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1. Although much has been written concerning the multiplication of
series according to Cauchy's rule, the last word has not yet been said upon
the subject, and a number of interesting questions connected with it
remain unanswered. In this paper I prove a few simple theorems which
I believe to be new. In § 4 I prove that a sufficient condition for the
multiplication of two convergent series Sa,j,, 2Z>,( is that nan and nbn

should each tend to zero as n tends to infinity. In § 8 I generalise this
result by showing (by the aid of slightly more elaborate analysis) that it is
sufficient that the absolute values of nan and nbn should have an upper
limit. In § 7 I establish a generalisation of a somewhat different kind,
showing that the conditions

where <p(n) is one of a general class of functions of which logn is typical,
are sufficient.

I have also (§ 13) stated and indicated the proofs of some corresponding
theorems for integrals, and I have added (§§ 12, 10) a generalisation of
Mertens' theorem and new proofs of some results of Pringsheim's con-
cerning series of a special form. I have thought it worth while to add
this last section, although it contains no new results, because the class of
series to which it refers is the most natural and important of all, and
because, so far as I know, the results have never yet been proved with
anything like the simplicity which is desirable and attainable.

I wish to state explicitly that I have not proved, either positively or
negatively, but particularly negatively, as much as I think ought to be
capable of proof. In § 11 I indicate some questions which seem to me
of considerable interest, but which I am at present unable to answer.
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2. I shall adopt the notation of Mr. Bromwich's Infinite Series
(pp. 82 et seq.); i.e., I shall denote by A, B, G the series

01 + 02 + 03+-••. &1+&-2+&3+..., ^ + £2 + 03+...,

where cn — alhn+a.2bn-1-\-...+anb1.

I shall also use the letters A, B, C in equations or inequalities to denote
the sums of the series, when they are convergent; and I shall denote the
sums of the first n terms of the series by An, Bn, Gn, so that, e.g.,

An = a1+a2+...+an.

3. The classical results in connection with the multiplication of series
are the following:—

(1) Abel's Theorem—If all three series are convergent, then C =• AB.

(2) Cauchy's Theorem.—If A and B are absolutely convergent, then
C is absolutely convergent.

(3) Mertens' Theorem—If A is absolutely and B conditionally con-
vergent, then C is convergent.

In addition to these results, a number of theorems have been proved
by Pringsheim, Voss, and Cajori.* These relate to the case in which A
and B are conditionally convergent, but one at least becomes absolutely
convergent when its terms are associated in certain groups, the number in
each group being less than some fixed number. I shall return to some of
the simplest and most important of these theorems later on.

4. THEOREM A.—If A and B are convergent, and

nan -> 0, nbn. ->• 0

as n -> oo , then C is convergent.

The proof is very simple. For

Cn = a1Bn-{-a2Bn-x-\-...-\-anBl =

Applying Abel's partial summation lemma to the first line, we obtain

* For references, see Bromwich, Infinite Series, p. 87.
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If N is such a function of n that N and n—N tend to infinity with n, then

(1) ANBn+i-N-*AB.

This is certainly the case if Chi < N < Hn, where G and JEZ" are constants,
and 0 < G < H < 1. But then

| A1bn+A2bn-l+...+AN-1bn+2.N\ < K{N-1)P,

\B1an+Bian-i + ...+Bn-NaN+] | < K(n—N)a,

where K is a constant, and a and /3 are the greatest of the moduli of

respectively. In virtue of the restriction imposed upon N, we have

N— 1 < \n, n—N < \n,

where X is a constant. And we can choose ?i0 so that

\na\< ejXK, \n$\< ej\K,

for n ^ n0. It follows that for n ^ n0, we have

N\ < e,
(2)

and from (1) and (2) the conclusion follows.

5. This theorem is not of very wide application, the range of series which are only con-
ditionally convergent, and yet satisfy the condition naa—>0, being of course comparatively
narrow. The simplest of such series are those of the type

!_+_J
2 * (2) 3 * (3) - '

where <p (n) is any function which tends steadily to infinity with n, but (like log n or
logn log log TO) SO slowly that the series is not absolutely convergent. Or, again, the series

2TO-1-' (a>0)

is known* to oscillate finitely, so that, if <p (n) is any function which tends steadily to infinity

with n, the series 2 _ ! _ _ r cos (a log n) = sin (a log n)
n1**' <p(n)' n<p (n) ' n<p (n)

are convergent. This result may be extended (as in Mr. Bromwich's paper printed earlier in
this volume) to such series as c o s

sin(«log*+m)
*" n logn log37i •••

where log2n = log logn, log3n = Ioglog2?t, ...,
and generally to series of the type

f j n ) c o s | / ( ) }
,(„) sin W n>
«,,(„) sin

• See Landau, Crelle, Bd. cxxv., pp. 105-7, for references in connection with this series.
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where /(w) is a function of n such that f(n), f (n) are monotonic, f(n) -> oo , / (n) -> 0, and

is convergent. Another interesting type is

r ( l + n) 4>(7i)"

The theorem, however, seems to me of some interest in spite of its comparatively narrow

range of applicability, on account of the simplicity of the conditions and the fact that no use

whatever is made of the notion of absolute convergence. All of Pringsheim's theorems depend

on the possibility of securing absolute convergence in one at least of the series A, B by the

insertion of brackets in some prescribed manner.

6. Series for which nan —>• 0 have another interesting property first discovered by Tauber.*
The converse of Abel's theorem on the continuity of power series holds for them—that is to
say, the convergence of 22 a,, may be deduced from the equations

lim nan = 0, lim 2a,,x" = A.
>•—>i

The fact that the simplest proof of Abel's theorem on the multiplication of series is derived
from his theorem on the continuity of power series suggests that Theorem A might be deduced
from Tauber's theorem. But this proves not to be the case, for the equations

lim nan — 0, lim nbn = 0,

do not involve lim ncn = 0.

Suppose, e.g., that an — bn = ^ ^

so that cn = (—1)" 5
(r +1)(» + 2 -r) /{ log (r + 1) log (n + 2 - r)} '

It is easy to see that, if n is odd, the value of r which makes log (r + 1) log(n+ 2—r) greatest

is r = £ (n +1), so that

1 » 1 _ 2 »rl 1 K

!~r) (n + 3) log {|(n + 3) | 2 r n '

and nc»i certainly does not tend to zero. In fact this line of argument suffices to prove that

C is convergent only when the more stringent conditions

n v^log ») a» —> 0, TO v/(log n) 6,, —> 0
are satisfied.

7. Theorem A may be generalised as follows. It is easy to verify
that if \jr(n) is any function of the form

(1) (log n)a (log log nf (log log log n)y ...

which tends to infinity with n, then

, / J n ]

we may indeed replace the \fs(n) which occurs inside the curly bracket by
any other function of n of the same type as \p- (n).

* For references see Bromwich, Infinite Series, p. 251.
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THEOREM B.—If A and B are convergent, and

n^(n)a*0 * °

where \fr(n) is any Junction of n of the form (1), then C is convergent.

We have, as in § 1 above,

Cn—ANBn+j-x = A1ba+A.2bn-.i+.

-\-Bx an-\-B2 an-\ + . . .

and I Cn-ANBll+l-N\ < K\(n-N)a+(N-1)0},

where a and /3 are the greatest of the moduli of aN+i, ##+2, ..., an and
bn+2-Nt bn+3-N, ..., bn respectively.

We choose N to be of the same order of greatness as nf\p-{n). Then,
given e, we can choose n so that

and so | Cn-ANBn+1.N

n+2-JV '
I N\ls(il) }

\ |
n < Ke.*

From this the theorem follows. The simplest and most interesting
case is that in which

where 0 < a < 1 (if a > 1 the first series is absolutely convergent and
the result is a mere corollary from Mertens' theorem).

8. Another generalisation of Theorem A, in a somewhat different

direction, is the following :—

THEOREM C.—If A and B are convergent, and

| nan | < K, | nbn | < K,

for all values of n, then G is convergent.

* Of course K is not the same constant in all these inequalities.
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It is known* that

Hm c1+ca+-+g» = AB

It is also known t that,if a series Ec« is such that (C1 + (72+... + Cn)/?i has
a limit as n -* oo, then the necessary and sufficient condition for the con-
vergence of the series is

lim ... +ncn _ 0 .
n

this indeed follows at once from the identity

C! + 2C2+ 3C3+ ... +WCW _ M+l c _
n n n n '

Let us denote the sums

a 1 +2a 2 + . . .+na n , b1-\-2b2-\-..--\-nbn, c1+2c2+...+?icrl

by An, Bn, Cn respectively. It is easy to verify the identity

Cn+Cn =

Also (71+C2+... + Cri = n(AB+yn),

•where yn -> 0 as TI -> QO , and so

It follows that the necessary and sufficient condition for the convergence
of G is that

(1)

where

X = alBn+a<LBn-x+...+anBx,

• Bromwich, Infinite Series, p. 83.
t This result is due to Tauber and Pringsheim. See Bromwich, Infinite Series, p. 251,

for references.
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This condition can be written in a variety of different forms. Thus,
applying Abel's lemma to X and Y, we obtain

f X = blAn+2b2An-l+...+nbnA11
(8) -I

[ Y = a,Bn

Further, if we put An = A+en, Bn = B-\-rjn,

so that en->-0, >?ra->0, we see that

X = ABn+b1en+Zbien-i+ ...+nbnelt

Y =

Since An/?i, Bnjn each tend to zero, we see that the necessary and sufficient
condition for the convergence of C is that

(4) (I

where

(5) X! = 61e^+262en_i + ...+n6,le1, Y' = a1tin+2aitin-i+...+nanqv

But, if | nan | < K and | nbn \ < K, it is clear that

j I + • • • + I eM I . A

n n

and similarly | Y'jn \ -*• 0.

Hence the theorem is established.

9. The simplest example of the use of this theorem is obtained by
applying it to the series

~~ a a-\-b a-\-2b a-\-nb

We see that any two series of this type, whatever be the law of arrange-
ments of the signs, may be multiplied together, provided only they are
convergent. A simple example is obtained by squaring the series

(i) W-i+*+H-*-*--.
in which the number of terms in each group of signs increases by one at
each step. That the series is convergent is easily proved by observing
that if we subtract from it the series
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we obtain an absolutely convergent series, and that the series (2) is conver-
gent and equal to OT ( _ _ i r

The corresponding series in which the numbers of terms in the groups
are lfc, 2% 3fc, ..., where k is any positive integer, is also convergent. On
the other hand, if the numbers are h, &2, A;8, ..., the series oscillates,
behaving very much like the oscillatory series

^ cos (a log n) ^ sin {a log n)
n n

10. It will be convenient to give at this stage the simple proof of some
of Pringsheim's results to which I alluded in § 1. The most important
case, and the only one which I shall consider here, is that in which

an = (—I)71"1 o», bn = (-1)™"10n,

where an and fin are positive and decreasing. The generalisations of
Cajori are rather artificial, and it seems to me worth while to establish
the really important results in as simple a way as possible; and
Pringsheim's own proofs are far from being the simplest possible.*

Pringsheim's results may be stated thus : if an, (3n tend steadily to
zero, we have the following alternative sets of conditions for the multipli-
cation of y 1v»_i y, -lyi-l/O

by Cauchy's rule :—

(1) it is necessary and sufficient that

y« = | cn | = a1/3n+a2/3n_1-K..-r-a7l/31-*O ;

(2) it is necessary and sufficient that

a —> 0 •

(3) it is sufficient but not necessary that

should be convergent;

• A simpler proof of one of them is given by Mr. Bromwioh, Infinite Series, pp. 86, 87.
Even this proof does not seem to me as simple as it may be made.

SBH. 2, VOL. 6. NO. 1001. 2 E
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(4) it is necessary but not sufficient that

should be convergent for any positive value of s.

These results may be proved as follows. "We observe first that, if

An = A+(-l)n
Pn, Bn = B + ( - l)n crn,

we have 0 < pn < an+1, 0<a-n< (3n+i.

Also Cn = axBn+azBn-y + ...+anBx,

( - I f (Cn-AnB) = a1<rn-aicrn_l + ...+(-l)n

and so \Cn—AnB\ < a1/3n+i-|-a2/3n+...-f am/32 = yn+i —an

From this it follows that the condition yu->0 is sufficient to ensure
Cn ->• AB, and that the condition is necessary is obvious. This establishes
Pringsheim's theorem (1).

Again yn =

similarly yn >•

Hence the conditions (2) are necessary.

Also, if v = £ (w-|-l) or £w, according as w. is odd or even, we have

yn =

and from this it follows that the conditions (2) are sufficient.

Finally, if 11anfin is convergent, we can choose î0 so that

. + aI,/31,< e (jio<n<v),

and, a fortiori, (aM+aM+1 -f • • • + av) Sv < e (/A0 < M < i>).

But when /* is fixed we can choose vQ, so that

(a1+a2+. . .+a( J_i) J8v<e (i/0 < v),

and so (ax+a2-f-... +av) (3V < 2e (i/0 < v).

Similarly, we can prove that the second of the conditions (2) is satisfied.
Hence condition (3) is sufficient; that it is not necessary has been shown
by Pringsheim by an example.*

* The example is given by o» = £., = {(n +1) log (n +1)} "*.
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Finally, as regards (4), I have nothing to add to Pringsheim's own
proof. Since

the condition nan (3n -> 0

is necessary. Thus w1+*(an/3n)
1+8 -*0 ,

and so 2(onjSn)
1+s is convergent; i.e., (4) is a necessary condition.

11. Theorems A, B, and C, taken in connection with Pringsheim's
theorems, suggest questions of some interest to which I am unable at
present to give a definite answer.

Let us, for simplicity, consider the special problem of the multiplica-
tion of the two series

± l - s ± 2"8 + 3" s ± ..., + 1~{ ± 2~' ± 8 - ' ± ...,
where all that is known about the signs of the terms is that they are such
as to ensure the convergence of each series.

If 0 < s ^ £, 0 < t ^ £, or more generally, if s, t and s-j-t are all
positive and not greater than unity, we can certainly choose the signs so
that A and B are convergent and C oscillatory. It is enough to take the
alternating series l~s—2~s+..., I " '—2" '+ . . . . The modulus yn of the
n-th. term of the product series is

2 r-s(n+l—r)~\

which tends to infinity with n, if s-f t < 1, and to the finite limit*

I1 dx _ IT

0 xs (l—x)1-'~ sins-Tr'

if s+t= 1.

On the other hand, if s =• 1, t = 1, Theorem C shows that the product
series is convergent for all arrangements of the signs. But the argument
by which it was proved does not appear to be capable of extension.

Now let us consider such a case as that in which s =-1 = f, or s = £,
t =• 1. Then either (a) the product series is always convergent, or {b) it
is possible to choose the signs so that the product series is oscillatory. My
own opinion is that (6) is true; i.e., that when s+f>l, but at least one

* In connection with the representation of infinite integrals as the. limits of finite sums,
see a paper by Mr. Bromwich and myself, Quarterly Journal, Vol. xxxix., p. 222.

2 B 2
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of s and t is less than 1, we can make A and B convergent and G oscillatory
by a proper choice of signs. But I am unable to support this conclusion, by
an actual example. I wish merely to point out the considerable margin of
uncertainty that still remains. In all such cases- as these, of course,
Pringsheim's results show that the product of the alternating series is
convergent:.

It is easy to see that examples of the kind desired are not likely to be
very readily found- For the conditions

*Jn an -*- 0, *Jn bn -> 0

are sufficient to ensure cn -*- 0,*

since | c" | can never be greater than in the alternating case. Moreover,
the series 2cn is in any case summable by Cesaro's mean value, i.e.,

exists. Now series whose w-th term tends to zero, and which are
summable, but not convergent, certainly exist—examples are given by the
series . . . -viv-n

y cos y w y (—l)LVftJ

J ' J
But such examples are not particularly obvious, much less is it obvious
how to construct examples in which the general term is of the form, of
the general term of the product of two convergent series.

12. I take this opportunity of also stating the following generalisation
of Mertens' theorem, which I have not seen before, although it is not
strictly relevant to the main purpose of the paper.

If A is absolutely convergent, and B is a finitely oscillating series
whose n-th term tends to zero, then G is a finitely oscillating series; and
if the limits of oscillation of B are fix and /32, those of C are
and

To prove this, we go back to the equation

Let us suppose that A is absolutely convergent, and that | Bv \ < K for
all values of v.

* It will be remembered (§ 6) that the conditions

7iv/(log n) aa ->• 0, n^/flog n) bn -*• 0
ensure ncn -> 0.
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First choose No so that

(1)

for N ̂  No. A fortiori, we have also

(2) \A-AN\<e/K.

When any value of N greater than No has been determined, we can choose
n0 so that

for rc> n0. From (1), (2), and (3) it follows that

| Cn-ANBn+1.N | < 2e,

| Cn-ABn+1-N | < 3e,

for n ^ ?i0, which establishes the result. In the particular case in which
A. = /?2> we obtain Mertens' theorem. It should be observed that the
theorem is not true if the condition bn-+0 is removed. Suppose, for
example, that an > 0, and form the product of

a 1 + a 2 + a 3 + . . . , 1 — 1 + 1 — ....

We easily see that C2n = a2-\-ai-\-...-\-a2n,

so that C oscillates, but not between the limits prescribed by the theorem.
In particular the product of

*+*+*+..., 1-1+1-...,
converges to the sum 1.

13. I shall conclude by stating the theorems for integrals which are
analogous to some of those for series discussed in the preceding pages.
But, as these theorems are of much less importance, I shall only outline
the proofs.

Suppose that a(x) and b(x) are continuous functions, such that

100 /"OO

a(x)dx, \ b(x)dx
0 Jo

are convergent and have the values A, B. And let
c(x) = [ a(t)b(x—t)dt= fa{x — t)b(t)dt.

Jo Jo

A (x) = f* a {t) dt, B {x) = \*b (t) dt, C (x) = [ c (t) dt.
Jo Jo Jo
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Then it is easy to prove the formulae

C(x) = \XA(t)b(x-t)dt= [*A(x—t)b{t)dt
Jo Jo

= [a(t)B{x-t)dt = \"a(x—t)B(t)dt,
Jo Jo

[c(t)dt = [ A(t)B(x-t)dt = [ A(x-t)B(t)dt.
Jo Jo Jo

It is moreover easy to prove that, if A (x) and B(x) tend, as «c-> oo, to
limits A and B, then

lim — [ A{t)B(x-t)dt = AB.
»->*> X J o

It follows that:—
—- oo

b(x)dx = B,
o

then lim —I dt\ du\ a(w)b(u—w)dw = AB.
*-** x Jo Jo Jo

This is the analogue of Cesaro's theorem that

whenever A and B are convergent.

From this the analogue of Abel's theorem follows at once; viz.,

(2) If [ dx[Xa(t)b(x — t)dt
Jo Jo

is convergent, its value is AB.

There is no difficulty whatever in establishing the analogues of Cauchy's
and Mertens' theorems, viz., that

(3) If A and B are absolutely convergent, so is C ;

(4) If A is absolutely and B conditionally convergent, C is (absolutely
or conditionally) convergent.

Corresponding to Theorem A we have

(5) If A and B are convergent, and xa(x)^>0, xb(x)^-0, as a;-> QO,
then C is convergent.
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Corresponding to Theorem B, we have

(6) If 0(x) = (log x)a(log2xY... (log/tx)K -*• QO with x, and

then C is convergent

Finally, we can show that the necessary and sufficient conditions for
the convergence of p.

f(x)dx,
Jo

1 fxare (i.) — I dt
o Jo

« a
and from this we can deduce the analogue of Theorem C, viz.

(7) If | xa(x) | < K, | xb (x) \ < K, then G is convergent.


