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A Distributed Hash Table based Address Resolution
Scheme for Large-scale Ethernet Networks

Saikat Ray, Roch Gúerin and Rute Sofia

Abstract— Ethernet’s plug-&-play feature is built on its use of
flat (location independent) addresses and use of broadcasts to
resolve unknown MAC addresses. While plug-&-play is one of
Ethernet’s most attractive features, it also affects its scalability. As
the number of active MAC addresses in the network grows beyond
the capacity of forwarding caches in bridges, the odds of “cache-
misses,” each triggering a broadcast, grow as well. The resulting
increase in broadcast bandwidth consumption affects scalability.
To address this problem, we propose a simple address resolution
scheme based on an adaptation of distributed hash tables where a
single query suffices in the steady state. The new scheme is imple-
mented onadvanced bridges maintaining backward compatibility
with legacy bridges and eliminating reliance on broadcasts for
address discovery. Comparisons with a legacy, broadcast-based
scheme are carried out along several metrics that demonstrate
the new scheme’s robustness and ability to improve scalability.

I. I NTRODUCTION

Ethernet’s popularity can to a large extent be attributed to
its low cost and ease-of-use. In particular, its “plug-&-play”
feature allows an Ethernet device to plug into a network and
become operational without the need for any configuration. This
simplicity does, however, come at the cost of some loss in
efficiency and scalability. Specifically, it relies on two design
choices: (i) use of flat (location independent) addresses and
(ii) broadcast-based resolution of the location of an unknown
address. To understand their scalability implications, let us
examine their role in Ethernet’s operation (as per 802.1D [1]).

Consider an Ethernet network comprised of several segments,
each with a number of nodes (end-hosts). The Network Inter-
face Card (NIC) of each end-host is identified through a “burnt-
in” and globally unique 48-bit MAC address. Each segment is
a broadcast medium where NICs see all packets transmitted on
the segment. Segments are inter-connected throughbridgesthat
ensure delivery of (a single copy of) packets to end-hosts resid-
ing on a segment, and prevent unnecessary packet transmissions
to other segments to the extent possible. This requires thatupon
receiving a packet, an Ethernet bridge be able to determine
at most one port on which to forward the packet. For this
purpose, each bridge builds a forwarding table where entries
consist of triplets of the form< MAC Address, PORT, AGE>.
Populating the forwarding table is carried out based on the
sourceaddresses of packets that a bridge receives. Specifically,
upon receiving a packet on port P1 with a previously unknown
source address SA, the bridge creates an entry of the form
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<SA,P1,T>. This entry is then used to make forwarding
decisions for packetsdestinedfor address SA—they are sent
out on port P1 (such packets received on P1 are dropped).

The main issue Ethernet faces when forwarding packets is
what to do packets when there are no matching entries in the
forwarding table. This is not only aninitialization problem, but
very much also asteady-stateone. Specifically, since the lack of
hierarchical structure in Ethernet MAC addresses precludes ad-
dress aggregation, without additional mechanisms the number
of entries in the forwarding table of a bridge can grow linearly
with the number of addresses in the network. Size constraints
of forwarding tables [2] rapidly make this impractical in large
networks. As a result, forwarding tables usually keep only
activeaddresses. Entries are deleted (according to some policy)
either when the forwarding table is full and a new entry needs
to be stored, or when their AGE exceeds a limit so as to remove
stale entries.1 The removal of entries creates the potential
for cache misses, whenever a bridge receives a packet for a
destination not present in its forwarding table.

When a cache miss occurs, a bridge broadcasts the packet
on a logical spanning tree that bridges maintain by running the
Spanning Tree Protocol [1]. Broadcast packets are transmitted
on all ports associated with the links of the logical spanning
tree, except for the port on which the packet was received. This
ensures that the destination end-host DA, if present in the net-
work, receives the packet. A reply packet from the destination
results in the creation of a new< DA, PORT, AGE > entry in
the forwarding tables of bridges on its path. This entry is then
available to forward subsequent packets destined for DA.

For a given forwarding table size, as the number of MAC
addresses in the network begins to exceed the number of entries
in the forwarding table, a bridge will have to delete increasingly
recent entries to make room for new active addresses. In
general, as the number of addresses increases, so do the number
of cache-misses. Ultimately, a bridge may enter a “thrashing”
mode where entries are deleted before they can be used to
forward the next packet to that address. As a result, the network
experiences a growing steady-state fraction of broadcast traffic,
which consumes network bandwidth and affects scalability.2

This is hardly ever an issue in Ethernet’s original deployment
context—Local Area Networks (LANs) with a relatively small
number of nodes and typically abundant bandwidth—and its
convenience far outweighed this potential scaling deficiency.

Recently, there has been renewed interest in larger Ethernet
deployments, hence stressing scalability, and spanning wider ar-

1Removal of stale entries is needed to avoid sending packets tothe old
location of a relocated MAC address.

2If there aren bridges, then the fractional increase in traffic isO(n).



eas e.g., Metropolitan Area Networks (MAN), involving many
more nodes, so that bandwidth is more expensive. Addressing
the potential rise in broadcast traffic to mitigate its impact on
scalability is therefore of interest. There have been proposals
aimed at enhancing Ethernet and improving its performance in
a MAN environment. We review some of them in Section II,
but none fully address the scalability problem caused by more
frequent broadcasts as the number of nodes (MAC addresses)
increases as may be the case in an Ethernet MAN.

In this work, we develop a distributed mechanism which
altogether avoids the use of broadcasts in cases of cache-misses.
The mechanism allows bridges to rapidly “learn” the location
of any MAC address, and hence the appropriate forwarding
decisions, without resorting to broadcasts. This is achieved
by storing the location of MAC addresses in a distributed
hash table (DHT), with the ability to retrieve the location
of an unknown address from the DHT using a single query.
The scheme is scalable in the sense that the expected storage
requirement at a bridge is “constant,” independent of the
network size. Further, the bulk of the storage requirement of
the DHT scheme is on the “control path”, which typically
relies on cheaper and slower memory than data path forwarding
tables. Unlike the proposal in [3], we do not eliminate the
broadcast service of Ethernet; it is the unintended broadcasts
of unicast packets that we reduce; a native broadcast/multicast
packet is still forwarded throughout the network. Thus our
scheme is backward-compatible. Note that the address location
mechanism we use for MAC address resolution can easily be
applied to eliminate reliance on broadcast in other address
resolution schemes, e.g., ARP queries.

II. RELATED WORK

Mitigating the impact of Ethernet’s flat addresses on for-
warding table size has until now been dealt with primarily by
controlling the size the of the network itself. One such approach
is throughVirtual LANs(VLANs [4]), where an additional field
in the packet header, the VLAN tag [5], is used to partition
a single large Ethernet network into multiple networks; one
for each VLAN. One disadvantage is that nodes in different
VLANs cannot directly talk to each other. Another common
technique is to restrict the network topology toedgebridges
connected by thecore bridges, where end-hosts connect only
to edge bridges. Using so-called MAC-in-MAC (MiM) [6]
encapsulation at edge-bridges, core bridges then only needto
maintain forwarding entries to edge-bridges—a much smaller
set; i.e., the burden of large forwarding tables is shifted to the
edge-bridges. A more detailed discussion can be found in [5].

The above schemes, while important in practice, still rely
on broadcast whenever a cache-miss occurs, and do not fun-
damentally improve Ethernet’s scalability: they simply either
limit the network size (VLANs), or shift the burden of having
large tables to a subset of nodes (MiM)3. Moreover, they
require extensive configuration, and hence move away from
the plug-&-play design of Ethernet. Our solution, on the other
hand, introduces no topological restriction, and by avoiding

3Fundamentally, the scalability of MiM schemes are equally poor.

Legacy LAN Legacy LAN

Advanced Bridges

A B

a

b

c

d

Fig. 1. A typical network composed of advanced and legacy bridges, shared
medium segments and nodes.

broadcasts in cases of cache-misses, fundamentally improves
Ethernet’s scalability while retaining its plug-&-play nature.

III. SYSTEM OVERVIEW

We start this section with a brief description of terminology.
An advanced bridgeis a bridge that implements the proposed
distributed address resolution mechanism; alegacybridge is a
bridge that performs traditional broadcast based address reso-
lution. A legacysegmentis a part of the network (a connected
subgraph) that does not contain any advanced bridge. Legacy
segments operate according to the standard Ethernet protocol.
Although advanced and legacy bridges work differently, it
is critical that the former bebackward compatiblewith the
latter in the sense of all data packets being delivered correctly
regardless of how advanced and legacy bridges are placed in
the network. Thus we consider a network consisting of both
advanced and legacy bridges connected in an arbitrary manner;
e.g., the hybrid network shown in Fig. 1.

Next, we review packet forwarding operation in a hybrid
network using as a reference the network of Fig. 1, which
consists of three legacy segments connected by advanced
bridges. Section IV discusses the exact mechanisms used in
realizing this behavior. In steady-state, packets in such ahybrid
network are forwarded as follows: If both the source and the
destination nodes reside on the same legacy network segment,
e.g., nodesa andb in Fig. 1, then packets follow the standard
Ethernet forwarding procedures, i.e., along the spanning tree
in the segment; advanced bridges do not get involved. If the
source and destination nodes reside in different segments,e.g.,
nodesb and d, the packet is first delivered to the advanced
bridgeA that forwards it to the advanced bridgeB, from where
it finally reaches noded. To facilitate consistent forwarding
among the legacy bridges in a legacy segment, when two or
more advanced bridges attach to a legacy segment only one is
allowed to send/receive packets to/from other segments; this ad-
vanced bridge is called the “designated advanced bridge” ofthe
segment. (It is possible to allow multiple designated advanced
bridges per legacy segment, but this introduces substantial
added complexity to properly deal with all combinations of
packet forwarding scenarios.) Note that such a selection can
be readily accomplished following anyone from a number of
standard “election” schemes, e.g., [7]. Upon receiving a packet
originating on the legacy segment to which it is attached,
the “ingress” designated advanced bridge must then determine
the destination or “egress” advanced bridge connected to the
(legacy) segment where the destination node resides. This



determination is a key step in the operation of advanced bridges,
and as we shall see is performed without resorting to broadcast
in most cases.

IV. D ETAILED DESIGN

A. Backward Compatibility

Backward compatibility requires correct forwarding of data
packets without changes to legacy bridges. There are many
options for ensuring backward compatibility. We choose a
simple mechanism, which relies on advanced bridges dropping
all legacy control packets, i.e., the Bridge Protocol Data Units
(BPDUs). In other words, advanced bridges behave like end-
systems and do not participate in the spanning tree protocol.
Thus, in a legacy segment a spanning tree is constructed
that connects the legacy bridges, but does not extend across
advanced bridges. This effectively allows advanced bridges to
partition legacy segments. In fact, a legacy segment can nowbe
defined as follows: if two legacy bridgesA andB do not remain
connected after all the advanced bridges are removed from the
system, thenA andB reside on two different legacy segments;
else, they belong to the same legacy segment. By default, an
end-host directly connected to an advanced bridge forms a
legacy segment of its own. Thus the network is composed of
legacy segments connected by advanced bridges. Section IV-C
describes how this ensures backward compatibility.

B. Start-up

A boot-up or restart process in the network begins with
legacy bridges within each affected segment forming connectiv-
ity among them by running the standard spanning tree protocol.
Because advanced bridges do not forward BPDUs, each legacy
segment forms a separate spanning tree “in parallel” and
reasonably fast because of the relatively small size of individual
segments. The bootstrapping of advanced bridges proceeds in
parallel. However, notice that in order for advanced bridges
to begin exchanging information, there must be connectivity
between them, i.e., either through direct links or through
legacy segments. In the latter case, since legacy bridges donot
forward packets while computing the spanning tree (i.e., data
packets are dropped during this period), intermediate legacy
segments must have converged before data can be exchanged.
Once connectivity is available, we assume for brevity that all
advanced bridges become aware of each other after a short time,
e.g., by means of announcements to a well-known multicast
group ALL ADVANCED BRIDGES. This ensures that they are
in a position to forward data to each other, e.g., by running
a spanning tree protocol among them or through some other
means that are beyond the scope of this paper.

C. Encapsulation

In order to ensure backward compatibility without imposing
topological constraints, legacy bridges must be able to forward
packets sent by advanced bridges. This applies to both packets
destined to and originating from a legacy segment, as well
as packets that need to transit (from one advanced bridge to
another) through a legacy segment.

Legacy LAN
A B

Fig. 2. View from an advanced bridge for encapsulated packets. Each legacy
segment acts like a shared medium link.
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(b) View from the legacy bridge.

Fig. 3. View from the legacy bridge. It cannot distinguish between case 3(a)
where a designated advanced bridge is connected to the port and case 3(b)
where a shared media is connected to the port.

The latter is achieved by having advanced bridges rely on
MAC-in-MAC (MiM) encapsulation [6], as illustrated in Fig.2.
Suppose that an advanced bridgeA with MAC addressα and
an advanced bridgeB with MAC addressβ are connected to
the same legacy segment. In order to forward a (transit) packet
to advanced bridgeB, the advanced bridgeA uses an encap-
sulation header with the source address and the destination
addresses set toα and β, respectively. The legacy segment
then forwards the packet fromA to B using its standard
forwarding mechanisms, and both advanced bridges view the
legacy segment simply as a shared medium segment (cf. Fig. 2).

Packet exchanges between legacy segments occur through
the segments’ designated advanced bridges that encapsulate
and decapsulate packets originating from and destined to the
segments. In other words, the designated advanced bridge
encapsulates packets originated from its legacy segment(s) and
headed for “external” destinations, before forwarding them to
the appropriate advanced bridge (see Section IV-D and Sec-
tion IV-E for details on how this advanced bridge is identified).
Conversely, the designated advance bridge of a legacy segment
receives (encapsulated) packets from nodes outside the segment
destined to nodes in the segment, and performs the necessary
decapsulation before forwarding the packets on the segmentfor
local forwarding and delivery.

To see how the proposed encapsulation/decapsulation method
works seamlessly with legacy bridges, consider the scenario
shown in Fig. 3. The legacy bridge is connected to two
advanced bridges,A andB, andB is the designated advanced
bridge for this legacy segment. Thus, the legacy bridge receives
packets from all nodes outside this segment on this port since
those are first sent toB, the designated bridge for the legacy
segment, which decapsulates them before forwarding them onto
the legacy segment. Thus, the legacy bridge views this port
as connected to a shared medium segment on which all those
nodes are attached. In other words, the legacy bridge cannot
distinguish between packets originating from nodes directly
attached to this shared medium segment, and (external) packets
that transit throughB.



The equivalence of these two views from the standpoint
of a legacy bridge shows that the system remains backward
compatible in the sense of delivering data packets correctly
without changes to legacy bridges. Similar schemes are also
used in RBridges [8].

D. MAC Address Learning and Registration

The essence of the proposed mechanism is that designated
advanced bridges learn which MAC addresses they are respon-
sible for, andregister them with other advanced bridges to
facilitate their subsequent retrieval. In particular, themechanism
relies on two different roles that a bridge can assume; namely,
the owner and the registrar of MAC addresses. The owner
of a MAC address is simply the advanced bridge that is the
designated bridge for the legacy segment where the address
resides. The registrar, on the other hand, is an advanced bridge
where MAC addresses are registered together with the identity
(address) of their owner bridge. Not all advanced bridges need
to assume the role of a registrar; registration is done only on
advanced bridges that agree to act as a registrar.

Each advanced bridge maintains 4 tables: a forwarding table
in its data path, and apeertable, anowningtable and aregistrar
table in its control path. A registrar bridge maintains another
table in the control path, theregistration table.

The forwarding table is similar to that of a legacy bridge; and
populated either by observing transiting encapsulated as well
as unencapsulated packets, or by making queries as described
in Section IV-E. The peer table holds forwarding information
for advanced bridges present in the network—i.e., the address
and port to be used to send a packet to that advanced bridge.
The owning table is populated by observing unencapsulated
packets from the segment for which the advanced bridge is the
designated bridge The registrar table holds the set of registrar
bridges. Entries in all tables are subjected to an aging process.
In general, the aging process used for the forwarding table may
differ from that used for other tables.

An advanced bridgeA registers each MAC addressx in its
owning table by sending a message to a specific registrarR(x)
identified through a universally known functionR(·). Only one
message needs to be sent for all MAC addresses with a common
registrar. Upon receiving such a message, registrarR(x) adds
the association< x,A, AGE > to its registration table.

R(·) depends on the IDs of the registrar bridges stored in the
registrar table. For example, letR denotes the set of advanced
bridges that have agreed to act as registrars andX the set of
MAC addresses. SupposeMi is the ID of registrarABi(∈ R),
andd : R×X → R

+ denotes a proximity function between an
advanced bridge ID and a MAC address,x. (The proximity is
not topological; it is in the space of ID’s.) Finally, leth : X →

X be a “scrambling” function. (h(·) is also a hash function, but
we use the name “scrambling” function forh(·) to distinguish
it from R(·)—the universally known hash function.) Then an
advanced bridge that owns a MAC addressx registers it with
the registrar whose ID is

R(x) = arg min
ABi∈R

d(Mi, h(x)), (1)

i.e., to the registrar whose ID isclosestto the scrambled version
of the MAC address to be registered. If the minimum is not
unique, one of the minimizers is chosen in a deterministic
fashion. Thus, the registrar of given a MAC address can
be unambiguously identified. This particular hash functionis
consistent[9], which helps in fault localization. In particular,
if a registrars fails, then only two other registrars with adjacent
IDs are affected.

We note that in practiceR could be configured based on
some policy. Note also that we do not specify the exact form
of the functiond(., .); an optimal selection of this function is
outside the scope of this paper. The scrambling functionh(·) is
included in the computation to ensure that MAC addresses are
“assigned” to registrars as uniformly as possible. With a good
scrambling function, MAC addresses are assigned to different
registrars with uniform probability. In such a situation, each
registrar stores, on average,N/M MAC addresses whereN is
the total number of MAC addresses present in the network and
M is the number of registrars. This is comparable, again under
the assumption of a uniform distribution of MAC addresses, to
the size of a bridge’s own owning table. In other words, when
all advanced bridges are registrars, a registrar stores about twice
the amount of storage it would need if it was not a registrar.
More generally, when a fractionc of advanced bridges are
registrars, the increase in storage at each registrar is about 2/c.

The registrar maintains an age for each entry. Under normal
operations, the owner advanced bridge regularly refreshesthe
registration of its active MAC addresses by sending refresh
registration messages to the corresponding registrar bridges.

E. MAC Address Lookup

When a designated advanced bridgeA receives a packet
whose destination MAC addressx is not in its forwarding table,
instead of broadcasting the packet, it uses Eq. (1) to compute
the ID of the registrar for that MAC address, say,B, and
simply sends the packet (encapsulated) toB. Upon receiving
this querypacket and decapsulating it, the registrar performs a
MAC address destination lookup in its registration table. If the
address is present, it both forwards the packet (encapsulated) to
the owning advanced bridgeC of the destination MAC address
and immediately sends a message toA notifying it thatC is the
owner advanced bridge of MAC addressx. Designated bridge
A then adds this new association to its forwarding table, and
from this point onwards directly sends to advanced bridgeC
packets (encapsulated) destined forx. Note that this changes
the forwarding decision fromA → B → C to A → C. So
there is a slight chance of packet reordering, which we assume
to be small enough to be acceptable under normal scenarios.

Note that, unlike the schemes proposed in [10, 11] where a
packet goes through potentially several nodes until it reaches
one node with the knowledge of the destination, in our scheme
the query is sent directly to the bridge that knows the location
of the unknown MAC address. This is because we assume that
each advanced bridge knows theentire set of registrars,R
(stored in the registrar table). This is a reasonable assumption



in our environment, but not when considering an Internet-scale
network as is the case in [10, 11].

If the registrar does not find an entry forx in its registration
table, e.g., the owner bridgeC has not yet registered it or
the entry was aged out, then it multicasts the packet to all
advanced bridges, including the advanced bridgeA that asked
for the MAC address association in the first place. However,
upon receiving this broadcast “reply”, advanced bridgeA will
not redistribute it back on the local segment to which the source
MAC address resides, hence avoiding packet duplicates on this
segment. All other designated bridges will, however, decapsu-
late the broadcast packet and further broadcast it on their own
legacy segments. This broadcast provides the necessary boot-up
process to discover new destination nodes.

F. Correctness of Packet Forwarding

We review different possible packet forwarding scenarios
and show that in each case the destination node receives one
and only one copy of a packet. We consider three different
cases: (i) both the source and the destination nodes reside on
the same legacy segment, (ii) the source and the destination
nodes are on different segments, but a single advanced bridge
is the designated advanced bridge for both of them and (iii)
the source and the destination nodes are on different segments
with different designated advanced bridges.

1) Source and Destination on the Same Legacy Segment:
Consider nodesa and b in Fig. 1. If the legacy bridges in the
segment have an entry for MAC addressb, the packet goes
directly to nodeb. If one or more of the legacy bridges do not
have an entry forb in their forwarding tables, then the packet
might be broadcast on the legacy segment. In both cases node
b receives the packet. Now note that whether or not the packet
is broadcast, the designated advanced bridgeA may see this
packet as well. IfA knows (according to its owning table) that
it ownsb, then it drops that packet since it then concludes thatb
anda both are residing on the same legacy segment. However,
if A does not know aboutb, then it queries the appropriate
registrar as mentioned in the previous section. SinceA ownsb,
it is likely that b wont be registered at the identified registrar,
and as a result the packet may be broadcast to the entire network
and come back toA. However, sinceA knows at this point that
a belongs to this legacy segment anda is the source of this
packet, it does not deliver the packet back to this segment. Thus
b does not get a duplicate packet.

2) Source and Destination on Different Segments Connected
by a Single Advanced Bridge:Consider nodesb andc in Fig. 1.
If A knows aboutc (from its owning or forwarding table), it
simply forwards the packet to the appropriate port. However, if
it does not know aboutc, then it again queries the corresponding
registrar. This may either result in receiving a reply from the
registrar thatA itself is the owner ofc, or as in the previous
case the packet may come back toA as a broadcast packet. In
both cases,A broadcasts the packet to every legacy segment
where it is the designated bridge except the segment where the
source,b, resides. Thus, nodec receives one and only one copy
of this packet.

3) Source and Destination on Different Segments Connected
by Different Advanced Bridges:Consider nodesb and d in
Fig. 1. If A knows (from its lookup table) thatd resides on a
legacy segment for whichB is the designated advanced bridge,
it sends the packet (encapsulated) toB, which in turn delivers
the packet tod. The case whereB does not know that it
owns d is discussed with other similar “error” scenarios in
Section IV-G. If A does not know aboutd, it again queries
the corresponding registrar. As before, this results in either
receiving a reply from the registrar thatB is the owner of
d, or getting a broadcast packet back from the registrar. In the
first case,A updates its database and start directly forwarding
to B packets destined tod. In the second case,A sends the
packet to every legacy segment for which it is the designated
bridge except the segment on which the source,b, resides. Since
d is not in any of those segments, this does not result in the
packet reaching its intended destination. However,B also gets
the broadcast packet from the registrar and forwards it ontothe
legacy segments for which it is the designated advanced bridge.
Hence, the target destinationd ultimately receives one and only
one copy of the packet.

G. Pathological Scenarios

In this section, we review a number of error scenarios that
can arise because of failures or state mismatches between
advanced bridges, e.g., differences in timers or aging policies
used across the various tables maintained by advanced bridges.

1) Synchronization Mismatch:Since the owner and the
registrar age table entries independently, it is possible that an
entry is still stored at a registrar, but has been removed from
the owner. In such cases, a registrar might redirect packetsto
a node that does not know how to deal with them. A similar
scenario arises when an advanced bridge forwards a packet to
another advanced bridge based on entries still cached in its
forwarding table, while the owning bridge has aged out the
corresponding entries from its owning (and forwarding) table.

We follow a simple rule to deal with such situations. An
advanced bridge that receives an encapsulated packet carrying
an ultimate destination address it does not know, forwards the
packet onto the legacy segments for which it is the designated
advanced bridge and sends out an error message to the origi-
nating advanced bridge. Upon receiving the error message, the
originating advanced bridge deletes the entry from all its cache
(if the entry still existed).

2) Unavailable Registrar: If a registrar nodeA becomes
unavailable (i.e., the node is either down or disconnected from
part or all of the network), then it is removed from the registrar
tables of all the nodes that cannot reachA. The detection can
happen in a number of different ways, e.g., when an advanced
bridge does not receive a reply to a query, and triggers an
update of the registrar table. This might in turn result in a
broadcast message to all other bridges. Similarly, an ownercan
detect a down registrar after sending a registration request and
take similar actions. A liveness mechanism between advanced
bridges in the form of hello messages will typically also be
used and provide another detection capability: if hellos are not



received from an advanced bridge for some period of time, it is
considered dead. Note that none of the active flows are affected
by the demise of a registrar since their entries are already in
the active cache of the corresponding advanced bridges.

After a registrar node is determined to be unavailable, the
universally known functionR(·) is modified by purging the
dead registrar node from the setR. During the time the function
R(·) is being modified, or when the advanced bridges do not yet
know that one of the registrars is down, packets may be sent
to it, which will be dropped. Such occasional packet drops,
while unavoidable, can be minimized with rapid detection and
proactive notification of a down registrar node.

3) Unavailable Owner: If an owner advanced bridge dies
or loses connectivity to a set of other advanced bridges,
then all the end-nodes it owned become unreachable to those
advanced bridges. Eventually all the corresponding entries in
other bridges (advanced and legacy) will be deleted throughthe
aging process. Alternately, any node that detects any (owner,
registrar, or designated) advanced bridge as dead can proac-
tively send a broadcast message that removes the entries from
all the advanced bridges containing the dead node. In addition,
advanced bridges connected to legacy segments for which the
dead bridge was the designated advanced bridge trigger the
election of a new one.

V. PERFORMANCEEVALUATION

This section compares the performances of the proposed and
the legacy schemes. We show that the proposed scheme indeed
significantly reduces broadcast load, and more importantly
that its performance is relatively insensitive to various system
parameters such as cache sizes and traffic patterns.

A. Simulation Environment

The simulations are conducted using an in-house packet level
simulator. Each data point is obtained by running the simulator
for 10 sec of simulation (virtual) time. Unless stated otherwise,
the network consists ofM = 30 bridges. All of them are
advanced bridges in the DHT scenario and all are legacy bridges
in the legacy scenario. In the DHT scenario, advanced bridges
register the MAC addresses they own once every 100 ms. To
reduce control traffic, only differential registration updates are
sent. In both scenarios, the network boots up with empty tables
(caches), which are populated as the simulation progresses. The
Least Recently Usedpolicy is used as the cache replacement
strategy with each cache entry aged with 10 ms granularity.
Cache entries are refreshed each time they are the target of an
address lookup. The maximum age of the entries is more than
10 sec, the duration of each simulation, so that the results reflect
cache misses due to cache-overwrites. Shortest path forwarding
between the bridges is used in both cases for a fair comparison.
Traffic is generated in the form ofsessionsbetween source and
destination nodes. The session arrival process is taken to be
Poisson with rateλ = 5000 (for the whole network), with
source and destination MAC addresses selected in most cases
with uniform probability among all addresses present in the
network. In each session, the source generatesn consecutive

packets that areτ = 10 ms apart and are acknowledged by the
destination after 1 ms. Therefore,2λn packets are generated
per second. Both the number of addresses,N , and the session
size, n, are varied across simulations. These scenarios are
not necessarily meant to emulate actual traffic patterns, but
instead to allow us to systematically explore performance,and
in particular sensitivity to broadcast traffic. The main metric
of interest is the ratio of measured network load to generated
network load that are in units oflink-usage; i.e., the cumulative
number of links traversed by packets. The measured network
load indicates how many links have actually been traversed by
a packet, whereas the generated network load indicates how
many linkswould havebeen traversed if no address resolution
was needed. For the DHT scenario, the network load also
includes the overhead of sending periodic registration messages
(only incremental changes are sent). The default size of the
forwarding table is 100 and that of the registration and owning
tables (in the DHT scenario) are 1000. A small forwarding table
produces a realistic number of cache-misses with a reasonably
low packet arrival rate and number of MAC addresses, allowing
us to evaluate the relative merits of the schemes without the
need for very long simulations. The effect of varying the
forwarding table size is explored in Section V-D. Note that
larger registration and owning table sizes are not unreasonable,
since they reside on the control path where memory is slower
and, thus, cheaper.

B. Reduction in Network Load

We first study the scalability of both schemes by varying
N , the number of MAC addresses present in the system. The
session size is set ton = 1, i.e., a random traffic pattern that is
expected to exacerbate cache misses and stress the impact of
address resolution broadcasts. This is demonstrated in Fig. 4:
as N increases the impact of broadcast traffic grows rapidly
in legacy systems, even if it eventually levels off (when every
packet results in a cache miss). In contrast, the DHT scheme
exhibits a much more progressive traffic increase because ofits
lower reliance on broadcasts.

C. Effect of Session Length

This section investigates the impact of the session length,n.
We repeat the previous scenario, but with session lengthn = 5.
i.e., now 5 consecutive packets spaced 10 ms apart constitute
a session. The results are plotted in Figure 5(a), again as a
function of the number of addresses,N . As expected, the longer
session size helps reduce the broadcast load, but nevertheless
we see that those benefits apply equally to both schemes (a
reduction in load by a factor of approximately 2), with the
DHT scheme still significantly superior.

To further explore the impact of session length, we simulate
next a system with a fixed number of addresses,N = 50, 000,
but varying the session size,n, as shown in Fig. 5(b). The re-
sulting behavior is interesting if not completely surprising. Asn
initially increases, the fraction of the network load contributed
by cache miss related broadcasts decreases as expected, since
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Fig. 4. Reduction in network load.
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Fig. 5. Effect of different session sizes.

the cache entry created by the first reply packet is now lever-
aged to avoid broadcasting subsequent packets in the session.
This behavior, however, reverses asn increases further. For
larger values ofn, the fraction of traffic attributable to broadcast
traffic starts rising again. The (conjectured) explanationfor
this behavior is that asn grows, so does the overall traffic
intensity in the network, and in particular the average number
of activesessions. This is because, the session arrival rateλ is
kept fixed, while the session duration, as measured throughn,
increases. As a result, the number of active sessions increases
with n, and eventually exceeds the capacity of the cache size so
that entries created for new sessions actually push-out entries
associated with still active sessions. This in turn triggers an
increase in broadcast traffic, as each session now triggers more
than one broadcast instance. Both DHT and legacy schemes
exhibited this behavior, but again because of its lesser reliance
on broadcast, the DHT scheme was much less sensitive to this
phenomenon.

To confirm our findings, we repeated the experiments with a
forwarding table of200, and observed the same behavior except
for a shift in the location of the inflection point that occurred
at n = 9 instead ofn = 3. We omit the plot due to space
constraint.

D. Effect of Cache Size

We explore next the effect of different forwarding cache
sizes, which we vary from 20 to 1200 withN = 50, 000
and n = 5. The results are reported in Fig. 6 and show
that performance improves for both schemes as the cache size
increases, with a threshold beyond which further increases
offer only limited benefits. The presence of a threshold in the
legacy scenario is not unexpected as the following qualitative
explanation shows. Letρ be the (average) rate with which a new
entry is pushed downwards in the cache of a bridge by the new
entries. I.e.,ρ is the rate of “new” (not already in the cache)
packet arrivals at the bridge. Also letT be the time between
when a cache entry is created by an ACK packet and when
the next packet in the session arrives at the bridge. Clearly, the
cache-entry made by the ACK packet will go downwards about
ρT positions within this time. If the cache size is more thanρT ,
then the cache entry is retained when the next packet arrivesand
no cache-miss occurs. But when the cache size is reduced (just)

below ρT , cache misses occur, each resulting into a broadcast,
and thus increasing the network load. However, each broadcast
itself also increasesρ since the packets that did not go to a
bridge before now goes there, increasing the rate of new cache
entry creation, and thus increasingρ for that bridge. However,
this increase inρ in turn increases the rate of cache miss due
to the increased difference between the cache size andρT .
Thus a positive feedback effect takes place due to which the
fractional network load increases very rapidly. However, this
increase inρ is bounded above since a packet goes to at most
all the bridges in the network. Past this point, as the cache size
decreases further, the network load still increases due to the
difference inρT and the cache size, but it ultimately reaches a
maximum (when almost every packet is broadcast) as the cache
size is close to 0. Finally, note that the difference in fractional
network load between the legacy and DHT scenarios in the
large cache regime occurs due to the (possible) broadcast of
the first packet of a session in the legacy scheme.

We confirmed our findings by repeating the simulation with
λ = 10000. We observed the very same behavior, but the
threshold shifted to 280, instead of 160. We omit the plot due
to space constraint.

E. Effect of Number of Destinations

In the traffic model used so far, all end-hosts are potential
destinations of the packets. We now explore the effect of
having only a few end-hosts as destinations or traffic sinks.The
simulation results are reported in Fig. 7. Here, the number of
destinations,ν, is varied from 5 to 2500;n = 5, N = 50, 000;
and the size of the forwarding cache is set to 100. For very
small ν—in particular for ν = 5 and25—the legacy scheme
performs better. In this regime, the destination addressesare
always present in the forwarding cache, and furthermore the
low cache churning rate also ensures that the source addressof
a session’s first packet can be entered in the cache and retained
so that it is available for the returning ACK to use. Thus there
is hardly any broadcast in this regime. Since the legacy scheme
has no overhead other than broadcasts, it behaves better than the
DHT based scheme. However, the legacy scheme quickly loses
this advantage with increasingν; ν = 50 already behaves as
when all end-hosts are potential destinations. In this regime, the
cache already experiences some thrashing and a large number
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Fig. 6. Effect of Cache size.
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Fig. 8. Effect of an advanced bridge going down.

of packets are broadcast. The DHT based scheme, is again less
sensitive toν.

F. Effect of an Unreachable Advanced Bridge

As discussed in Section IV-G, there are several error condi-
tions for the proposed mechanism. Due to lack of space, we
only show the effect of an advanced bridge going down.

We run an advanced mode simulation withN = 50000,
n = 5. After the simulation time has reached about 400 ms,
we shutdown one of the bridges,A. As a result, all the packets
sent toA are lost. In particular, query packets sent toA are not
replied back. When a nodeB who sent such a query does not
receive a reply before a timeout, it decides that the registrar is
down. For simplicity, we use a “one strike out” rule; in practice
usually more than one lost query will be used to arrive at such
a decision. After deciding that the registrar bridge is down,
bridgeB sends a multicastflushmessage to all other advanced
bridges. BridgeB and every bridge that receives this flush
message removeA from their registrar tables and recompute the
new registrar for the addresses that were registered toA. After
that, new registration messages are sent out for those affected
addresses. Since all these events, including the sending ofnew
registration messages, occur within a very short time period,
the network load surges when this happens. The corresponding
simulation results are reported in the upper subplot of Fig.8. In
this figure, the surge occurs about 17 ms afterA is shutdown
and lasts for less than 1 ms. The initial delay depends on when
a cache miss occurs for a destination address for whichA was
the registrar node.

The surge in the network load can be avoided by randomly
delaying the flush message to other nodes or registration mes-
sages. However, the cost of such a random delay is that during
this time some nodes still may send query packets (which
contain data) toA that are lost. This trade-off is shown in
Fig. 8, lower subplot. Here we used a random delay uniformly
distributed between 0 ms to 20 ms. Clearly, the surge has
reduced almost to the normal level. The period of high load
now lasts for about 20 ms, as we expect. In this case, 6 query
packets were lost compared to the earlier case where only one
query packet was lost.

VI. CONCLUSION

This paper proposed and evaluated a simple address res-
olution mechanism aimed at reducing Ethernet’s reliance on
broadcasts to resolve unknown addresses. The scheme is based
on a simple adaptation of distributed hash tables that enables
address resolutions using a single query. Advanced bridges
are used to implement the scheme in a manner that remains
backward compatible with legacy Ethernet. The mechanisms
and protocol implemented at advanced bridges were outlined,
and the performance of the scheme was evaluated along several
metrics and compared to that of legacy bridges. The results
showed that the approach was successful in substantially re-
ducing broadcast induced network load in networks involving
a large number of addresses. More importantly, it was robust
across a broad range of configurations in terms of cache sizes
and traffic patterns. There are clearly many missing details
before a full specification is in place, and additional evaluations
are in order, but the approach appears to offer a promising
direction for extending Ethernet’s scalability while preserving
its plug-&-play nature.
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