN $\varphi = 355$
	LRN $\sigma^{7} = 301$
	$ \begin{array}{rcl} LRB & \varphi &=& 90 \\ LRB & \sigma^2 &=& 90 \end{array} $
	$LWY \varphi = 164$
	$LWY \circ = 116$
	$LWBr \ Q = 35$
F_2	LWBr $o^7 = 36$
	$SWY \varphi = 147$
	$\begin{array}{rcl} \mathrm{SWY} & _{\mathrm{C}^{2}} = 174 \\ \mathrm{SWBr} & \varphi = 50 \end{array}$
	$\begin{array}{rcl} \mathrm{SWBr} & \varphi &=& 50 \\ \mathrm{SWBr} & _{\mathrm{C}^2} &=& 48 \end{array}$
	$\frac{1}{3} \frac{1}{3} \frac{1}$
	SRN σ = 150
	$SRB \varphi = 41$
	$SRB \circ a^7 = 36$
	SWN $\sigma^7 = 2$
	$LWN \sigma^2 = 5$
	$LRY \sigma^2 = 3$
	SWN $\varphi = 2$
	LWN $\varphi = 9$ (in one bottle)
The ex	spectation is as follows:
-	SWYbX – SWYbX
P ₁ .	$LRByX - \dots by$
,	CW/L.V CWLVV IDD.V IDDVV
Gametes	$\begin{array}{llllllllllllllllllllllllllllllllllll$
of F_1	Ewby X = Ewby X = Site Y X = Site F X
	SWbyX – SWYbX –by –bY Sperm
	SWB $\varphi = 1$ SWBr $\sigma^7 = 1$
	LWB $\varphi = 1$ LWBr $\sigma = 1$
	$SWY Q = 3 \qquad SWY \sigma^7 = 3$
	LWY $\varphi = 3$ LWY $\sigma = 3$
\mathbf{F}_2	
F_2	LRB $\varphi = 1$ LRB $\sigma = 1$
\mathbf{F}_2	

The reciprocal cross gave the following results:

96

There were ten cases of crossing-over in 951 males, and eleven cases in 1022 females. In the former there were seven cases in one direction (SWN and LWN) balanced by only three cases in the opposite direction (LRY); but the latter are known to be less viable. In the females the eleven cases were in the same direction (SWN and LWN). Of these nine occurred in one bottle, suggestive of some error.

In wing characters there were LRN σ 301, while SRN $\sigma = 150$; LRB $\sigma = 90$, while SRB $\sigma = 36$; on the other hand, SWY $\sigma = 174$, while LWY $\sigma = 116$; SWBr $\sigma = 48$, while LWR $\sigma = 36$. The sum of the 'straight' males is 613, and the cross-overs 332, approximately 2 to 1.

SHORT, RED, BLACK BY LONG, WHITE, NORMAL

When females SRB are mated to LWN, the female offspring are LRN, and the males SRN. The second generation is given below:

	SRB Q	by I	LWN ♂			1.	
n	LRN	ę	195				
\mathbf{F}_1	\mathbf{SRN}	৾	147				
	LRN	Q =	- 885				
	\mathbf{LRN}	o ⁷ =	= 316				
	LRB	♀ =	= 215	1			
	\mathbf{LRB}	♂ =	- 94				
	LWN	d" =	= 410				
F_2	LWB	o [⊼] =	= 130				
	SRN	Q =	= 482				
	SRN	o ⁷ =	= 572				
	\mathbf{SRB}	Q =	= 151				
	\mathbf{SRB}	o ⁷ =	= 198				
	SWN	∂ ≃	= 166		•		
	SWB	o ⁷ =	= 51				
The expectation i	s as follov	ws:					
P.	\mathbf{SRByX}		SRByX				

LWBYX - ... bY

THE JOURNAL OF EXPERIMENTAL ZOÖLOGY, VOL. 13, NO. 1

 \mathbf{P}_1

Gametes of F ₁	SRBYX LRBYX	– SRByX – LRByX	$-\mathbf{L}$ $-\mathbf{S}$	WBYX WBYX	- LWByX - SWByX	$ brace \mathbf{Eggs}$
OI F ₁	SRBYX	– SRByX	, ,	.bY	by	Sperm
F2		SRN LRN SRB LRB	♀ 6	LWB	ਨਾ 3 ਨਾ 3 ਨਾ 3	

There was no evidence of crossing of color factors in 1937 males, and none are expected, since both Black and Normal carry the black factor; and the yellow factor that distinguishes them is not sex-linked. In wing characters SRN $\sigma^2 = 572$, while LRN $\sigma^2 = 316$, SRB $\sigma^2 = 198$, while LRB $\sigma^2 = 94$. On the other hand, LWN $\sigma^2 = 410$, while SWN $\sigma^2 = 166$; LWB $\sigma^2 = 130$, while SWB $\sigma^2 = 51$. The sum of the 'straight' males is 1310 and the cross-overs 627, nearly 2 to 1.

The reciprocal cross is as follows:

SRB ♂ by LWN ♀

P1	$LRN \circ 514$	
1.	LWN o ⁷ 404	
	LRN $\varphi = 831$	
	LRN $\sigma^7 = 312$	
	LRB $\varphi = 278$	
	LRB $\sigma^7 = 78$	
	\therefore LWN $\varphi = 661^{\bullet}$	
2	LWN $o^7 = 616$	
2	LWB $Q = 189$	
	LWB $o^7 = 184$	
	$SRN \circ^7 = 282$	
	$SRB \sigma^7 = 146$	
	SWN $o^7 = 244$	
	$SWB \circ = 89$	
	$(SWN \varphi = 5)$ (in one bottle)	

The expectation is as follows:

\mathbf{P}_{I}			$X - LWI = \dots b$		
Gametes of F ₁	LWByX SWByX	– LWBYX – SWBYX	– SRByX – LRByX	– SRBYX – LRBYX	Eggs
Of \mathbf{r}_1	LWByX	– LWBYX	by	Y	Sperm
		LWB Q	2 LWB	J 1	
		LWN Q	6 SWB	⊿ 1	
		LRB Q	2 LWN	J 3	
ъ		LRN Q	6 SWN	J 3	
\mathbf{F}_2			\mathbf{SRB}	⊿ 1	
			LRB	J 1	
			\mathbf{SRN}	₫ 3	
			LRN	J 3	

There were 5 SWN φ 's, all from one bottle; which can not be explained by crossing-over. They are either mutations or due to error.

Concerning wing-characters, SRB $\sigma = 146$, while LRB $\sigma = 78$; SRN $\sigma = 282$, while LRN $\sigma = 312$. On the other hand, LWN $\sigma = 616$, while SWN $\sigma = 244$; LWB $\sigma = 184$, while SWB $\sigma = 89$. The sum of the 'straight' males is 1228, while that of the cross-overs is 721. The 'straights' are less than twice the cross-overs, due largely to the SRN's being actually less than the LRN's.

CONCLUSION

The principal object of the preceding experiments was to study the phenomenon of linkage on a relatively large scale. The results show that whatever sex-linked factors enter into combination, those factors come out together in the grandchildren. Moreover, it makes no difference from the point of view of linkage whether a 'present' factor is linked to another 'present' factor or to an 'absence,' or even whether two absences are linked together in one of the parents. The phenomenon is the same, as both Bateson and I have pointed out.² The results are the more striking when

² This statement is too sweeping in so far as based on the evidence given in the text.

it is found in the same experiments that other factors not showing sex-linked inheritance do not show associative inheritance with those factors that are sex-linked. It is here that the chromosomal hypothesis seems to give an insight into the nature of the difference in the two cases.

In those counts where crossing-over in color is expected there were 61 such cases in a total of 12115; a gametic ratio of 1 to 198. The crossing-over is such a rare occurrence that although the total number of individuals is large, it is by no means large enough to make the ratio significant.

On the other hand, where the gametic ratio for crossing is low, as in the wing-characters, the numbers suffice to make the values significant, and it will be observed how closely these approximate 1 to 2. Moreover, the crossings balance quite well the countercrossings, which is expected on the theory of chromosomal interchanges.

The same balance is expected for the color ratio but here we find, as the following table shows, that 18 crossings were in one direction and 43 in the other:

RB	$\mathbf{W}\mathbf{b}$			
4	1			
0	0	in	260	
WB	Rb			
5	0	in	337	
9			1477	
WB	Rb			
3			872	
RB	Wb			anna ann an a
1	6	$_{ m in}$	1611	
0	0	$_{ m in}$	1126	
 WB	Rb			and an initial state of the second state in the second state in the second state in the second state in the second state is a second state is a second state is a second state in the second state is a s
3	4	in	1466	
1			1973	
43	' 18		12115	

But these numbers are, as stated, too small to be significant. It should be noted that no *actual* exchanges between the eggs them-

selves are expected, since one of the exchanges always goes into the polar body; but on an average the loss to the polar body should be as often of one kind as of the other. In order to test this more fully the 'exchanges' should be equally viable, which is not the case in the present experiments, where a correction for viability has to be supplied.

It will be noted that the few cases, in which impossible female classes appear, have been 'explained away' as due to mutation or to error. We believe that we are justified in making this assumption on the basis of our general knowledge of the behavior of these factors in heredity and of the possible experimental errors. But a critic will not be slow in pointing out that these cases can be explained if crossing-over is admitted for the male. The fairness of this criticism must be admitted. Whether it is justified, further work must show, and this work is under way.