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On Systems of One-Vectors in Space of n Dimensions. By W. H.
YOUNO. Received March 26, 1898. Provisionally com-

municated April 7, 1898.

In the present paper a system of one-vectors* in space of n
dimensions is reduced to a normal form.

The space in question is supposed to be flat, i.e., of zero curvature.
I use St to denote a flat space of k dimensions contained in the

whole space Sn.
The normal form in <S'im_i consists of m one-vectors, the line of

action of one being arbitrary. In $2,,, the normal form again consists
of vi one-vectors, lying, however, in a covariant Slm-\-

In the course of the discussion certain other properties of the
system are obtained. The whole subject is closely connected with
the theory of linear complexes in space of n dimensions. I here
confine myself to giving a geometrical definition of line coordinates
in such a space, and a simple geometrical deduction of the known
quadratic equations between them.

It is well known that in SH we can construct, in an infinite number
of ways, a fundamental (w + l)-pyi*amid which does not lie in any
space of lower dimensions.

THEOREM I. Any one-vector through an arbitrary point 0 may be
replaced by n one-vectors along lines joining 0 to the n points of any
fundamental n-pyramid lying in any Slt.\ not passing through 0.

These n points together with. 0 define a fundamental (n + 1)-
pyramid in the Sn.

Take the plane through the line of action of the one-vector and one
of the edges meeting at 0. This plane meets the Sn.\ determined by
the remaining (n— 1) edges through 0 in a straight line. We can
then, by the parallelogram law, replace our one-vector by two
components, one along the first edge, and one in the Sn.x. In this

* Tho reader in ay, if he please, niihstitute the word " fo rce" for "one-vector,"
throughout the prcNont paper, which in, in part, introductory to one on vectors of
a more ^oiusral nature. In a pann-entitled " Sulla Statica dui Curpi lii^uli nello
Spazio a (Juattro Jjimeimioni," Uwmuit. ilt 11,'Uityihii, xxxiv., 1S9G, Home of the
properties iu.:c given are discussed for four dinicusioub by I)e Francesco.
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S,,_i the n vertices of the original (» + l)-pyramid determine a
fundamental »-pyramid, and the component of our one-vector in
this S,,-i goes thiwigh one of the vertices, viz., 0. Thus, by induction,
the theorem follows, it being certainly truo when n = 2.

The above tacitly assumes that the one-vector does not lie in any
8h of the fundamental (n + 1) -pyramid. If this be the cnse, we
only have to effect the reduction for the coi-responding (k + 1)-
pyramid, the components corresponding to the remaining edges
through 0 vanishing.

THEOREM I I . Any one-vector may be replaced by one-vectors along the
edges of the fundamental (n + Y)-pyramid.

Let us assume that the line of action of the one-vector does not lie
in any Sk of the fundamental (n + 1) -pyramid. It must intersect
at least one of the $,,_i's of the pyramid in a point at a finite distance.
Join this point of intersection to the vertex So of the pyramid opposite
to this #,,_i. The plane through the one-vector and this line will
meet the Sn-i in question in a straight line through the same point of
intersection. Hence, by the parallelogram law, the one-vector may
be replaced by two one-vectors, one through the So and the other in
the 8n-i. By Theorem I. the former component may be replaced by
components along the edges through the So. The possibilitj' of the
reduction then depends on replacing the one-vectors in the <S,,_i by
components along the edges of the fundamental («+1) - pyramid
which lie in that S,,.,. But these are the edges of an «-pyramid
which is a fundamental one in that <S,,_i. The required result follows
by induction, for it obviously holds when n = 1.

THEOREM I I I . A given system of one-vectors may be replaced in one
and only one tony by one-vectors along the edges of a given fundamental
(n + l)-pyraviid.

The possibility of this reduction follows from Theorem II.
To prove the uniqueness, we remark that, if two modes of reduction

are possible, reversing one system so obtained and combining with
the othei*, we obtain.a system in equilibrium.* This system of one-
vectors along tho edges may be divided into two classes, viz., thoso
through an arbitrarily chosen vertex and those in tho opposite &'„_,
of the fundamental (» + l)-pynunid. Unless the former nil vanish,
they can, by repeated application of the parallelogram law, be reduced

* A system is said to balance, or to be iu equilibrium, when, by introducing
suitable pjiirn of equal and opposite one-vectors and by repeated applioutiou of tho
parallelogram law, it can bo reduced to two equal and opposite one-vectors.
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to a single one-vector through the chosen vertex. This one-vector,
lying outside the Sn.u cannot be replaced by, and therefore also
cannot balance, a system of one-vectors in it. The theorem now
follows by induction.

COR. I. A system of one-vectors has i (n + 1) n " coordinates" viz., the
equivalent one-vectors along the edges of the fundamental ( « - f l ) -
pyramid. There are, moreover, \ (n+1) n necessary and sufficient con-
ditions of equilibrium, viz., each coordinate must vanish.

COR. I I . There are h (n — 1) (n — 2) necessary and stifficient conditions
that a given system of one-vectors should be equivalent to a single one-vector.

This is evident if we reflect that there are co2""2 straight lines in
8,,, and that therefore a straight line has (2?i— 2) independent
coordinates; a single one-vector therefore (2«—1). The required
number is got by subtracting this number from the number of
coordinates of a general system.

COR. I I I . Any system of one-vectors in an 8lt may be replaced by a
one-vector through any arbitrary point 0, and a system of one-vectors in
an arbitrary 8H.\ ivhich does not pass through 0.

In a special case the one-vector may of course vanish, or the
system in the »S',,_i be in equilibrium.

We now proceed to generalize certain known theorems about
systems of one-vectors in 6'3. It will be convenient to consider first
the cases of 6'4 and S5.

THKOKKM IV. Any system of one-vectors in St is equivalent to two
one-vectors, and has as covariant the <S'a containing them.

By Cor. ITT. to Theorem ITT. such a system is equivalent to a
one-vector thi-ough an arbitrary point 0 and a system of one-vectors
in an >S';1. This latter system, if not reducible to a single one-vector, is,
us is well known, equivalent to two one-vectors, one of which may be
chosen to act along any line we please in the *S'3. Take it to act along
a line through the point in which the one-vector through 0 meets the
)S3. Then it may be compounded with the latter one-vector, and thus
the system is reducible to two one-vectors, which, in general, do not
intersect.

These two one-vectors may be replaced by any other suitable pair
in the *S':) determined by them ; viz., the line of action of one of the
two one-vectors may he chosen arbitrarily in the »SS, the line of action
of the other and the magnitude of' both one-vectors being then
determined. The iS'3 itself is a covariant of the system.
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In fact, if it woro possible by reducing in another way to get a
Becond pair lying in a different Ss, we could reverse this pair and
obtain with the first pair a system in equilibrium. Since, however,
two iS3's intersect in an S2, Ave can arrange that one one-vector of our
second pair should lie in this S.2, and the other accordingly not. We
should then have a single one-vector not in the first 8&, balancing
one-vectors lying in it, which is obviously absurd.

THEOREM V. a. Any system of one-vectors in S6 is equivalent to three
one-vectors, one of which may be chosen to act through any point we
choose.

The reduction to three one-vectors follows from the previous theorem
by means of Cor. III. to Theorem III. One of the one-vectors passes
by construction through an arbitrary point 0. If the Sa determined
by any two one-vectors be intersected by the line of action of the
third, the three one-vectors would lie in an jS4. That this would be
a special case is obvious, since we might choose as our system three
straight lines not lying in an S4. Omitting for the present the
discussion of special cases, we may assume in what follows that the
three one-vectors do not lie in an Sr

THEOREM V. 6. Any arbitrary line being chosen, one of the three one-
vectors can be made to act along it.

We already have one arbitrary point 0 on the first one-vector.
Take any other point P. The plane through P and the first one-
vector meets tho 83 determined by the other two in a point Q. The
first one-vector may now bo replaced, by two components, along
OP and OQ. The other tAvo one-vectors may be replaced by two
one-vectors in their Ss, one of which passes through Q. Compounding
the two one-vectors meeting at Q, we are left with three one-vectors,
one of which acts along the arbitrary line OP.

THEOREM V.C. Any arbitrary Sa being chosen, two of the one-vectors can
be made to act in it.

By the above wo may take any straight lino in the S3 as line of
action of one of the one-vectors. The other two one-vectors lie in a
second 83 which will intersect the first in a line. One of the two
one-vectors may then be taken to act along this line and tho result
follows.

THEOREM V. d. The arbitrary straight line being chosen (V. b) the JS5

containing the other two one-vectors is determined, also the magnitude of
the first one-vector and the system in the Sr

Suppose first, if possible, that a second reduction could lead to a
voi.,. xxix.—NO. G42. 2 i
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different S8. Reverse the three one-vectors so found, and wo have
with the first three a system in equilibi'ium. The two S3's have a
common straight line, and one one-vector of each pair may be taken to
act along it. We have now two one-vectors in one of the original
iS8's, one one-vector along the arbitrary line and another one-vector.
These latter two one-vectors may be replaced l»y two others in the
S8 determined by them, one of which may, as boiure, bo taken in the
original S6 in which the other pair of one-vectors lies. We are left
with three one-vectors in this Sa and one outside it. This system can
evidently not be in equilibrium unless the last one-vector vanishes.
This involves, however, the one-vector along the arbitrary line
meeting one of the two S8's, the possibility of which has been already
excluded.

The first part of the theorem is therefore proved by a rcductio
ad absurdum. A moment's consideration shows that two different
reductions to the same straight line and Ss are impossible, for it would
lead to a one-vector along the straight line balancing a system in the
/Ss. Thus the whole theorem is proved.

THEOKKM V. e. The arbitrary 86 being chosen (V. c ) , the line of action
of the third one^vector is determined, also the magnitude of the third
one-vector and the system in »S'S.

The proof, being similar to the last, may be omitted.

TUEOKKM V. / . If the line of action (#,) of one of the one-vectors pass
through an arbitrary point (So)> the two other one-vectors lie in a fixed
St passing through the »S'O.

Let 0 be the point. Choose any other straight line through 0.
The plane through this line and the line of action of the original
one-vector meets the conjugate 6'8 of this latter line in a point P.
The one-vector may now be replaced by one along the new line and
one along OP. Make one of the pair of one-vectors in the 6'3 pass
through I', and we have reduced to a one-vector along the new line
and two one-vectors, which, by construction, lie in the 8t determined
by O and the first <Sf3. Hence by (V.d.) the result follows.

TUKOKKM V. g. If the S3 of two of the one-vectors pass through an
arbitrary plane (Si), the remaining one-vector lies in another plane lohich
intersects the first, and therefore lias with it in an S.{.

Choose any other »S'3 through the plane. The »S',j containing the two
(S':('s mods the third one-voot.or in a point O. The first two one-vectors
may be replaced by one in the common plane, and a second which, by
a known theorem in /S'3, however we choose the first one-vector, passes
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through a fixed point P of that plane. We may replace this seoond
one-vector by a one-vector in the plane and one along OP. Com-
pounding this with the one-vector already passing through P, wo are
left, outside the chosen S3, with a one-vector in the plane determined
by P and the original one-vector through 0.

Hence, by V. e., the theorem follows.
Similarly, the converse may be proved, and the theorem that, if the

$8 containing two of the one-vectors turn round a fixed point, the line
of action of the third one-vector lies in a fixed St passing through the
point.

All these theorems for 8t and 5B will be found summed up in the
following four theorems for the general case of S,t.

THEORKM VI . Any system of one-vectors in " even space" Sn, where

n = 2m, is reducible to m ( = --- J one-vectors, lying in a covariant Su.\.

THEOREM VI I . a. Any system of one-vectors in " odd space " S,,, where

n = 2m—1, is reducible to m ( — J one-vectors, the line of action

of one of which may be chosen arbitrarily. The Sn.i containing the

remaining (m—1) f = —-—j one-vectors is then determined, and so are

the magnitude of the first one-vector and the system in the $„-»•

TiiEOKBM VIT. b. Any Su.\ in the S2n,.\ being chosen, k of the one-
vectors can be made to act in it. The 6Y

2m-i-2* containing the remaining
(m —A-) one-vectors is then determined, and sn are the systems in the-
Su-u S-im-i-u respectively.

TiiEOitKM VII . c. Any 8-,,,in the S2m-i being chosen, the 82k-\ containing
k of tha one-vectors can be made to pass through it, if k > p (or to lie in
it if k <p). The conjugate Siin.i_2k then lies in a fixed S2m-^,-2 (or passes
through a fixed (S2I)1.2;,.2), intersecting the S2l, and therefore lying with it
in an S2m.2.

Assuming these theorems to have been demonstrated for all values
of n up to (2m—2) inclusive, we can prove them generally by
induction.

It is evident that, VII. being proved, VI. follows at once from
Theorem III., Cor. ITT.

To prove Theorem VII. I3y Theorem Til., Cor. 11T., the system
may be replaced by a one-vector through an arbitrary point O, find
a system in iin S,,.i not j»;i.ssin<̂  through O. Sine*.1, therefore,

2 i 2
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n—l.= 2ra—2 the system is equivalent to m one-vectors, one of
which passes through an arbitrary point 0.

Choose any other point P. The plane through P and the one-
vector through 0 meet the $n_i of the other one-vectors in a point
Q. Replace the one-vector through 0 by one-vectors along OP, OQ,
and choose one of the remaining one-vectors to pass through Q.
Compounding the two one-vectors through Q, the system is reduced
to a one-vector along an arbitrary line OP and (m—1) other one-
vectors.

It is now obvious that, instead of a straight line, we may choose an
$8, and make two onc-vectors act in it. Because, one one-vector being
chosen in the S3, the S$ and the /?,,_2 containing the other (m —2)
one-vectors intersect in a straight line, which may be taken as line
of aotion of one one-vector.

Similarly, an #5, S7, or any odd space may be arbitrarily chosen.
Next, to prove that the choice of one arbitrary line determine?) the

•onjugate S,,_2.
Suppose two reductions lead to two different S,,_2'8; reverse 6ne

system PO obtained, and we have with the other a system in equi-
librium. Choosing (m —2) one-vectors of each system in the jSn_4

common to both Sn.2's, we have left three one-vectors in a perfectly
determinate £>fi; one of these three may, of course, be chosen in tho
*S,,_4, since an $5 and Sn.i have a common line. We are left with

two one-vectors in an S3)
and a system in an $n_4;

In the general case, the Ss and £>„_« have no common point, and
therefore the whole system can only be in equilibrium if each partial
system is in equilibrium bjr itself. This, however, leads at once to
a special system in which the arbitrarily chosen line intersects its
polar (S'n-2, and henco, by a rcdnciio ad absurdnm, the theoi'em is proved.

It is now obvious that the magnitude of the one-vector along the
arbitrary line and the system in the polar /S,,_2 are determined;
otherwise we could obtain a system of one-vectors in an $H_2, balanced
by a single one-vector whose line of action lies entirely outside that S,,_->.

The proof of Theorems h and r, being veiy simple and identical in
principle with the proofs of the corresponding theorems for five
dimensions, maybe omitted.

Vomitiiiy up the Constants.—A system of one-vectors in Sn has
|)i(»-f 1) constants. Jf we divide this up into an equivalent system
in an Sk and one in an $„_*-!, we have

i)fc(fc+l)-^ («-A-- l ) (n-ft) =



1898.] One-Vectors in Space of n Dimensions. 485

constants still at our disposal; this is exactly the number of
coordinates of an Sk, and we should therefore expect to be able to
choose the Sk arbitrarily, as has been shown by the foregoing dis-
cussion to be the case.

THEOREM VIII. When n is odd, and equal to 2m—1, the m one-vectors
to which a given (general) system can be reduced determines a funda-
mental (w + 1) -pyramid of constant volume.

We know that the theorem is true for space of three dimensions. We
may therefoi'e assume it to hold for i$,,_2. It then follows for Sn.
For, any arbitrary line being chosen, we have a determinate length
along it representing the one-vector along it, and, corresponding to
the other (m-1) one-vectors, a fundamental (w-1) -pyramid of
constant volume in a determinate <S,,_2 (polar /S,,_2), not intersecting
the line. Wo have, therefore, a fundamental (« + 1)-pyramid whose
volume remains constant, however we choose the (n — 1) one-vectors,
as long as one line of action remains unaltered. Xow take any other
arbitrary line. Its polar Su.2 has an Sn_i common with the first S,,.?.
Take any line in this $n_4. We may arrange that a one-vector should
act along this line in each reduction. It follows that the volume of
the pyramid is the same for the two reductions.

COKOLLARY. When n is even, and equal to 2JR, the m one-vectors to
which a given general system can he reduced determine an n-pyramid which
is fundamental in the 8n.\ containing it, and whose volume is constant.

This last theorem puts us in a position to discuss the special cases
in odd spaces. If the arbitrary line meets its polar $,,_2, the volume
of the pyramid is zero, and the system can be reduced to one in space
of (n — 2) dimensions, and therefore to (m—1) one-vectors. Con-
versely, unless the volume of the pyramid is zero, the system cannot
be reduced to (m—1) one-vectors, or to a system in space of (?i — 2)
dimensions. Such a system we may call " once specialized." If the
new fundamental (n—1)-pyramid collapse, we have a further rcdnc-
tion—a system twice specialized. In general, we may have a system
specialized any number of times, up to (m — 1) times specialized,
which would be a system equivalent to a single onc-vector, or m times
specialized, which would be a system in equilibrium.

THEOKKM IX. The necessary and sufficient conditions that a system
should be equivalent to a single one-vector way be e.i'jnvss-od in a single
statement. The one-vectors along the edges of every tetrahedron of the
fundamental (w+1)-pyramid must be equivalent to a single one-vector.

That tho conditions arc nocoH.sary follows from the manner in
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which we replace a one-vector by one-vectors along the fundamental
(«+l)-pyramid. We have, therefore, only to show that the condi-
tions are sufficient. Consider the case n — 4. Evidently, if the
system be not equivalent to a single one-vector, when the one-vectors
in every 8S of the 5-pyramid arc equivalent to a single one-vector,
the two one-vectors to which tho system is equivalent must be such
that one passes through any arbitrary vertex of the pyramid; that is,
every vertex of the fundamental pyramid lies in the characteristic 8t

defined by the two one-vectors, which is, of course, impossible.
When n = 5, by what has just been proved, if the one-vectors in

every S3 of the pyramid arc equivalent to a single one-vector, this is
time for every St of the pyramid. Hence, if the whole system be not
equivalent to a single one-vector, we may replace the system by two
one-vectors—one through any vertex of the fundamental pyramid, the
other in the opposite 8t. But the 83 defined by these two one-vectors
cannot paB8 through all the vertices of the fundamental pyramid.
Proceeding in this way we may obviously extend the theorem to
n dimensions.

Absolute Line Coordinates.—Let us choose definite directions along
the edges of the fundamental (?i + l ) -pyramid as positive (viz.,
12, 23, 31, 41, 42, 43, 51, 52, 53, 54, and so on). Now let us suppose a
one-vector of unit magnitude to act in a definite sense along any straight
line, and let us denote the ratio of the component one-vectors along any
edge rs to the one-vector represented by that edge, attention being
paid to sign, by pn. We have then, in the case when the system is
equivalent to a single one-vector, a convenient system of absolute
coordinates for tho lino of action, including its sense. The con-
struction of a line whose coordinates arc thus defined follows by
repeated application of the parallelogram law, and the same is true
of the determination of the coordinates of a line whose position and
sense nre given. The identical relations satisfied by these %(n + l)n
coordinates, of which only 2 (n—1) are independent, will be obtained
by applying Theorem IX.

They are the well known equations* :—

l'u + l'aiPt* = 0.

Pil Ptr + PaPir + 2hl Fir = 0 (r = 4, 5, ... tt),

* Eiich of these equations merely expresses the fact that the .moment of tho
system constituted by the onc-vcutors acting idong the edges of t]ic*eoire.sponding
tetrnhivh'on aliout itself vanishes
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and similar equations for every four indices. There are evidently

— (w+l)w(»—1) (n—2) such equations. Though necessary and

sufficient, they are not all independent; there are syzygies between
them. We have also a quadratic non-homogeneous equation, ex-
pressing the fact that the resultant of all the component one-vectors
is of unit magnitude, viz.,

2 a?,$, + 22 anau cos (rs, ij)pr.pv = 1

with an obvious notation.
We may, of course, if we please, avoid this equation by using only

the ratios of the p's.
It will be noted that this method of defining line coordinates is

independent of point or plane coordinates; and the equations between
them are obtained without any analysis, being immediate oonsequences
of the definition.

An Essay towards the Generating Functions of Ternariants.

By Professor A. R. FOKSYTH. Received March 17th, 1898.

Communicated April 7th, 1898.

Tho present paper contains an attempt to apply the principle of
the method devised by Cayley for the construction of generating
functions for binary forms to the corresponding problem for ternary
forms. In the case of ternariants, regarded as determined by their
leading coefficients, there is the difficulty that the universal concomi-
tant ux has unity for its leading coefficient, and that therefore no
change is made in the leading coefficient of a concomitant on multi-
plying the concomitant by any power of ut. It is necossary to take
account of this consideration in discussing the problem from tho side of
the leading coefficients; accordingly, instead of dealing solely with the
asyzygetic concomitants for the construction of a generating function,
I have rejected those which are reducible by means of a power of ux.
Those which remain I have called a complete set of hyposyzygetic
concomitants: in terms of ux and of the members of such a set, every




