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On Systems of One-Vectors in Space of n Dimensions. By W. H.
Youna. Received March 26, 1898. Provisionally com-
municated April 7, 1898,

In the present paper a system of one-vectors® in space of =
dimensions 18 reduced to a normal form.

The space in question is supposed to be flat, z.e., of zero curvature.

I use S, to denote a flat space of % dimensions contained in the
whole space S,.

The normal form in S,,_, consists of m one-vectors, the line of
action of one being arbitrary. In S, the normal form again consists
of m one-vectors, lying, however, in a covariant S.,._,.

In the course of the discussion certain other properties of the
system are obtained. The whole subject is closely connected with
the theory of linear complexes in space of n dimensions. I here
confine myself to giving a geometrical definition of line coordinates
in such a space, and a simple geometrical deduction of the known
quadratic equations between them.

It is well known that in S, we can construct, in an infinite number
of ways, a fundamental (n+1)-pyramid whick does not lie in any
space of lower dimensions.

THEOREM I. Any one-vector through an arbitrary point O may be
replaced by n one-vectors along lines jointng O to the n points of any
Sfundamental n-pyramid lying tn any S, _, not passing through O.

These n points together with O define a fundamental (n+1)-
pyramid in the S,.

Take the plane through the line of action of the one-vector and one
of the edges meeting at 0. This plane meets the S, ., determined by
the remaining (n—1) edges through O in a straight line. We can
then, by the parallelogram law, replace our one-vector by two
components, one along the first edge, and one in the S, ;. In this

* The reader may, if he pleuse, substitute the word « force’ for * one-vector,”’
throughout the present paper, which is, in purt, introductory to one on vectors of
a more general nature.  Inoa paper entitled © Sulla Statica de Corpi Rigidi nello
Spazio o Quattro Dhwmensiond,”” Gwsnuee oo Boiiayfud, XXx1v., 1896, some of the
propertics here given are discussed for four dimensions by De Francesco.
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S,.1 the n vertices of the original (n+1)-pyramid determine a
fundamental n-pyramid, and the component of our one-vector in
this S,., goes through one of the vertices, viz., 0. Thus, by induction,
the theorem follows, it being certainly true when n» = 2.

The above tacitly assumes that the one-vector does not lie in any
8. of the fundamental (n+1)-pyramid. If this be the case, we
only have to effect the reduction for the corresponding (k+1)-
pyramid, the components corresponding to the remaining edges
through O vanishing.

TreoreM II. Any one-vector may be replaced by one-vectors along the
edges of the fundamental (n+ 1)-pyramid.

Let us assume that the line of action of the one-vector does not lie
in any S, of the fundamental (n+1)-pyramid. It must intersect
at least one of the S,_,’s of the pyramid in a point at a finite distance.
Join this point of intersection to the vertex S, of the pyramid opposite
to this 8,.;. The plane through the one-vector and this line will
meet the S,_, in question in a straight line through the same point of
intersection. Hence, by the parallelogram law, the one-vector may
be replaced by two one-vectors, one through the S, and the other in
the S,.,. By Theorem I. the former component may be replaced by
components along the edges through the S;. The possibility of the
reduction then depends on replacing the one-vectors in the §,., by
components along the edges of the fundamental (u+1)-pyramid
which lie in that S,.,. But these are the edges of an n-pyramid
which is a fundamental one in that S,_,. The required result follows
by induction, for it obviously holds when n = 1.

TrroreM III. A given system of one-vectors may be replaced in one
and only one way by one-vectors along the edges of a given fundamental
- (n+1)-pyramid.

The possibility of this reduction follows from Theorem 1T.

To prove the uniqueness, we remark that, if two modes of reduction
are possible, reversing one system so obtained and combining with
the other, we obtain a system in equilibrium.* This system of one-
vectors along the edges may be divided into two classes, viz., those
through an arbitrarily chosen vertex and those in the opposite S, .,
of the fundamental (2+1)-pyramid. Unless the former all vaunish,
they can, by repeated application of the parallelogram law, be reduced

* A system is said to balance, or to be in equilibrium, when, by introducing
suitablo pairs of cqual and opposite one-vectors and by repeated application of the
parallelogram law, it ean be reduced to two equal and opposite one-vectors.
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to a single one-vector through the chosen vertex. This one-vector,
lying outside the S,.,, cannot be replaced by, and therefore also
cannot balance, a system of one-vectors in it. The theorem now
follows by induction.

Cor. I. A system of one-vectors has ¥ (n+1) n “ coordinates,” viz., the
equivalent one-vectors along the edges of the fundamental (n+1)-
pyramid. There are, moreover, § (n+1)n necessary and sufficient con-
ditions of equilibrium, viz., each coordinate must vanish.

Cor. IL. There are 3 (n—1) (n—2) necessary and sufficient conditions
that a given system of one-vectors should be equivalent to a single one-vector.

This is evident if we reflect that there are w™* straight lines in
S., and that therefore a straight line has (22—2) independent
coordinates; a single onec-vector therefore (2n—1). The required
number is got by subtracting this number from the number of
coordinates of a general system.

Cor. IIL. Any system of one-vectors in an S, may be replaced by a
one-vector through any arbitrary point O, and a system of ome-vectors in
an arbitrary S,.., which does not pass throuyh O.

In a special case the onc-vector may of course vanish, or the
gystem in the S,_; be in equilibrium.

We now proceed to generalize certain known theorems about
systems of one-vectors in Sy, It will be convenient to consider first
the cases of S, and ;.

Turores IV, Any systemn of ome-vectors wn S, 7s equivalent to two
one-vectors, and has as covariant the Sy containing them.

By Cor. ITL. to Theorem IIT. such a system is equivalent to a
one-vector through an arbitrary point O and a system of one-vectors
in an S,. This latter system, if not reducible to a single one-vector, is,
as is well known, equivalent to two one-vectors, one of which may be
chosen to act along any line we please in the Sy, Take it to act along
a line through the point in which the one-vector through O mecets the
Sy Then it may be compounded with the latter one-vector, and thus
the system is reducible to two one-vectors, which, in general, do not
interscet.

These two one-vectors may be replaced by any other snitable pair
in the Sy determined by them; viz, the line of action of one of the
two one-vectors may be chosen arbitrarily in the Sy, the line of action
of the other and the magnitude of both one-vectors being then
determined.  The Sy itself is a covariant of the system.
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In fact, if it were possible by reducing in another way to geta
second pair lying in a different S; we could reverse this pair and
obtain with the first pair a system in equilibrium. Since, however,
‘two S,’s intersect in an S, we can arrange that one one-vector of our
second pair should lie in this S,, and the other accordingly not. We
should then have ‘a single one-vector not in the first S, balancing
one-vectors lying in it, which is obviously absurd.

THEOREM V.a. Any system of one-vectors tn Sy is equivalent to three
one-vectors, one of which may be chosen to act through any point we
choose.

The reduction to three one-vectovs follows from the previous theorem
by means of Cor. IIT. to Theorem III. One of the one-vectors passes
by construction through an arbitvary point 0. If the S; determined
by any two one-vectors be intersected by the line of action of the
third, the three one-vectors would lie in an S;. That this would be
a gpecial case is obvious, since we might choose as our system threc
straight lines not lying in an S, Omitting for the present the
discussion of special cases, we may assume in what follows that the
three one-vectors do not lie in an S,

TuEOREM V.b. Any arbitrary line being chosen, one of the three one-
vectors can be made to act along it.

We already have one arbitrary point O on the first one-vector.
Take any other point P. The plane through P and the first one-
vector meets the S; determined by the other two in a point Q. The
first one-vector may now be replaced. by two components, along
OP and 0Q. The other two one-vectors may be replaced by two
one-vectors in their Sy, one of which passes through . Compounding
the two one-vectors meeting at @, we ave left with three one-vectors,
one of which acts along the arbitrary line OP.

THEOREM V.c. Any arbitrary S, being chosen, two of the one-vectors can
be made to act in tt. :

By the above we may take any straight lino in the S; as line of
action of one of the.one-vectors. The other two one-vectors lio in a
second Sy which will intersect the first in a line. One of the two
one-vectors may then be taken to act along this line and the result
follows.

Tueoren V.d. The arbitrary straight line being chosen (V.b) the S,
containing the other two one-vectors is determined, also the magnitude of
the first onc-vector and the system in the Sy,

Suppose first, if possible, that a second reduction could lead to a

YOL. XXIX.—N0. 642, 21
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different S,. Reverse the threc one-vectors so found, and we have
with the first three a system in equilibrium. The two S,'s have a
common straight line, and one one-vector of each pair may be taken to
act along it. 'We have now two one-vectors in one of the original
Sy's, one one-vector along the avbitrary line and another one-veetor.
These latter two one-vectors may be replaced by two others in the
S, determined by them, one of which may, as betore, be taken in the
original Sy in which the other pair of one-vectors lies. We are left
with three one-vectors in this S; and one outside it. This system can
evidently not be in equilibrium unless the last one-vector vanishes.
This involves, however, the one-vector along the arbitrary line
meeting one of the two Sy’s, the possibility of which has been already
excluded.

The first part of the theorem is therefore proved by a reductio
ad absurdum. A moment's consideration shows that two different
reductions to the same straight line and S; are impossible, for it would
lead to a one-vector along the straight line balancing a system in the
8;.  Thus the whole theorem is proved.

TuroreM V.e. The arbitrary S, being chosen (V. c.), the line of action
of the third one-vector is determined, also the magnitude of the third
one-vector and the system in S,.

The proof, being similar to the last, may be omitted.

TuroreM V. f. If the line of action (S,) of one of the one-vectors pass
through an arbitrary point (S,), the two other one-vectors lie in a fized
S, passing through the S,.

Let O be the point. Choose any other struight line through O.
The plane through this line and the line of action of the original
one-vector meets the conjugate S; of this latter line in a point P.
The one-vector may now he replaced by one along the new line and
one along OP. Make one of the pair of one-vectors in the Sy pass
throngh I, and we have reduced to a one-vector along the new line
and two one-vectors, which, by construction, lic in the S, determined
by 0 and the first S;. Hence by (V.d.) the result follows.

Turoresm V.g. If the Sy of two of the ome-vectors pass through an
arbitrary plane (Sy), the vematuing one-veitor lies tn ancther plane which
wntersects the first, and thevefore lies awith <t tn an S,

Choose any other S; through the plane. The S, containing the two
Sy's meets the third one-vector in a point 0. The first two one-vectors
may be replaced by one in the common plane, and a second which, by
a known theorem in Sy, however we choose the first one-vector, passes
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through a fixed point P of that plane. We may replace this second
one-vector by a one-vector in the plane and one along OP. Com-
pounding this with the one-vector already passing through P, wo are
left, outside the chosen S,, with a one-vector in the plane determined
by P and the original one-vector throngh O.

Hence, by V.e., the theorem follows.

Similarly, the conversc may be proved, and the theorem that, if the
S, containing two of the one-vectors turn ronnd a fixed point, the line
of action of the third one-vector lies in a fixed S, passing throngh the
point.

All these theorems for S, and S; will be found snmmed up in the
following four theorems for the general case of S,.

Turorem VI. Any system of one-vectors in ‘“cven space™ S,, where

n = 2m, 1s reducible to m (= —é-) one-vectors, lying in a covariant S, .

TaEoREM VII.a. Any system of one-vectors in “ odd space™ S,, where
n+1

n = 2m—1, is reducible to m (: 5 ) onc-vectors, the line of action

of one of which may be chosen arbitrarily. The S,_, containing the

n—1
2

the magnitude of the first onc-vector amd the system in the S,._,.

remaining (m—1) (= ) one-vectors vs then determined, and so are

Tueorem VIT.b. Any Sy, tn the S,.., being chosen, k of the one-
vectors can be made to act vn it. The Sy,_ 1. containing the remaining
(m —k) onc-vectors vs then determined, and so are the systems in the.
Sai-1y Som-1-2 Tespectively.

Turorrm VILc. Auy S.,in the Sy, ., betng chosen, the Suy_y containing
k of the one-vectors can be made to pass through it, iof k> p (or to lie 1n
ttif k< p). The congugate S,,, ..o then Livs in a fived Son.g,-0 (0 passes
through a fited Syu.g,-4), tntersecting the S,, and thervefore lying with it
nan Sy,

Assuming these theorems to have been demonstrated for all values
of » up to (2m—2) inclusive, we can prove them gencrally by
induction,

It is evident that, VIL. being proved, VI. follows at once from
Theorem 1T, Cor. TIT.

To prove Theorem VII. By Theovem TI1., Cor. 11T, the system
may be replaced by o one-vector throngh an arbitrary point O, and
a system in an S, ; not passing throngh 0 Sinee, therefore,

212
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n—1=2m—2 the system is equivalent to m one-vectors, one of
which passes through an arbitrary point O.

Choose any other point P. The plane through P and the one-
vector through O meet the S,., of the other one-vectors in a point
Q. Replace the one-vector through O by one-vectors along OP, 0Q,
and choose one of the remaining ome-vectors to pass through Q.
Compounding the two one-vectors through @, the system is reduced
to a one-vector along an arbitrary line OF and (m—1) other one-
vectors.

It is now obvions that, instead of a straight line, we may choose an
S;, and make two onc-vectors act in it. Because, onc one-vector being
chosen in the S;, the S, and the S, , containing the other (m—2)
one-vectors intersect in a straight line, which may be taken as line
of aotion of one one-vector. '

Similarly, an 8,, S,, or any odd space may be arbitrarily chosen.

Next, to prove that the choice of one arbitrary line determines the
onjugate S, _,.

Suppose two reductions lead to two different S,_,'s; reverse one
system fo obtained, and we have with the other a system in equi-
librinm. Choosing (m--2) one-vectors of each system in the S,_,
common to both S,_,’s, we have left three one-vectors in a perfect]y
determinate 8y; one of these three may, of course, be chosen in the
S,_s since an Sy and S,_; have a common line. We are left with

two one-vectors in an S, }
and asysteminan S,_,)

In the general case, the S; and S,.; have no common point, and
therefore the whole system can only be in equilibrium if each partial
system 18 in equilibrinm by itself. This, however, leads at once to
a speeial system in which the arbitrarily chosen line intersects its
polar 8, _,, and hence, by a reductio ad absurdum, the theorem is proved.

1t is now obvions that the magnitnde of thc one-vector along the
arbitrary line and the system in the polar S,_, are determined;
otherwise we could obtain a system of one-vectors in an S, _,, balanced
by a singlc one-vector whose line of action lies entively outside that S, _..

The proof of Theorems b and ¢, being very simple and identical in
principle with the proofs of the corresponding theovems for five
dimeunsions, may he omitted.

Counting wp the Conslanis—A system of one-vectors in §, has
1n (n+1) constants. I we divide this up into an equivalent system
i an S, and one in an S,_.,, we have

Li(n+1) =3k B+ 1) =3 (n—k=1) (n—k) = (k+1) (n—F)
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constants still at our disposal; this is exactly the number of
coordinates of an S,, and we should therefore expect to be able to
choose the S, arbitrarily, as has been shown by the foregoing dis-
cussion to be the case.

Tugorem VIII. When n is odd, and equal to 2m—1, the m one-vectors
to which a given (general) system can be reduced determines a funda-
mental (n+1)-pyramid of constant volume.

We know that the theorem is true for space of three dimensions. We
may therefore assume it to hold for S,.,. It then follows for S,.
For, any arbitrary line being chosen, we have a determinate length
along it representing the one-vector along it, and, corresponding to
the other (m—1) one-vectors, a fundamental (n—1)-pyramid of
constant volume in a determinate 8,5 (polar S,_;), not intersecting
the line. We have, therefore, & fundamental (n+1)-pyramid whose
volume remains constant, however we choose the (n—1) one-vectors,
as long as onc line of action remains unaltered. Now take any other
arbitrary line. Its polar S,_; has an §,_, common with the first S, _.
Take any line in this S,_,. We may arrange that a one-vector should
act along this line in each reduction. It follows that the volume of
the pyramid is the same for the two reductions.

CororLARY. When n is even, and equal to 2m, the m one-vectors to
which a given general system can be reduced determine an n-pyramid which
1s fundamental in the S, _; containing it, and whose voluwme s constant.

This last theorem puts us in a position to discuss the special cascs
in odd spaces. If the arbitrary line meets its polar S, _,, the volume
of the pyramid is zero, and the system can be reduced to onc in space
of (n—2) dimensions, and thercfore to (m—1) one-vectors. Con-
versely, unless the volume of the pyramid is zero, the system cannot
be reduced to (m~1) one-vectors, or to a system in space of (n—2)
dimensions.  Such a system we may call “once specialized.” If the
new fundamental (n—1)-pyramid collapse, we have a further redne-
tion—a system twice speciilized.  In general, we may have a system
specialized -any numbier of times, up to (m—1) times specialized,
which would be a system equivaleut to a single one-vector, or m times
specialized, which would be a system in equilibrinm.

TurorrM IX. The necessary and sufficient conditions that a system
shonld be cquivalent to a siugle one-vector may be copressed in a single
statement. The one-vectors along the edges of every tetraledron of the
Sfundamental (n+ 1)-pyramid must be equivalent to a single onc-vector.

That tho conditions are neeessary follows from the manner in
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which we replace a one-vector by onc-vectors along the fundamental
(n+1)-pyramid. We have, therefore, only to show that the condi-
tions are sufficient. Consider the case » = 4. Evidently, if the
system be not equivalent to a single one-vector, when the one-vectors
in every S; of the 5-pyramid are equivalent to a single one-vector,
the two one-vectors to which the gystem is equivalent must be such
that one passes through any arbitrary vertex of the pyramid; that is,
every vertex of the fundamental pyramid lies in the characteristic S,
defined by the two one-vectors, which is, of course, impossible.

When » =5, by what has just been proved, if the one-vectors in
every S; of the pyramid are equivalent to a single one-vector, this is
true for every S, of the pyramid. Hence, if the whole system be not
equivalent to a single one-vector, we may replace the system by two
onc-vectors—one through any vertex of the fundamental pyramid, the
other in the opposite S,.  But the §; defined by these two one-vectors
cannot pass through all the vertices of the fundamental pyramid.
Proceeding in this way we may obviously extend the theorem to
n dimensions.

Absolute Line Coordinates.—Let us choose definite directions along
the edges of the fundamental (u+1)-pyramid as positive (viz.,
12, 23, 31, 41, 42, 43, 51, 52, 53, 54, and so on). Now let us suppose a
one-vector of unit magnitude to act in o definite sense nlong any straight
line, and let us denote the rutio of the component one-vectors along any
edge 75 to the onc-vector represented by that edge, attention being
paid to sign, by p,.. We have then, in the case when the system is
cquivalent to a single onc-vector, a convenient system of absolute
coordinates for the line of action. including its sense. The con-
strnction of a line whose coordinutes are thus defined follows by
repeated application of the parallelogram law, and the same is true
of the determination of the coordinates of a line whose position and
sense are given. The identical relations satisfied by t-hcsc 1 (42
coordinates, of which only 2 (n—1) are independent, will be obtained
by applying Theorem 1X.

They ave the well known equations® :—

PuPut PPyt apPu = 0,
4 2’3r+]'*!'.\1)h'+]).np-zr = O (7' = 4‘» 5» ")v

* Fach of these equations merely expresses the fact that the moment of the
wvstem constituted by the one-vectors acting along the edges of the®corresponding
tetranhedron about itself vanirhes.
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and similar equations for every four indices. There are evidently
Zl—!(fn+1)n(n—l) (n—2) such equations. Though necessary and

sufficient, they are not all independent; there are syzygies between
them. We have also a quadratic non-homogeneous equation, ex-
pressing the fact that the resultant of all the component one-vectors
is of unit magnitude, viz.,

E 0/3,2-’3. + 22 @,y Ay Co8 (’I’S,. 1j)p"'pi/ = 1

with an obvious notation.

We may, of course, if we please, avoid this equation by using only
the ratios of the p's.

It will be noted that this method of deflning line coordinates is
independent of point or plane coordinates; and the equations between
them are obtained without any analysis, being immediate consequences
of the definition.

An Essay towards the Generating Functions of Ternariants.
By Professor A. R. Forsyra. Received March 17th, 1898.
Communicated April 7th, 1898.

The present paper contains an attempt to apply the principle of
the method devised by Cayley for the construction of generating
functions for binary forms to the corresponding problem for ternary
forms. In the case of ternariants, regarded as determined by their
leading coefficients, there is the difficulty that the universal concomi-
tant u, has unity for its leading coefficient, and that therefore no
change is made in the leading coefficient of a concomitant on multi-
plying the concomitant by any power of u,. It is necossary to take
account of this consideration in discussing the problem from the side of
the leading coefficients ; accordingly, instead of dealing solely with the
asyzygetic concomitants for the construction of a generating function,
I have rejected those which are reducible by means of a power of u,.
Those which remain I have called a complete set of hyposyzygetic
concomitants: in terms of v, and of the members of such o set, cvery





