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If however, y* = —1, then

=1(- 2:l:~/ 12),

3
-

viz., this is 1(-1%ivV3) =w

if w be an imaginary cube root of unity («’+w+1 = 0); hence

W= (yw)t=—

Moreover, 1 + — =1+ gy— = 1420,
or say, =w—o), [=+vV—=8 if o=3}(-1+iv3)];
and we thus have, as in the a,bove-mentioned Note,

— (w=o*) o+ 0'2? dy — (v—ub) dz

RS Iy P Py giving Jl—y 1tap Vo 1t

or, what is the same thing, for the modulus & = —w, we have
sn (w—o')f = (w—o)snb+wien’,

1—o® (w—w?)en?H '
the values of ¢n (w—w*) 6 and dn (w— w*) 6 are thence found to be

enb (1—wisn*d) |
1—w? (w—0o) 0’6’

dn6 (1+'sn’f) |
1—o! (w—w*)sn’l’

which are the formulm of transformation for the elliptic functions.

cen (w—w') 0 =

and dn (v—0*) 0 =

Oompleas Multiplication Moduli of Elliptic Punctions.
By A. G. GREENHILL.

(Read March 8¢h, 1888.] .

"The problem of the Complex Multiplication of Elliptic Functions
is the determination of the elliptic functions of the complex argument
(a+b/4A1%) u, in terms of the elliptic functions of the argument u,
where the ratio of the periods K'/K = /4, and A is & prime number;
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but, if A is & composite number mn, then we can have
K'|K = /(m/n);
but in this case b must contain the factor #.

The coefficients in the expression of an elliptic function of the
argument (a+b+v/A ) u in terms of the elliptic functions of u will
involve the values of the modulur functions corresponding to

K'[K = /A,
and thus the modular equation in some shape requires solution; and
it is the chief object of this paper to make a collection of all the
numerical solutions hitherto obtained, for integral values of A.

According to a remark of Abel ((Euwvres, t. 1, p. 272, 1st edition),
quoted by Kronecker (Berlin Sitz, 1857), the modular equation in such
cases i8 always soluble by radicals.

A few numerical cases are given by Legendre and Abel, but the
first important collection of results is due to Kronecker (Berlin Sitz,
1862), who gives the numerical values of Legendre's modulus &, or in
some cases of ', for a series of values of A, and promises a more
complete collection, which has not yet appeared.

According to the form of A with respect to the modulus 4 or 8, it
will be convenient to consider four classes, and to choose the abso-
lutely simplest numerical tnvariant appropriate to each class, which
classes are distinguished as follows—

Class A. A =3, mod. 8.
Class B. A =7, mod. 8.
Class C. A =1, mod. 4
Class D. A =2, mod. 4.

The class for A = 0, mod. 4, does not require special treatment, as
it can be made to depend on one of the previous classes by means of
the quadric transformation.

The article, ¢ Neue Untersuchungen vm Gebiete der elliptischen Func-
tionen,” of F. Klein (Math. Ann., Bd. xxvi., 1886), gives references
to the most recent researches on modular equations; and in the course
of this paper great use will be made of the following articles :—

Sohnke, * Alquationes modulares pro transformatione Functionum
Ellipticarum,” Crelle, 16..

Schroter, * Dissertatio inauguralis de Agquationibus modularibus,”
Regiomonti, 1854 ; also Liouville, 1858 ; and Acta Mathematica, 1882.

Hermite, “ Théorie des Bquations modulaires;” Paris, 1859.

Klein and Kiepert, ‘* Ueber die Transformation der elliptischen
Functionen,” Math. Ann., xiv., p. 111 ; xxvi,, p. 369; xxxii., p. 1.
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G. H. Stoart, “ Complex Multiplication of Elliptic Functions,”
Quar. Jour. of Math., Vol. xx., p. 18.

E. W. Fielder, *“ Ueber eine besondere Classe trrationalem Modular-
gletchungen;” Ziurich, 1885. .

R. Russell, “On «\, ¥\ Modular Equations,” Proc. of the Lond.
Math. Soc., Nov. 10, 1887.

The general expressions for the formulas of Complex Multiplication
are also given by the author in an article in the Quarterly Journal
of Mathematics, Vol. xxii.

Curass A.
A =3, mod. 8.

The absolutely simplest numerical invariant to choose for this
class is Klein’s absolute invariant J, the same as Dedekind’s Valenz
(Crelle, 83), and connected with Hermite’s « by the equation

J=—3%a
(Théorie des Equations modulaires); but it is convenient to use
Kiepert’s form in terms of Legendre's moduli x and «* (Math. Aun.,
Vol. xxvi.),
_ __(1=16<%"7)8 .
- 1083’
obtained by a quadric transformation from Klein’s form
_ 4 (1—=k%")®
T=g T
so that Kiepert’s J is a * Modul-function zweiter Stufe.”
Then, if we work with Weierstrass’s canonical first elliptic integral

J

J * dx

= /(4 —g,m—g;) ’

and normalize it by multiplying by the twelfth root of the discriminant
D= g:—27y:,

. A

so that it becomes ]- 4
VP —vy—vs) ’

we can make the new discriminant
;=27 =—1,

and thus the absolute invariant
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In this Class A, the simplest formula of complex multiplication
connects

z = pu, and y—p—q—"—
= pu, =P37
where i[ 1 (=14 /A%,

leading to the differential relation

Mdy dz
VA —gy—g) (@ —go—g,)’

by an equation of the form (Quar. Jour. of Math., xxii., p. 127)

,"_A,Lul_'_Aa,n‘l

= M?
y= ( n G a‘m—]_*_G ™ -3 “) 3
where n=2m+1l, A=4n—1=8n+3,
and A, =20, A

the A’s and @'s being certain modular functions, to be subsequently
determined.  (Kicpert, Math. Ann. x3v1., p. 398.)

The determination of @, is the most trouble, so it is important
to notice that it is a numerical factor of /A +1.

For, if we denote by M’ and @ the conjugate imaginaries of M and
G,, and if we put

Z = fponu = ﬂ%,
n__ /a1
then z2= AI"? _y_g&g___

(ym_G;ym-l.“)s
("= 26,271, ) 26 ? (&..)" (@™, ).
(™ —G et )R {(m"—2Gla:"”‘... ’"—G{M"‘(a:"...)‘”‘1(w"...)’}’
1 a°-2 (nG + G M)
2" =2 (nG+ GM )]

and then, from the known expansion of pu in powers of u,

pu = 1+k+§£—)u+

_ The absent terms denoted by the % require that
' n@+GAM?=0;
so that, if we put G, =avA+bi, G =avA=10i,
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then nav/A+nbi+(av/A—b) 3 (—2n+14+ /A7) =0,
or (a=b) { VA—(4n—1)i} =0,
‘or a=1"b;

but, to determine a, the expansions of y and z in terms of = must be
carried out further.

When once G, and therefore 4, = 2G,, has been determinced, the re-
maining @'s and 4’s are found by the recurring formulas given by
Kiepert, Math. Ann., xxvi., p. 399.

The preceding equation connecting y and 2 is equivalent to any
one of the three following equations (Quar. Jour. of Math., xxiL.,
p. 125)—

y—e=M* (w—eg)r.ﬁ: {z—p (0, +2rw,/n)}* + D

y—e; = M (z—e,) I {a—p [(11,—27) w,/n]}’ =+ D,
y—es =M (z—e) I {u—p [w3+ (n—2r) wl/n] }*+ D,

D= II {z—p (2ruv,/n)}*;
wy _ Ii' . .o
where o K 1=\/A%q,
and w, =} (n+o]), o=} (v—w);
so that G, =“§'.n P (Cro/n).
ral
Thus, for exa.mpla, when A = 51,
2w, 41-11 8qu 16w, 32w, 64w,
G=ptegteg teg te 3 +eT3

(Kiepert, Math. Ann., xxv1., p. 381).

But suppose the complex multiplier —lﬁ, instead of being

3 (=14 vAv),

had been } 1 (—p+ /A79),

where p is an odd integer ; then we should havo to put
n=%(A+p")

in the above formulas; and this explains why in Hermite's Lquations

Modulaires, p. 44, Class 3° (our Class A), A has the values

dn—p*=4n—1, 4n-9, 4n-—235,
VOL. XIX.—N0. 324.
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Crass A.
A =3, mod. 8.

A =3. From Jacobi’s modular equation of the third order,

we obtain, putting « =\, & =,

2V kx = 1,
or 2xx’ = 1 = 5in 30°,
8o that the modular angle is 15°, and
& = sin 15°, k" == cos 15°.

Then the absolute invariant J =0, and
v2=0, 27yi=1 or 3,/3y,=1

Also ST

an imaginary cube root of unity; and
P U = wpu,

the simplest case of Complez Muliiplication, required in the re-
duction of the elliptic integrals considered by Legendre (Fonctions
Elliptiques, t. 1., cap. XXV1.).

A = 11. Taking Schroter’s or Russell's form of the modular equa-
tion of the 11* order,

Vi 4 VN +2 Y aa N =1,
and putting x =X, " = A ; then
2 vk’ +2V/ 2" = 1.
Forming the equation in #*%", and putting

J o _ (=107

08T
9 3
we find r=-2, y1=-22L,
_8 __1v11
Y= 3 y Ys= 27 ¢

Here Hermite’s a = 27, the valne of which could be inferred from
his equations at the foot of p. 47 of the Equations Modulaires.



1888.]  Multiplication Moduli of Elliptic Functions. 807

Also G, =— 1 (V11+3), 4, =—3(V11+3),

and the values of 4, and 4; ave given in the Quar. Jour. of Math.,
XXIL., p. 134.

A =19. Weshall find
J=-2, J-1=—3"x19;
v, =8, v3=+19, Y+l =3% v)—v+1=3x19.
These values are obtained from Hermite's T'héorie des Equations
Modulaires, p. 47, where it is shown that, a being the equivalent

Of —’237"17,
A=3, a=0;

and A =11, a =27 as before;
A=19, a=2x3
A=27, a=2"x3x35%;
A=43 a=2"%x3x5;
and by inference from the approximate equation (Equations
Modulaires, p. 48),
2% = ¢" V2 —744+196880c™" V4 + ...,
we obtain A=07, a=2"x3x5x113
A =163, a=2"x3"x5x23%x 295

According to Hermite (Lquations Modulaires, p. 47) the value of a
is an integer when there is only one improperly primitive class of
the determinant —A; and A = 163 is probably the highest number
of this nature.

Ve is very nearly an integer;

Hermite points out that in these cases e
for instance, in ¢¥'® the decimal part begins with a series of

twelve 9’s.

Using the symbol = for approximate equality,
17287 = — L = — ey,
q

s0 that 12)/2 -~ ei""/" a;lso 21673 ~ e&n'\/d;

therefore ¢** is also very nearly an integer, a multiple of 12 ; while
e"ve = /A is also” very necarly an integer, a multiple of 216.
(H. J. S. Smith, Report on the Theory of Numbers to the British Assncia-

tion, 1865, p. 374.)
x 2
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Thus Ytz 96 =12(3'-1),
VB Z 960 =12(9°-1),
MV z 5280 = 12(21*-1),
& ViB = 640320 = 12 (231°—1);
while e¥F .+ V19 = 216,
VB /43 = 216x 21 =216x7x3,
oV /67 T 216x217  =216x7x3l,

e Vi® . /163 = 216 x 185801 = 216 x 7x 11 x 19 x 127.

The values of J corresponding to A=3, 11, and 19 afford interesting
numerical applications of Klein's thosakedron equation, the corre-
sponding r resolvent equation (Ikosaider, p. 102) having & root r = 3,
11, 19, respectively. The determination of #, the corresponding ikosa-
hedron irrationality, is then an interesting numerical exercise.

9 3 2 2
2;5’ J_1=_11 ;23 ;

=404 — 2534
Y= 33, Ys = 273-

A =27 Here J=-—

These values can be obtained by the cubic transformation of Klein
(Math. Ann., x1v., p. 143),

J:J=1:1=(+—1)(9r=1)*: (27:3—18r—1)? : —64r,

and J’ the same function of r’, with =’ = 1.

Putting J' =0,

then 9r'=1, r=9;
9 S

and o J=— 2—;—5— H
also C G, =— 13 (/27419),
(Quar. Jour. of Math., xxiL., p. 136).

A = 35. Here J=—v, J=1=-27y,
where =45 {3 (V5+D1)}

g
s = 2!)(.) +21715 \/5 ~/7,

(Quar. Jour. of Math., Vol. xx11.,, p. 187, 1887) ;
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also Gy = — 3 {3 (V/B+1)}5 (V35 +1).

The manner in which these numerical values were obtained from
Kiepert's L-equation for n = 9 is there explained.

The values of y, and vy, above correspond to the case of
K'/K=+/35; butwhen K'/K = ,/(7+5),
we must change the sign of /5.

We might have obtained the same value of J by employing Fiedler's
modular equation of the 35" order (Irrationale Modulargleichungen,
p- 97), by putting A =«’, A’ =«, and @ = 2./x«’; then, in Fiedler’s
notation,

Zl=e-1, Z;=idt—2n, 2Z;=- 12
and Z0 = —lot /(2m—2%);
go that, substituting in his equation, we obtain
-5+ 32+14+4 /(2z—2b) =0,
2°—102" 4 312* —~ 1223 —a? —262+1 = 0,
(a® =52+ 132 ~1)"—20 (a'—3z)* = 0,
B =(5+2v5) 2’4+ (134+6./8) sa—1 = 0;
and forming the equations for 2’ and 2%,
29— (19+8./5) 2t + (839 +1524/5) o' —1 = 0,
22 —82°+ (230403 + 103040 v/5) 2 —1 = 0,
(2*—1)3+ (230400 +103040./5) a* = 0.

N _____4_' (1_ﬂi——_i ) , |

Then J=— 2 0=20= 2 (230400+103040/5)
LY YR RSN
= 30 ) .

The same values could also have been obtained by combining
Schréter’s or Russell’'s modular equation of the 5™ order with
Gutzlaff’s of the 7*® order, but examples of this method will occur
hereafter.

A =43 Here J=-—-2"%x5% J—1=—38"x21"x43;
and vo=—YJ =80, y;,=21,/43;

73 +1=3% 7—7%+1=3x7"x43;
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obtained in Hermite's manner by approximate numerical calculation,
or obtainable in his manner from the modular equation for n =11,

We notice that when J is an integer, then y,+1 is the square of a
number which is a multiple of 3, while y; has a factor 7; these con-
siderations are useful in determining the value of J by approximate.
numerical calenlation for high values of A.

For A=143, G =—3(Vi3+17),
(Quar. Jour. of Math., xx11., p. 171). .

A = 51. The value obtained by Dr. I.. Kiepert for J is
J = —64 (54 V17)* (V17 +4)*
= — 256 (3+/17+11) (V17 +4)?,
and then J—1=—"7"(128+31+/17)?,

1= %?3(128+31 V7).
The modular fanctions for this transformation are intimately
-associated with Kiepert's functions for » =13 (Math. Ann., xxvi,
p- 381); Kiepert’s L-equation (p. 425) having a factor of the form

L4 al?+13 =0,
where, according to Kicpert,

a=—3(@Bv17+1);
so that L3=%(1+«/gii)w,

where w is an imaginary cube root of unity; and the corresponding
modular functions will depend on arguments of the 13™ part of
multiples of the periods.

A = §59. Here we shall find it most convenient to employ Hermite's
method in Flquations Modulaires, p. 44, for class 3°% with n = 17.

The number of improperly primitive classes, which we shall denote
henceforth by the lctter p, for the determinant — A, is in this case of
A = 59 equal to 3 (Gauss, Werke, t. 11., p. 287), so that a cubic equa-
tion for @ must be expected.

Putting = /v = ¢, we shall find, with Hermite’s notation,

1
ud = = ud =g,
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_(Q=z+2)® Q-8
(m__w%)a - 18 i

Then Sohnke's modular equation of the 17 order (Orelle, t. 16),
(v—u)*—16uv (1 —2°) (1~ ) {1700 (v—u)®— (v*—u*)®
+16 1 +u*)*} =0,
becomes an equation of the 18 order in ¢,
(E=1)°+16 x 178 (t—1)°4+15 x 16°+16 x 34£5°—16¢ = 0.

The corresponding values of A are 4n—p® = 67, 59, 43, and 19; and
from the known integral values of a for A =19, 43, and 67 glven
previously, we infer the corresponding factors, for

A=19, #- 4 3t—1=0,
A =43, =384 7t—1=0,
A=67, £#—7+13t—1=0;
leaving the factor of the 9 degree
£ — 7654224 —34¢°+ 4085 — 281 + 2264~ 10 +11¢—1 = 0,
for A = 59.

Forming from this equation the corresponding equation in #, we
shall find on putting
A= _
Sat=a
a cubic equation for a.

We might also have employed Fiedler's modular equation for
n = 15, and then the corresponding values of A are 59, 51, 35, and
11; and the factors for 11, 35, and 51 can be inferred from the pre.
ceding values of a.

Algo the modular equation for » =13 might have been employed
in' Hermite's manner for the case of A = 51, solved above by Kiepert,
the extraneous factors corresponding to A = 43, 27 and 3 being
known, and easily divided out.

A = 67. Here
J=—2"x5"x11%, J—1=—27x7x31*%x67;
obtained from Hermite's Equations Modulaires, p. 48 ;
then vy =20x5%x11, v, =21767,
Y+l =8x7, 7i—7+1=3x7"x31'x67.
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The modular functions in this transformation correspond to
Kiepert's case of n = 17 (Math. Ann., xxV1., p. 428), the correspond-
ing L-equation having the factor

L+ I*+17;

and the associated modular functions have as arguments the 17 parts
of maultiples of the periods.

A =175=3x5" Here
. J=—-64./5(81/5+69)

This is obtained by Klein's quintic transformation (Math. 4nn., x1v.,
p- 143; Proc. Lond. Math. Soc., Vol. 1x., p. 126),

J:J=1:1= (*=10r+5)*: (*—22r+125)(r*—4r—1)? : —1728r;
and J’ the same function of +/, with r+’ = 125.
Putting J' = 0, then
2—10r"+5 =0,
r'=5—-2+5,
r=25/5(/54+2),
leading to the value of J above.
Then vy = 4 x5! (69431 v/5),
vs = 1 +/3(4352/5+49729).

This transformation is associated with Kiepert's transformation for
n =19 (Math. Ann., Xxv1, p. 428), and the corresponding L-equation

has a factor of the form
L‘'+al’4+19=0.

A = 83. Employing Hermite’s method with n=23, and Schréter’s
or Russell’s modular equation

Yor+ YN + ¥4 W ('N) =1,

then, putting Y4 Y (A KN) = 25,
from Hermite's equations (Fquations Modulaires, p. 44),
Ww="=2 1-S4=A= l,
®
ki=1l—p N= z=1
) z 3

so that : KA =1,
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we find SN =g —:T —9 = —AK\?

= — 256s™;
KA +'N = /(8267 —2565") ;
Via+ YN = /[ 40+ v {8+ /(326" —2565%) } ];
so that v {83“ + v (323"‘—2563")} = 1—4ds+4s°—4s",
or V(325 —256s%) = 1—8s+ 245" —405"+ 48s'— 32s° + 85",
or 1 —165+112s* —4645° 4 1812s* — 27525° + 44.32s°
— 55047 + 524855 — 3712s° + 179251 — 512"
+32s 42565 = 0,
an equation of the 24! degree in s, for A =11, 43, 67, 83, and 91.

3 3
Putting B= 1-2—25—2¢

2s* ’
we shall find that this becomes an equation of the 8" degree in 3, and
that B=0,- for A= 67;
B=-1, for A =43;
B=-2, for A=11;

B =1(v/13-1), for A =91
The equation in 3 will therefore be of the form
B (B+1)(B+2)(B*+B—3)(F°+ 46'+ BB+ 0) = 0;
and we easily find A4=4, B=2, C=-5;
so that the cubic equation
B+43+23-5=0
having the discriminant 83 + 27, gives the value of 8 for A =83;

and, forming the equation in fors*, ¢ being connected with s by
the equations

m+—%—2= —2564= —f,

x+% —1=1-256%=1—2,

we obtain a cubic equation for

L (=B _ (12565
T8 T 2565%

A cubic for a was to be expected, as p = 3 for the determinant —83.
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A =91 =7x%x13. Here
J=—v, J-1=-20,
where y, = 908425213, v, =11+/7 (2V13+7)(5V/13+18).

These values were obtained originally by calculating the approxi-
mate values of
yy+1 = (6/13421)* =9 (2/13+7)",

~/12+3)°’

Yi—y+l=3x7x11° (

and the values of y; corresponding to a change of sign of +/13, and

K'|E=v(13+7).

Calculating the approximate values of
12y, = & V(sl), 12y} = e" v N,
we find vs+ys = 1816,
vsy: = — 1088,
so that we may guess that vy, v; are the roots of the quadratic
y'—1816y—1088 = 0.

These values of y, or v; in Kiepert"s L-equation for n = 23 will
make the equation have a factor of the form

L*+aL+23=0.

A =99 =3x11. Here J is obtained by performing the cubic
transformation on

J=- —g—:— s
corresponding to A =11
With Klein’s form, putting " = ?%,
(z—27)(—243)° _ 2°
28 x 3%° -8
or (z—27)(z—243)% = 2"
Put z—27 = ¢,

and extract the cube root; then
y*—32y*—216y—864 = 0,
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or (3*~ 16y—30)% = 196 (y+3)3,
1" —16y—30 = £ 14 (y +3),
(s~ 2y +12) (s 30y —72) = 0,
y=1++114, or 3(+v33+5);

P=Za 1+g_;= 14+ (V33+5)° = 27 (23 +4 v/33) ;

. 28-4 V33 _ (2/3—V11)
Y A 27 '

and these values of r will presumably give the required value of J.

A =107, a prime, notyet solved, but depending on # =27 (Kiepert,
Math. Ann., Xxx11., p. 67).

A =115 = 5x23. Here
=—v) J-1=-21y,
where v, = 314041404 V5,
s = (6+/5+183)(378+169+/5) v/23,
vatl = (18 V5+89)" = 9 (6 /5+13)%,
yi—y,+1 = 3x23 (378+169/5)"

These numerical values are obtained by the combination of the
modular equations of the 5* and 23" order, as explained below.

Combine Mr. Russell’s modular equations of the 5% and 23™ order,
XN+ A2 Y (deAx’)) =1, .
YA+ VX + Y4 W (AeN) =1;
putting 4eA WA = 2,

Then, from the equation of the 5* order,

KN A =1—224,

(KA V)3 = 144 AN — (RN +&A)?

= 142" - (1—22%)" = da*—4a’ 4 2";

A +&'N = 2z —a’,
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Vil VN =,/22,
VAt YN = ¢2 /(a+2%) =1—v/22,
from the equation of the 23™ order.
Therefore V2a—224+8+/22—-1=0.
Now, KA+ = 1—2a4,
KA+ &N = 2% —2a®;
so that, by multiplication,
o AN = (1—22%) (22 —2®) = 2 (2—52%+22%) ;
(V' + VAN')? = 22° (1 -2,
(— Vod + V) = 22 { (1—a')'—2'].
Therefore Vox = s—at— v (0¥ —8a°+21),
VI =t /(=B )5

Yo = a:+m"-—-m"_\/x—w’—a.”

2 2
a5 [etat—ab \/:c—a;“—w"
Yo = \/ 5t 5 -
Now, since V22t =20 4+3v22—1 =0,

therefore we shall obtain the cubic equations for ¢ = #/4xx’ = 2,
— 58+ (18+74/5) t—1 =0,
28— 8+ /5) s+ (8+4/5)s—1=0;

also ¢2m=(‘/5+1) 1+ ¥E) = (i%:l)’awm).

Forming the equations for ¢, #, and &,
4+ (814 144/5) t*+ (5694 2544/5) t*—1 = 0,
" — (803 +360,/5) t*+ (646403 +23908/5) t*—1 = 0,
4 — 81"+ (835673068803 + 873724357760 /5) #—1=0;

J=— 2 A=ty

8o that %

==3 (835673068800 +373724357760./5)

= —2°x5~/5 (157 /5+4351)%,
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v, = 8140 +1404./5,
va+1=9(6v5+18),
Yi—vs+1 = 8x23 (378+169 v5)},
ys = (6+/5+13) (378 +169 ,/5) +/23.

The corresponding modular functions are those of the 29" part of
multiples of the periods, and Kiepert’s L-equation for n = 29 with
these values of y, and ¥, has a factor of the form L'+ «L®+29.

A =123 = 3x 41 can be solved by a combination of the modular
equations of the 3™ and 41* order, or by using Hermite's method
with n = 23.

A =131, a prime, not yet solved.
A =139, a prime, not yet solved.

A =147 =3 x 7® can be solved by employing Klein’s transforma-
tion of the 7** order (Proc. Lond. Math. Soc., Vol. 1x., p.125; Math.
Ann., 31v., p. 143) with J' = 0.

A =155 = 5x31; combine the modular equations of the 5* and
31 order. Then, as for A = 115, if

2 = 4\ N,
Yn+ YN = 2 /(a+2).

Then, in Russell’s modular equation of the 31* order (Proc. Lond.
Math. Soc., Nov. 10, 1887),

(P*~4Q)*—4PR =0,
we must put P= 2. /(z+a"+1,

—-— i_ a4 3
Q=2+ 42 S(@+),

=2
R= 3’
which will lead to the required result.

A4 =163. Here J=—v;, J—1=-—27y],

where v, = 53360, v, = 185801 +/163,
T tl=8xPx1L, v -y,+1=3x19*x127°x163;
and then 258—4s1465—1 =0.

These values were inferred by approximate calculation from
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Hermite's formula (Equations Modulaires, p. 48; H. J. S. Smith,
Report (1865) on the Theory of Numbers, p. 374), the calculation being
very much abbreviated from the consideration that y,+1 is the
square of & number which is a multiple of 3.

The value of A=163 appears to be the highest for which, according
to Hermite's canon, the absolute invariant J is an integer, and so for
the present we terminate at this point the series of values of A in
Class A.

Crass B.
A=7 mod. 8

This is the class, Hermite’s class 4°, for which no simple numerical
invariant has yet been discovered; and, according to Hermite and
Joubert, the only modular function to seek to determine numerically
is &/ («<’), or sometimes ¥/ («x’).

Jacobi’s modular equations between w and v are not suitable for
this purpose, but the «A—«’A" equations of Mr. Robert Russell be-
come immediately of the requisite form on putting A = ¢, X" = v,

The corresponding complex multiplication formulas are given in the
Quar. Jour. of Math., Vol. xxir,, p. 143, where Weierstrass’s notation
is employed.

Guided, however, by Hermite's Equations Modulaires, p. 44, we

may in this Class 4°, employ a complex multiplier,
1 ,
ﬂ = %(_P'l"/A?'):

where p is an odd integer, and then, following Mr. G. H. Stuart’s
method (Quar. Journal of Math., Vol. xx., p. 38), we can express

y=p% in terms of 2 = pu,

by means of an irrational formula; or, with Jacobi’s notation, we
can express
w .
y=cn g in terms of 2 =cnu;

which, in the simplest case of A =7, and p = 1, becomes

Mic—y _ 4/(—ic) 1tz

Viety ic—a’
where c=8+3/7;
leading to the differential relation
dy _3(=1+V70)de

VI-y.y'+d) T V(-2 .2 +c)
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(Proc. Oamb. Phil. Soc., Vol. 1v.); and generally, for any value of
A = 8n—1,

/ic—?/_A(l+m)‘ { cn 25w+ }‘,
Jicty Y en (25+1)w+a) ’

11—
where w= (K+:K')/n,

connecting # = cnu, and y = cn} (—1+ ,/A%) %, and leading to the
differential relation
dy _3(=1+./A%)d=
VA= 9+ J(A-a 2+’

where ¢ = «’[«x; or, in Weierstrass's notation,
y—=p (e+ioy) _ 2= {ot (2s+1) wl/n}}»
Yy—p s & —p (wy+ 250, /n)

connecting’ # = pu, and y = p} (—1+ /A7) u, and leading to the
differential relation

dy —3(=1+/Ad)de
VP —gy—g0) V(P —g,2—5,)
The modular functions required in the general case are then the
n'® parts of multiples of the periods, where

n=% (A +P“)a
an integer; and then A = 8Bu—p’,

thus giving the interpretation of the formula for class 4°, p. 44, of
the Equations Modulaires, in which

’M’ _ 1—‘1)‘
2?

in the modular equation of the u' degree, connecting Jacobi’s u and v.

W’ =1—z,

A = 7. From Gutzlaff’s modular equation of the 7*" order,
YA+ VN =1,
we obtain, putting « = A, " = A,
24k =1.
A =15. In this case Joubert (Oo'.mptes Rendus, t. 50) gives the value
¥ = sin 18°,

for K'/K=+15;
while 4/kk’ = sin 54°,

for K'|K=,/(5-3).
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These values of 4/(xx") can also be obtained from Fiedler’s modular
equation for n = 15.

A = 23. Patting A =«’, N’ =« in Mr. Russell’s modular equation

of the 23" order, PP—4R =0,

or Y+ YN + Y4 VAN =1 =0,
then QYo+ Y4 ¥ —1 =0,

or B42'—1=0,

where a? = 16x¢";

the real root of this cubic being given by

1 _ s/(3/3++23\ , 3//3/3—+23
7‘\/( 63 )+\/( )
A = 31. Putting A =«, X’ =+ in Mr. Russell’s modular equation
of the 31* order,

(P'—4Q)*—-4PR =0,
then P=2{‘/&—’+1, Q:\/E»:T—}-Z&‘/xx_', R=+«";

and P=2a"+1, Q=}"+a’, R=},

it 2 = 16n¢";

so that 2% —3a’+ 42 —1 =0,
(@=1)= —

P¥—1=—g,
2?+2—-1=0,
a cubic for @, the real root being

_ 31+3¢3 \/(31_3~/3).
T6V3 6v3

A =89 = 8x13. The equation for & =2 k¢’ is given by Joubert
in the Comptes Iendus, t. 50, in the form

at 228+ 4a% 4 3x—1 =0,
- so that (FPHa+3) =213,
or 2= —1+ ~/(2~/1‘3—5)=—1+{:§(~/1—§—1)}*.
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A = 47. The modular equation of the 47 order has been given by
Hurwitz in the Math. Ann., Vol. xvir., p. 69, in the form

{2 (Vik+ YN =1)— ¥4 /(A \) }P
= 8 (VA + VXN +1)—7 V16 &/ (kAKX ;
and Russell’s form, given in the Proc. Lond. Math. Soc., Vol.
Xix., p. 111, is
(P'—4Q)*—4PR (7P*+24Q)—128R* = 0.
Henees, if K'/K = V47, we have, putting

4

A=«', N=x,

(4 ¥od— 3/4 Vid—2) = 16 Vie' =7 Y16 Viw' +8;
or, if 16x¢" = 2",

(28— —2)* = 4o’ —Ta* +8,

or b~ a8+ 28 —aP+1 = 0.
16 k"= 1/°,
then 2= VY,

and the quintic for y is
'+ 3y +2y—1 =0,
a Hauptgleichung (Klein, Icosaéder) which has been solved by Prof.

G. Paxton Young, the solution being given in the American Jowrnal of
Mathematics, Vol. x., p. 108.

The quintic has only one real root, which is

. Wy + 2wy + 1w+ 2y,
where u8 = &% (16+47/5) + 55 v/ {4 (21125 +9430 v5) {,
W = s (16—7v/5) —gig o/ {4 (21125—0430 /5)},
W= g% (15—7v5) +5i5 v {4 (211259439 /5)},
1]

ul = s (15+7V5) —ghs v/ {41 (2112549439 V/5) } ;

1
the other imaginary roots of the quintic being of the form
ey + et u, + e ug+ €ty
where € is an imaginary fifth root of unity.

We might have employed the modular equation of the 47" owder,
VOL. XIX.—No. 825. Y
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given By Hurwitz, in the Math. 4nn., xvii., p. 69, of the form
{2 (VA + VN =1)— ¥4 Vixen'}
= 8 (Vih+ VN +1)=7 Y16 Yie'N.
Putting A=+x, N =k or N ==«
in this equation, then K'|K = v47;
and (4 ¥~ /4 Vi’ —2)* = 16 Vik —7 ¥/ 16 ek’ +8;

or, if 16xx" =",
(228 —2*—2)* = 42— 724 +-8,

or =244+ 20—2'+1=0; -

and if 2 = v/,
P+3y°'+2y—1 =0,
a3 before.

A = 55 = 5 x11. Combining Schriter’s or Russell’s modular equa-
tions of the 5'" and 11* orders,

KA +2 Y (AN N) =1,
VA VN 42 ¥/ (dd'N) =1
putting 4xA '\ = 2’
then, (rom the equation of the 5% order,
KX+eh = 1—-2a%,
A+ &'N = 27 —ab;
ViN+ VN = 23
= 1—2
from the equation of the 11'" order; so that
204 /22—1=0,
_ v5-—1

= 272
Then, as before, in A =115,

o’ AN = a? (2 —5at+ 228),
V’;‘r"-}- «/W: J2w (l—a;‘)
— 7— V5
8
V5 \/(10\/5—18).
8
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A =63 =3"x7. Performing the cubic transformation on the

modulus for
K|/K=4V7,

we shall obtain the required modulus.
Putting z =2k,
the equation is written by Joubert (Comptes Rendus, t. 50)
(@—2+5)t-21(z—1)*= 0,
whence « can readily be determined.

For A=71 and 79, consult Dr. E. W. Fiedler, Ueber eine
besondere Classe trrationaler Modulargleichungen der elliptischen Func-
ttonen ; Ziirich, 1885.

Putting 2k = Z,
then in Fiedler’s notation
Zi=2F],
Z,=1Fe, Z;==2z+1,
Zy = F 32

and for A =71, Fiedler’s equation for z is
(—1)"+2? { (20 +1)*+9 (v+ 1) (20 +1)*+ 21 (e +1)* (v +1)
+12 (2w +1)°} — (2 —1)*w* {6 (2x+ 1)+ 7 (z—1)*} +a® = 0;
while fdr A =79, the equation for z is
(—22+1)°—(z+1)2* {(x+1)°+10 (z+1)* (—22+1)
+28 (v+1)* (—22+1)" 421 (—22+1)%}
—a* {7 (a4 1)*+26 (o +1)7 (— 20+ 1) +24 (—2+1)7}
+8(z+1)a"=0;
equations of the 9" and 8" degree respectively.

A = 87 = 3x29 can be solved by the combination of the modular
equations of the 3" and 29" order, but this last modular equation has
not yet been calculated by Mr. Russell or others in a convenient
form, the form given by Schréter being unsuitable for our purposes.

A=95=5x19.
Putting, as before 4kh '\ = 2",
and Via+ VN = /2a,
Y 2
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from the modular equation of the 5" order, then, in Mr. Russell’s

notation, P=+2z-1,
Q=3"— V22,
B =—1.5

which. substituted in his modular cqnation of the 19* order, will give
an equation of the 12" degree for =.

Crass C.
A =1, mod. 4.

This is Hermite's Class 1° (Lquations Modulaires, p. 44), and the
absolutely simplest numerical invarviant, according to Hermite, is

__ (at1y
T z(e-1)7
which, on replacing & by 1—«"% becomes
a= w, a+$16 = Mﬁ,
K2 K
so that, putting =14, y=1./(a+16),

B= L——21«:’, y= —1—,+ 2k’ ;
kx

xk’
and, according to Hermite, 8 or y are in o great many cases integers.
With the complex multiplier

1, .
—_—= (- A y
i 2 (—p+V/A%)

where p is au odd integer, we can cuonneet
y=cn 4= with 2 = cnu
M ’

by means of an irrational velation in Mr. G. H. Stuart’s manner, as
explained in the Quarterly Jouwrnal of Mathematics, Vol. xx1r., p. 147 ;
aud then the modnlar functions involved in these velations are
functions of the 2™ part of multiple of the perivds, where

n =3 (A+p%),
an integer; so that A = 2n—p}

a8 in Hermite's formulas (Equations Modulaires, p. 44).
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Or, in Weierstrass’s notation, we can connect
z=gpu and y=p5(—-1+/417),
where A=4dn+1, m=2n+1,
by means of the relation

Yy—piw; — (w—e,)2 I T—g {‘-12— (4r+1) wa/m}
Y~ Pz x—ey x—p (dr+1) wg/m

a transformation of the order n+3 = {m.

A =1 Then ¥=«, and «=x =sin4d%;
also J=1, J—1=0, so that g, = 0.
Then B=0, a=0, 2«'=1,

A=25  Here 3 =2 a=2% obtained from Russell’s modular
equation of the 5% order, with A = «, =«. Then

2%k’ +2¥ 4%kt —=1 =0,

or, putting Vo = w,
?4+2'—1=0, (@+1)@R+a—1)=0, 2=1(/5-1),
e (/B=1y8
2= /5 2_( 5 ) (Abel).

A=9=3. Here
« = 22x 3 (Kronecker),
B=8y3, y=14

or, putting 2xk’= z,
Pelbs—1=0, 7=7—4y3=(2—/3) = (_%)
A =13. Here 3 =386, a = 2"x 3" (Kronecker) ;
’ T \/]73_3 8
Y= 5/ 13-18 = (227,
2’ = 5+/13—18 ( ) )

A =17, Taking Mr. Russcll’s modular equation for the 17t
order, and putting X =«’, N'= «, there results the equation in z = 2x,

(z=1)(z*—=862—1)* (+**—802*—98:*—80z+4+1) = 0.
The factor z—1 =0 corresponds to A =1, and the factor
2#—362—1=0 to A =13, so that
2 —80—982"--8024+1=0;
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y*—80y—100 =0,
y = 10V/17+40,
g=1

—~—2 =4,/(206+50//17),
a =43 =27 (2517 +103).

A=21=38x7 Then (Kronecker)

a=2x3(v/3+1),
Ok'= (‘/7; ‘/3)8 (3;‘2/7)’, for K'/K = /21,
2N\ = (J7; ~/3)s (~3+2‘/7)g, for A/JA = /7+38.

A =25=25. Then
B=2x8x%.,5 y=82=2x7x23;

A =29. The form of the (kA, ¥A") modular equation, according to
Mr. Russell, will be

P*+ R (AP"+ BP*Q+ CP'Q*+ DP'Q* + EP'Q' + FP'Q°+ G°Q°)
+ B} (HP' 4+ JP'Q+ KP*Q + LPSQ*+ MPQY)
+ 1P (NP 4+ Or'Q+ SP*QP+ TQY)
+ ' (UP+ VPQ)+ WI° = 0,
connccting P=g+y-1, Q=azy—a—y, IR=-—ay,
where e=x\ y=«N\;
and A, B, C,... U, V, TV are numerical coefficients, the values of
which have not yet been determined.

Putting A =«, N'=«, and then z = 2«’; P=12—1, @ = }a'—z,
I = —%7*; and, by analogy with the preceding cases, the resulting
equation will have a factor 2+ 1, and other factors corresponding to
previous values of A,

Pending the determination of the numerical coefficients in Russell’s
modular equation of the 29" order, let us determine the numerical

values of the modular functions for A = 29 in Hermite's manner for
his Class 1°, by means of the modular equation for n = 19.
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Then the corresponding values of A are given by
2n—p* = 37, 29, 13;

of which the solutions for A = 37 and 13 are simple and well known.

Putting, in Hermite’s notation,

A = u't = wh,

then, since F=dd =z,
v*—1
and “4.:'!7‘:-—1'
_A-1 _ 14+,
S wis LR g

14 V=,
1-vz'

N = 2i o o LEYE = 20 Vi,
1—-Va

Then, in Russell’s notation, with

w = kA =

A = wh KN =20f e=-—1,
P=w(t+ev2),
Q= w?(e vV21-1),

R=—ev2ub
where t=w——l = Y- 41_.
w kA
Then 42 =wi+w?
= 1tz —=e8/a= (141 f— 1
= G = Ya= (149 VB, d=-1
With Russell’s notation, for » = 19,
P=w'4+e,/2w—1 = w(t+1+9),
Q=c/2w=w'—e/2w= w (t+it—1),
R = —e/2uw = —wP(141);

and substituting in
P'—112P°R4+256QR = 0,
we obtain
@149 +112 (1+3) (¢+1+4)°—256 (1 +4) (¢+¢ -1) =0,
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or
84 564+ 928 — 208+ 28+ ¢ (51°+20£*+ 1832~ 64¢ +476) = 0.
This equation has the factor
'+ 8t+16—181 =0,

giving t=—4+3./2¢
=—1+43¢, or —7—31;

and therefore B =6 or 42%

corresponding to A =13 or 37.

The remaining cubic factor is
£ —(8—=50) '+ (8—2:) t—14+4+14¢=0;

so that

4+ (32+267) t*+ (1164 1927) £+ 392 = 0
and since = (1+7) V-2,
therefore B% 4268+ 448"+ 56 = 0,

a cubic equation with discriminant 32°x 29 =+ 27; then
3*—5883'—9768—3136 =0 ;

.. 1 .
giving B= e — 2’ ;

and putting z = 2««’, the equation for 7 is
25+ 58828 — 9792 +19602° 4+ 9792* 4- 588z —1 = 0.

The knowledge of this factor will be of great assistance in the

determination of the numerical factors 4, B, C, ... U, V, W in the
modular equation of the 29" order.

A=33=38x11. Here
a=2'x3 (300+52+/33)?,
o (VI1=8\? { /3—1\¢
20 = ( 73 ) 72 )-

These values are obtained by the combination of Schriter’s or
Russell’s modular equation of the 11*" order,

VN + VEN$2 Y AAN) =1 o, 1)
with the equation of the 3 order,
VN VEN =1 i e, ).
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Patting 4A KN =28,
then VN4 VN = 1—2,
kN 4 A = 1 —4da+4a’ - 28,
and KN+ = 1—a?,

(KN =AY = 1-22";
8o that 1—20"+ (1—de+4a’—a®)® = (KN'—A)*+ (N +cN) =1,
or (1—4x+ 42! —2z°)* = 2%, ‘
or 29—8a%+ 242* —362° + 242*— 8z +1 = 0,
o reciprocal sextic, having the factors

("—4dg+1)(a*—dat+ 72l —42+1) = 0.
Putting z+ —:’- =9,

then y'—8y*+21y—20=0,
G=N("—49+5) =0;
so that y =4, 244

Taking the real root z+ 1 =4,
z

z2=2—+/8=3(v3-1)%;
then N+ = V2t = §(V/3-1)8,
A+KN = 1—a8 = £ (V/3—1)3,

(K+)(N+X) = 3 (V/3=1),

(K —x)(N'—=\) = 2(vV3-1)*;
(14+26) (1 4+20X) = 9 (V/3—1),
(1=2c)(1—2AN) = 4 (v/3—1)",

4 (k¢ +AN) = 5 (//3—1)",
64xA KN =1 (v3-1)",

16 (k' —AXN')? = 22 (/3—1)%,

4 (O —«) = 3 V11 (/3-1),
8’ = 1 (10—-3v/11)(v/3-1)",

2k = (J];—}2_'3)’ (“/\3/;1)e for K'/K = +/33;
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2w = (L8 (2

=1 a=1 _o
ﬁ—gx/a—2’m, kK

)" for AJA = /(11 + 3).

= 0+8viD) (L2H) '~ a0-sv1) (1_:37;_1)0

=156+/11+300 v/3
=43 (75+13/33);
a=2'x3(75+13+/33);

=1 ‘
Ly + 2w

= 520490 v/33
=10 (52+9+/33) ;
a+16 = 2'x 5 (52+9 v/33)%.
Similarly for AN and the values of a’, corresponding to
A'JA = V(11 3),
o« = 2'x3(75—13 v/33)},
a’+16 = 2 x 57 (52—9 v/33).
A=237. Here a=2"x8'x 7,
B=2'x8x7, y=2x5x29+/37;

obtained from Hermite's Théorie des Fquations Modulaives, Note,
p- 50; also by Kronecker, Berlin Sitz. 1862 ; then

2’ = (+/37—6), -2—:7 = (V37+6)".

A = 41. Not yet solved ; but a quartic equation for a, 3, or y must
be expected, as p = 4.

A =45=3'x 5. Here,by means of the cubic transformationin A=35,
a=2°(17+10v3)%, a+16 = 80 (527+3043)’,
B=2'(174+10+/3)% y=2v5 (5274304 ./3);

ok =(/52—1)“(~/5;2“ %), KK =v(45);

2:\>\'=(*/52_1)"( ‘/5;2*/3)4, NJA =/(9+5).
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A = 49 = 7%, Here, by the 7' transformation on A = 1,
a=2x3" 3+ v7)°V7,

Then Vx, ¥k = §/2,
o (V11— /2 YT\
= ( 2./2 )

(Kronecker, Berlin Sttz. 1862 : G. H. Stuart, Quart. Journal o
Math., Vol. xx.).

A = 53, a prime number not yet solved. Here p = 8, so that a
cubic for a« must be expected.

A =57 =3x19. We combine the modular equations of the 3* and
19* order, and put

dd N = ¢
Then from the equation of the 3" order
KA+eN = 1—93,
AN = /2y,
Vx4 VN = /(54 V2y).
With Russell’s notation, we have
P=JE+v2y-1,
Q=3'—v(E'+v2y),
=-3y
and then, substituting in his modular equation of the 19* order, we
obtain an equation for y, which is reciprocal when rationalised ; and

then putting

y—y = V20
we obtain P+ 50t —460° 4 7060'— 6110+ 169 = 0,
or (v+13)(v* —8v*+ 58v°— 480 +13) =0,
or (v+13) { (' —4o+8)'+ (60+2)"} = 0.
Taking v=—13,
1 _y=13.,2

Y
Kl .
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i +MN = /2y (1=9y") =— 2%
= 26y';
2 VAN =g
Vi + /AN = 3./3y,
— V' + VAN = 5y.

But 2y = V2 (3v19-183),
P (/3=1\® (8V19—13\} .. 0 _ /im
g0 that 2xx _( - ) ( = ) K'/E = V57,
2\ = (~/i“)'/-:):1)6 (3~/1~22~13) , AfA=/(19-=3)

A=61l. A prime number, not yet solved, but depending in
Hermite's manner on # = 31.

A =65=5x%13. Combine the modular equations of the 5" and
13" orders; then, if we put

4NN = b,
we obtain from the equation of the 5® order,
KA ) =1—221
KA+ kA = 2u—2a};

and in the equation of the 13" order, with Russell’s notation,

P = —1+42zx—2af
Q =—2z+2°—1af%,
B =— 2

Substituting these values of P, @, and It in the modular equation of
the 13" order, and dividing out the factors z+1, 2* £2+1, we are
left with a reciprocal eqnation for #, which, on putting

.l.-'-a;:y,

Zz
becomes y*—5y—10 =0,
so that Ly =1(V65+5);

whence ««” and AN’ can be determined.

A =69 =3x23. Combine Schroter'’s, Hurwitz’s, or Russell’s
modular equation of the 23™ order,

YK+ YN + Y (2566AA) = 1oeeiieiveee e (1),
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with Jacobi’s equation of the 3" order,

VA VN =L (2).
Putting 4A'N = oM,
then Va4 VN =1— 20,

VA+ VN = 12722+ 22— /228,
A+N = (1-2,/22+2— v23%)'—2,
and KA kN = 1—2a8,
(KA—=kN')? = 1 =228,

therefore A +xN = /2ad
or (1—2v23+22%— V/22%) 2 = /228,
or 2°—4.,/22°+122°—10 /22 + 1224, /22+1 = /22,
a reciprocal sextic for .

Put -1—-+a;=y,
@

then =429 +9y =8./2.

The equation .
P—4./29°+9—-3,/2=0
has the factors

(y—v2) ("-3/2y+3) =0,

and therefore the roots /2, 3—%/—%'-3

For 2 to be real, y must be greater than 2, and therefore we must

- 3+./3
V2
Then KAk = /228,

1
= @
put - +

KA+ = 1-2a%;
and, multiplying these equations together,
w4+ = V228 (1—29),

also 27/ 6ARN = 28,
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so that ~/J+~/ﬁ'=@“\/{~/z(—; —wﬂ)+1},

vz S [ (Emw) 1)

A =173. A prime number not yet solved; but depending in
Hermite’s manner on » = 37. Since p =2, we must expect a
quadratic for a.

A =77="17x11l. Combine the modular equation of the 11* order,
Vid+ VEN +28/(dd X)) = 1,
with Gutzlaff’s equation, of the 7*" order,
YN+ VN =1,
by putting 4AN = 2V,
Then VA4 VN =1—221,
xX-+ KN = 1 —4a® 4 da*—2f,
and i+ VN = 1— /225,
KA =1—24/2a8+2".
But (R+KN )P+ (KA +K0)? = L+ 4eA WX,
and therefore
(1 -4+ da*—2a®)’+ (1 —2/22%+2%) = 1+ 2%,
or (1—2/22%+2%)? = 1 + 2" — (1 — 4a® + 4a* —2°)?
= 8#—2%‘+34m“ — 2428+ 821
= 2% (2— 32’ +22*)%.
1-2/2a+af = 2v/22—3./22°4+2,/225,

or =222+ /22 ~2+/224+1=0,
a reciprocal sextic in @, which, putting

1 .=

T TETY
becomes Y*—2,/24*—8y+5,/2=0,

y—v?2) (¥~ v2y—-5) =0,
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having roots /2, 1+ \/;/11, of which the root greater than 2 must
be chosen.
Then kNN = 1—da’+ 4ot —af,

KA+kN = 24/ 22—38 /228 +2,/225,

ontmvue {3 e-s(Lo)} 3(3 )],

2ViAkN = 2
whence vix’ and v/ A\ and then 2«ck’ and 2AN’.
A =81 = 3% Obtained from A = 3.

A =85 =75x17. Taking the modular equation of the 5" order,
and putting
4N = 2,

then ® =3 («/55-—-9)

is a value im;')lied from the approximate solutions given by Professor
H. J. 8. Smith, in the Report on the Theory of Numbers, 1865, to the
British Association, p. 374.

Then : AN = 1—227
A+ N = 2z—2at;
so that, by multiplication,

&+ =2 (2— a,‘)(l 2a%)
=o® (207*—5+22%)
= 161 2°;

— kAN =72./54%;
2k’ = ( V5— l)ua,s,

2\ = ( +1>12a, ;

)
2Kx'=(‘/52 ) (JS" 9)3 K'/K = /85,
2M'=(‘/2 ) (‘/85 g)d, AJA= /(17 = 5).
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A =89. A prime number, not yet solved.

A =93 =3x3l. Trom the modular equation of the 3" order,
VEr+ VN =1,
putting YN =,
KA+ =1-22°,
(A +N) = 14+ AN — (KA +x\')?
= 14+4at —(1—2%)" = 427,
A+ KN = 2u;
Vih4 VN = v (2e+247)
YA+ VN = /{ /(e + 2" +2).
Then, in Russell’s notation,
P=1+ J{ \/(2m+2a:"')+2w},
Q=2+ {V(2+2) +2},
L=z,
PP—4Q =1-2e+ /(242" -2V { vV (2 +227) +2.v} ;
and the modular equation of the 31% ovder,

(P*-4Q)'—4PR =0,

becomes
[1—22+ v(2e+20") -2/ { /(20+22") + 22} |*

—-4:0—4.1:/{ \/(2m+2m’)+2a:} =0;
and, rationalising,
_ 142x462°+2 (3—22) v (22+22%)
=4 {1—a+ v (2+22")} /{V(20+22") + 22},

or

1—-202—82—722%+ 682* = 4 (1 +12:—18+*+122%) /(224 22%),
‘or

1 =720 41607 — 404848 + 126802 — 809628 — 166440 — 57627 + 16a° = 0,
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which, on putting /22 = y, becomes

1-86./2y— 2087 —1012 /2 4 4 3170y}
| —1012 v/2 5° — 208 —36 /247 +4° = 0,

a reciprocal equation for y.

Now, put y+ ;- = /2,

then

so that

v+ 51? = 2582,

P = = 2/20°—3./20,

—-— =

v+ = =4 -8 +2;

£

v*—361°— 1060 —4520+897 =0 ;
(v—389)(+*+3v*+110—23) = 0.

Taking » = 39, then

VOL.

—§~+y =392,
—i——y = 7¢2/ﬁ,
2y = /2 (39—7 V/31),
2 = 39—7+31;
kK + M = 2 (1—2a2)
= Zay (?-l/——y)
=14 V31,
2V AN =" 7'
— K AN =45 V31,
2w’ = (14 v/31—45/3) o

- (g (BT,

XIX.—N0. 326. Z

337
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for K/K = v93;
. {+/314+8,/3\% /39—7 ,/31)\?
m_( 2 ) ( /2 )
for AJA = /(31 +3).

A=97. Guided by the approximate numerical values given by
Kronccker, and quoted by Smith in the 1865 Report on the Theory of
Numbers, p. 374, we infer that

a = 33210v/97 + 327078 ;

a being given by a quadratic equation, since p = 2 for the determi-
nant —97.

A =101, a prime number. Since p = 7 for the determinant —101,
we must expect an irreducible equation of the 7% degree for the
determination of a.

A =105 = 3% 5% 7, a number composed of three prime factors, the
carlicst number of the kind to be encountered.

The solution of the modular equatign in this case has been given
by Krouecker in the Derlin Sitzun Jsbenchle, 1862, but the method by
which the solution was obtained is very briefly indicated, and the
results contain numerons misprints. '

We shall obtain the solution by combining Gutzlaff’s equation,
VN VN =1,
with Fiedler’s modular equation of the 15" order,
4,2, +4Z; = 0;
where Z4, = VAt VEN +1,
Zy = VWX + YA+ VX,
Zy = + VAN,
and Zy = Z,—47,
Write @ for VAN and w for v'rA4 <X ; then
Zy=w+l, Zy=w+zx, Z;=uz,
Zy = (w+1)*—d (w+z),
= (w—1)*—4z,
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and Fiedler's equation becomes
(w+1)(w—1)"—4dz (w+1)+4zx = 0,
or (w+1)(w—1)* = 4wz,
or _ w—wl'—w+ 1 = dwa.
Now, from Gutzlaff’s equation,
ViEX+ VN = 12z,
KA+ kN =1-—do 42,
and therefore (A+«\)? =1+42'—(1—4a+22%)*
| = 82—202+ 162,
But YA+ YN = w,
Vi VN = w®— 2,
M+ KN = w—dws+ 2°
= wi+w'—w+22" = 2w+ dwr+ 22— 1
= 2 (w+a)'~1.
Therefore, putting w+z = 2,
224 —1 = +/(162®—202' +8z),
and B—(8z+1) 2+ (82" =22 —1) z—a’ + 3’ +2+1 = 0,

and 7 is to be eliminated between these two equations.

Putting 222—1 =1¢, 2=14(@+1),
then, since
{2 +(8c*—22—1) 2}'— {(Be+1) #—2*+ 32’ +a+1}' =0,
_or F—(327+102+3) 2' + (82' + 42° + 102 + 1224 8) 2°

—(a*=3?~a—1) =0,
therefore

(L;_—l)a__ (3m’+10m+3) (éiz'_l_)’_*_ (3x‘+4m3+10m2+12w+3)%_1.

—(®—32'—2~1)? =0,
or $—(622+20z+3) *+ (122" + 16+ 282* + 8x 4+ 3) ¢
~— (82°— 482" 4 44’ + 162° + 2207 — 122 +1) = 0,
z 2
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or ¢ (841224 162° 4282 + 8z + 3)
= /(162> 202"+ 8z) (12z* 4 324° 4 84 + 162+ 3)
= 8284 482" + 244x* — 2882+ 12227 + 122 + 1,
a reciprocal equation in /2.
Putting +/22 =y, and squaring,
(4v29°—10y"+4 v/29)(3y*+8 V24 + 4y’ +8 v2y+38)’
= (1°4+6 V294 +61y*— 72 V21 + 61y +6 V2 y+1)*;

and putting y+ -;—/l- = 29,
v+ —1—, =2'-2, P+ is =24/205—3 V20,
A Yy 4
(8v—10) (648 +160—2)? = 2 (20°+ 1207+ 58v —84)",
or (40—>5)(8v*+8v—1)" = (+*+ 60+ 29v—42)",
or 2® — 249 — 530427203+ 69107 — 25200+ 1769 = 0.

A quadratic factor of this equation, v*—28v+61, was discovered
by calculating the approximate numerical values of # in a manner to
be explained subsequently.

The remaining quartic factor of the sextic
v+ 48— 20— 280+ 29 = (v*+20—85) +4 (v—1)’ =0,
has only imaginary roots.
Taking v as determined by the gquadratic
2'—28v461 =0,
then v = 144315
The reciprocal 12 for y, expanded at full length, would be
Y24 /24" —100y" +424 /2 4+ 2855y — 8688 /29
+190644°—8688 ,/275...... —-24 /2y+1 =0,
which has the reciprocal factor,
7' —28 /24 +1244°—28 /2y +1,
obtained from v*—28v+61.
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Vir+ YN =1,
VX4 VN = 1— /24,
KA+ N =1-22y+y7,
A+ KN= (4 /2y—1012+4,/25%).
y* = 4x\K'N,

Ty = v
v = 144315,
Loy =y(@—4)
YL /(6584168 v/15)
= /2 (3V21+2V35).

_3 = /2 (14431543 V21 +2+/35)
=2 (2V7+3v3)(V/7+ /5),

— (¢7+ /3)3 V7+ /5

2 J2

(J7— J3)3 \/7—«/5'
2 NG

1
y

YNt VN =1,

\/J-}-\/a':l-«/.?y,

A+ KN =1-24/2y+97

KA+ o =/ {14y - (1-2v/2y+17)"}
= /(4472 y—=104*+4,/29°).

WA =yt (3 +y-2v2) \/ {wz (-71,- +y) ~10}

y
=9 (V20—22) +/(8v—10)
=2y (v—2) V/(4v—5)
= 2 (124 3V15)(6+ V15)
= 12 (2344 6015),

341
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and 2 vihe'N'=g¢?;
therefore Vil + /AN = y /(235+60~/f5-)
=y (3+v/15+10),
— Vi + VXN = 5 /(233460 v15)
=y (5v/5+643).
Therefore 2+/xk = y (3v/154+10—5+/5—6./3)
=y (3/3—5)(v/5—2)
o [ /8=1\% [ V5—1\
=4 () (F5)

2 2

2¢A—,=y(v32+1)3(452+1)=;
or Ve = (Vf/gl)“ («/52—1)*’ (~/7; ¢3)= 47\-/-2~/5,
when K'|E=./(105);
and VN = (Ji;l)“ (/ZH)B (/7;/3)” J7;2J5,
‘when K'/K = /(15-7).
Therefore

1 (/B4+1\ (/541 (/74 /3\* V7+ /5.

Jﬁ"‘(ﬂ)( 2 )( 2 ) V2

and therefore
B=3%Va= 5%—2:\';:'

- (\/3+1)6 (J5+1)° (/7;/3)° (J7+ J5)’

V2 2 72
(5 (42 (L15) (£5:8),
and  f=lyd= .21\_7\ —oaN
(LAY (L) (L) (L
(SRS (254 (55

so that 8 and f’ are the roots of a quadratic equation,
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If we had taken the other root of the quadratic
»*—28v+61 =0,
v =14—3 15,
we should find % = 2 (14—3 V15 +3v/21—2+/35)

= /2 2/ T+3/3) (/7= v/5),

L-(252 45

y = (L5L2) LS5

Also - k' + AN = g? (284—60 +/15),

and therefore VK + /AN =y (3 V15-10),
— VK + VAN = y (5+/5—64/8),
and V% = :/?.IE (8+v/15—10—5+5+6 +/3)

= (Bv3-5)(v5+2) L

(«/3 1) («/5-%—1) (4/7 \/3> V145

v2
when K/K=.,(35+3);
g V3HIN FV/5=1\ (/7 — /3N V7+ V5
ad /2= ( ) ( ) ( - vz '
when ' A JA = /(21-5).

According to Kronecker, Berlin Sitz., 1862,
2c’ = (2y=8a)® (5+9a+ 168+ 4y + 78y +12af + 3aSy),
where a, 3, y denote /3, v/5, +/7, respectively.

—\3
The factor 9y —3a = (‘/2“),

but the remaining factor cannot be made to agree with

@+ (552)" (6+8y),

the result obtained above,

343
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The approximate numerical values of # and y were obtained from
the formulas

Yk =./2 ¢, Vo' =2lg
Now, if K'/K = /105,
log105 = 2:0211893,
log K’/ K = log +/105 = 1:01059465,
logwloge= 1349342,

log log (5) = 114552885,
log (%) = 13-9806984,

1og(_;-)*= 17475873,
log2’= 2957725,

log - /__ 1-5218148,

log ¥/ 2« = 24781852,
Again, if A'/A = /(15+7),
log 15 = 11760913,
log 7 = 8450980,
log 4t = 3309933,
log A'/A = log v/1E = *16549665,
logwloge = 1349342,

log log (%) = 30043085,

log ( %) = 1:9972425,

log (l)“ = 2490553,

1
log 2! = -2257725,
1
og ——=—— = -0238828,
& o

log ¥/2\N = 1-9761172,



1888.] Multiplication Moduli of Elliptic Functions. 845

Combining these transformations when the modular equations of
the 7** and 15" order are employed,

]og—?lj = 1:5456976, % = 35131633,
log y = 24543024, y

% +y = 35161097,

= 028464,

log +/2v = 1'5460624,

log /2= 1505150,
log v = 1-8955474, v = 24-862.
In g similar manner, if K'/K = ,/(25+3),
log ¥/2«’ =164324355,
and if A’/A = /(21+5),
log ¥/2\\" = 1-87623125,
logy’ = 1-5194748,

log .} = 4805252,
¥ = -33073,
1 _ 302360,
y

V29" = 335433,
log /24" = 5256058,
log /2= ‘1505150,
logv’ = -3750908, + = 2:37187,
log v = 1:3955474,
log v’ = 1:7706382, v’ = 58971,
and v+’ = 24°862
2:372
= 27-234;

indicating, as the approximations are rather rough for the ratios of
the periods”

K/K=/(15+7), /@1+5), and /(35=3),
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the true valnes of v+’ and v, namely
v+ =28 and o =61,
Taking, however, the values from Legendre’s tables, we find that
K[/K=,/(15+17), 2« = sin4d5°30;
K'/K = ./(21+5), 2« = sinl8°40’;
K/K=,/(85+3), 2« =sin2°8.
If we had combined Jacobi's modular equation of the 3™ order,
Vir+ VN =1,
with Fiedler’s form of the 35 order,
2—8Z 2,482,427 = 0,
where Z, = vrA+ kN —1,
7 = /XN = X — /X,
Z, = — v/AxX,
and 2 = — (WA+e\) VAN + (¢ =N) YN = (=) ¥ix;
then, putting AN =-2,
AN = 1= 225,
(A +6N) = 1442 —(1-22%)°
= 4a’,
Vx4 VN = /(22424 ;
so that Z, = +/(2z+24) —1,
Z,= a'— /(20+24%),

’

Z,=—a,
2 = — (2—28%) + (¢ =X\) ¥N— (k=) ¥r.
Then
{ V(2242 —1}~8 { /(2o +2¢") —1} {2*~ /(22 +22")}

+ 4 — 8a*—8a®
=4 {(K—=NX) /XN = (c—A) VA }
=4v/(1=2) / {(1—20+2") v/ (20+20%) + 20— 4a?}.
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Squaring and rearranging,
1—10z+ 2502 + 4482* —1722* — 1362° + 1362°
= (6 + 80z + 1282 — 162"+ 1522* — 962") /(2 + 22) ;
and squaring again, and reducing,
1—922—13922 — 21896a° — 32522* + 1552962° + 829762°
— 31059207 — 130082° + 1751682° — 222722 + 29442 + 64'® = 0,
a reciprocal equation in /22 =4y, so that
¥+ 46 /2 4" — 6960+ 5474 /2 4° —8131°— 19412 /2 47 + 6032,
+19412 ,/2 4/ —818y*— 5474 /24— 696y"— 46 /2y +1 = 0.
Putting, as before, y+ % = ./2v,

then o°—351v*+4950"+ 783 +46 v/ (' —2) (v* 4 580'—135) = 0.
But, putting —?1/—- —y =,/2u,
;—2 +1f=2u+2,

L y= 2 (20 +3),

w2

+y* = 4u*+ 84’42,
—' = /2 (448 + 1043+ 5u),

+y = 8ub+4 24t +18u +2;

te Y teol._. w‘l._-

then ub—46u° — 845ut—2852u8 — 897! +690u+377 =0,
having a quadratic factor  2?—54u+29,

inferred as before from the approxzimate numeuca,l values of the
moduli.

This sextic then splits into the factors
(v’ — 54u+29) (u' + 8u* + 58u* + 48u+13) = 0,
and the quartic factor
= (v*+4u+3)"+ (6u+2)?,
and thelefme gives imaginary roots only.
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1

But if 5= V2u, and u=27+10+/7, from
w54y +29 = 0;
% +y = /(2 +4)
= /(286241080 +/7)
= /2 (6v21+15,/3);
—3—: V2 (27+10/746+/21 +15 v/3)
= V2 (8/8+5)(2vV7+3./3),
1o (B (£p0),
v=(27) (F52)
But V4 /6N =1,

A4 KN =1—9
MAd N = /{14y =1y} = /2y,
W W= 2y (l—y?) = 2, |
2V/IACN = s
therefore '+ /AN =y +/(2u+1)
=y /(55+20,/7)
=y (V/35+2/5);
— Ve + VN =y /(2u—1)
=y +/(53+20,/7)
=y (2/7+5);
2Vl =y (V35+24/5—24/7—5)
=y (V5=2)(VT=V5);

Vo («/52-—1)’ Mi/——2¢5

(B (AR (5

-
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where K'/K = +/105, as before; and

(51 (L) (L150)" St 0o

when A'/A = /(85 -+ 3), as before.

?

A=161=7%23. Combine Schrioter’s or Russell’'s modular
equation of the 23 order,

Yh+ YN+ ¥4 YV (AN) =1,
with Gutzlaff’s of the 7'b,
Yir+ YN =1,

by putting 4xA KA = 213,

Then, for the equation of the 23" order,

Va+ YN =1—./2z,

VA+ VN =1-2,/2 2+ 21— /22,

A+ N=(1A-2./22+4+2s— /22%)—a®
=1—-4./22+122"—10,/22°+122* ~4 /2 2°+ 2",

a reciprocal expression.

Again, from the equation of the 7*" order,
VEA+ VN =1— /2428,
KA+ N =1-2./24+a"

But (AN + (KA 60N = 144l X'
therefore _
(1—4,/22+4+122*~10/2 2*+122*—4 /2 & +2%)' 4 (1 - 2./2 2° + 2°)*
=1+2a",
a reciprocal equation of the 12 degree for .
Put % +z= 2y,
then 4y®—32y° +100y*—160y*+ 113y*—249+9 = 0,

a sextic equation for y, of which a quadratic factor can be discovered
by calculating as before the approximate numerical values of a pair
of the roots.
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A=193. Thisisa prime number, for which, according to Gauss,
p = 2; so that a should be of the form M+v'193+ N, when M and N

are integers; and the values of M and N can be determined by
approximate numerical calculation.

Crass D.
A =2 mod. 4

This is the same as Hermite’s class 2° (Equations modulaires,
p. 44).

To solve the modular equation according to Hermite, we put

-1
ut = mFoN T W=z,
then K== H
s 2/
1+A’
so that N = 2/ X /A-N) =2V

equivalent to the modular queation of the quadric transformation.

Then, if we put

. —Vx —u¥,
b= x/ KA u's?
f= 1 1 + / w_ 1=
/ ! / 2 14+ /z
- 142
va/(1—2)
= ¥(—a),
where a denotes Hermite’s absolute invariant, given by
= (+2)*
T T a=w)”
and then @ =K.
If we put vfu=¢* wufo=-e"

then, if w = wy,

v = weV, ol = we¥¥;
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8o that ™+ = 20" cosh ng,
v —u® = 2" sinh n¢;
and, since w4 = 1—utot
therefore 2uw? cosh 2¢p = 1—w*,
or ﬂ:l,—w’=2cosh2¢,
w

B+2=4cosh’¢, B—2 =4sinh’¢;
so that k+A = 2 v/kAcosh 2¢,
—k+X = 2 A sinh 2¢.

In the following numerical illustrations we shall find it convenient
to put .

1 -~
14 4) = \/’A—‘ \
V(ﬁ+)———f—x)‘+ A=y
and then Vih=w =1 (y—p0).

A=2 «=42=1 a=-2 =2 y=242;
coshg=1, ¢=0, v=u, k=A

A = 6. Putting ¥\’ = 2+/xX in the modular equation of the 8™
order, :

\/x—)\+~/ﬁ= 1,

then /IX+«/24/§;1,
. 1 4_.
or — — VA = /2,
YA )
1 p—
= +\/)\=4,
TEaTE
=1 _/ax=2v3;
b=T5—"" :
cosh 2p = /3, sinh2¢p = 2, w'=2—43;
a::-;zd)(?)’,

agreeing with Hermite's result.
Solving this equation, we shall find

k= (+/8—42)(2—+38), for K'/K=46;
A= (V/84+/2)(2—w3), for AJA =4/(2+3)
(Legendre, Fonctions elliptiques).
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A =10. Pat A" = 2+/sX in the modular equation of the 5* order,
kAN 42 VAN =1 ;

then A2 ViA+4vVik = 1;
. =_—/A_6_ax3
or B 7S K
y =210, w*=+10-3;
a = —2tx 8.

Solving these equations for « and A, we shall find
k= (v/2=1)*(+/10-38), for K'/K =+10;
A= (V241 (V10-8), for AJA = /(2+5).

A = 14. From the modular equation of the 7' order,

V::-X-f%/;'_—){:l,

we obtain VNt /2 Yok = 1,
1 o~
or -—;—s/k =14 2,
' 2//;)\ ) v
x/k
y = __+«/A>‘_.4(~/1+1),
VKA
B=—=—vA =2V (8vV2+11),
/h
a=—21(8+/2+11)%
Then Vik = 24/242— /(8 /2+11),

cosh 2p = +/(8472+11), sinh2p = +/(8+2+10),
k= {2+/2+2— /(8v2+11)} { /(8 V2+11)— v (8+2+10)},

for K'/K= V14
A= {2«/2-{-2— «/(8«/2-}-11)} { A/ (84724+11) + «/(8~/2+10)},
for AJA=/(2+7).

"

(G. H. Stnart, “ Complex Maltiplication of Elliptic Functions,
Quur. Jour. of Math., xx., p. 54).
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A = 18. Then a=—2xT7
obtained from Hermite's Equations Modulaires, p. 51.
Then cosh2p = 7, sinh2p =44/3, cosh¢ = 2;

Vil =w =5,/2-7= (~¥2=1),;
k= (V/2—=1)*(2— ¥3)?,

K'/K=384.2;
= (v/2-1)*(2+ v3)},

NIA= 23,
A = 22. From the equation of the 11" order, we obtain
VA4 /2 ViN4242 VX =1,
1 4=
or —== — VA = 32,
¥n *
1

4 VSN

B=— - VaA=6vil;
VA

cosh¢=3~/ﬁ, sinh¢ = 7 +/2;

a=—f=—2"x3"x11%
Then

—_ . 171 __a\?
«/k7\=w’=10—3~/11=(\/152 3);

k= (3V11~-7/2)10-8+11), for K/K=+v22;
A= (8vV11+47.,2)(10—8+11), for A'/a =/ (2+11).

A = 26. Taking Mr. Russell’s form of the modular cquation of
the 13" order,

P —21.(105P*—2" x 11 P 42" Q%) + 2" PR* = 0,
whero P =N =1,
Q = AN =X —=¥'N,

R=—x\ &N
anu puviug sh=a% KN =2
then P= o*4+22—1 = —2a(3-2),
Q =25—a"—2z = —2a' (23+1),
=2

2.2,
VOL. X1X,—NO0. 327. 24
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putting B= l——a:;

»
and then substituting, and dividing out by 7,
B-2y— 64 {105 (B—2)*+2"x 11 (B—2)* (2B+1)+2" (26+1)*}
+2% (f-2) = 0.

Putting B—2 = 4i,

then t = sinh®¢,

and 71056 — 7044 —1404¢*—12166—400 = 0,
or (BP+t+4)(EF+464+25) (P —58—8t—4) = 0.
Taking the cubic #—5t*-8t—4 =0,

the other factors giving imaginary roots, then if ¢ = 4, the equation
in y becomes
1+ 3y°+2y+2 =0,

or W+ =y-1,
where y = sinh ¢,
Putting y+1 = v, then y—1=9v-2
and P—042=0;
which, compared with - 4v*—gv—g; =0,
has g =4, gs=-—28,

g:—-27g: = — 64.x 26,
go that the cubic has only one real root.
The absolute invariant of this cubic

g _1

J=£—Wﬂ 26°

8o that, putting coscch 3« = +/26, then
— 2cosha
V'3
(Proc. Lond. Math. Soc., Vol. xvir., p. 263).
A = 30. Taking Tiedler’s modular equation of the 15™ order,
P—4PQ+4R =0,
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where P=i‘/a+4/x'_)\'+1,
Q = ¥ XN+ Yn+ VX,
R=¥eN;
and putting A =2a% KN =2V = 2,
then P=2+42a+1=2(t+¥2),
Q=424+ 42z = 2> (¥/2¢+1),
R =423
putting t=ax+ —; ;

and then (¢4 4/2)°—4 (1+ ¥2)(¥/2t+1)+4 42 =0,
P—428-v2(2,/241)t+ /242 =0,
factorizing into
{t—¥2(v2+1)} P+ v2¥2¢-24+./2) =0,
so that, if t=42(/2+1),

B = _%14. —at = 2./3 (4/2+5),

cosh 2¢ = /3 (4 /2+5),
sinh 2¢ = +/10 (3+2./2),
¢* = cosh 2¢ +sinh 2¢
= (/64 v/5)(4+ v15),
e = (/6= /5)(4—V15) ;

y = ;:]fT +at=20412./2,

vk =l =} (y—B)
= (2—/3)(5—2./6).

Therefore

k= we® = (2— /3)(5—2+6)(/6— ) (4—15),

for KK = +/30;

A= wle® = (2—./3)(5—2/6) (V64 v/5)(4+V15),

for 4 A A = /(2 +15).
Similarly, « = (24 +/3)(5—2v6)(v/6— +/3)(4++15),
2«A2

355
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for K|R = /(6=+5);
A= (24 4/8)(5-2v/6)(v/6+ /5) (4— V15),
for A /A = /(10 3).

A = 34. Taking Mr. Russell's form of the modular equation of the
17* order, and putting

kA = 2 KN = 2,
then P= +2%—1 =—2(f-2),
Q=2"—2"—2 = —2a*(23+1),
R = —22%

and the modular equation
PP+ 2R (—287°+22x 261 P'Q— 2% x 1517 Q* + 27Q*)
+2YR2 (73097 —28x 117PQ) + 2" x 3** = 0

becomes, on putting 3—2 = 4¢, and dividing ont 27,

£ —574¢°—83521° —359404' — (6385983 — 5846 4¢° — 20040t — 6272 = 0,
which can be factorized into

E+1)(E+4) (—11t—8) {(£+t—5)"+24 (2+1)*3.

Taking the quadratic  #—11{—8 =0,
then t=1(11+3V17);
and B=dt42=6(V17+4).

If we had takeu Sohucke's modular cquation of the 17 order
(Crelle, xv1.),

(v—)*—16uv (1—2°)(1 —°) {1700 (v—u)° — (v*— ) + 16 (1 —u's)*}

=0,
connceting w=4%x and v=¥\;
and put vfu=¢,

then, if KN = 2Vkh = 2uh,

. (1 —a®)(1—2%) = 4u't?,
(I =) = (v'+0')? = du'v' cosh? 2¢.
Putting s = coshgp—1 = 2sinh®1¢,
the oquation becomes

2% —64 (17 x 2%*—4 sinh’ 2¢ + 64 cosh? 2¢) = 0,
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or, gince cosh ¢ =s+1, cosh2¢ =2s+45+1,
sinh 2¢ = 2 (s+1) v (s*+2s),
f—1784+2 (s +1)* (s'+2s)—8 (2 +4s+1)* = 0,
or 8 —30s*—137s*—150s’— 60s—8 = 0.
But, since 3 = 2cosh 2¢, ¢ = sinh’¢,

this equation in s will be found not in agreement with the previous
equation for ¢.

There is consequently a misprint in Sohncke’s equation; it should be
(v—u)"* —16uv (1 —u*) (1 —2°) {17uv (v —u)’— (v*—u*)* 4+ 16 (1 +u'v*)’}
=0,

and now the equation for s becomes
2%°—64 {17 x 2°*—4 sinh® 29 +64 (cosh’ 2p+1) § =0,
or £—178+2 (s+1)* (s*+25)—8 (2 +45s+1)—8 = 0,
or §?—380s*—1375*—150s*>—605s—16 = 0 ;
factorizing into
(s+1)(s*—s—4)(s*+2s+4) { (*—s—1)*+65'} =0,
the factor s —s—4 =0,
giving s =§(x/ﬁ+l),
the required solution ; and thus
cosh ¢ = 1 (V17+3),
cosh 2¢p = 3 (V17 +4).
A = 38. Taking Fiedler’s or Russell’s form of the modular equa-
tion of the 19* order,
PP —112P* R 4+256QR = 0,

where P = Vir+ VN —1,
Q = VAN — VA= /7,
I = — VxA¥X;

and putting kA =2t SN = %,

also m—- = =,



358 Mr. A, G, Greenhill on Complex [March 8,

then P= 2'4+.,/2z2-1 ==w(t++/2),
Q=2a—’— /22 =2"(v2¢-1),
R=—./22a%;

and therefore
¢+ v/2)°+16/2 {7 (t+ v/2)*—16 (v2¢=1)} = 0;
or, putting t+v/2 =42y,
4./2 44224 /22— 256 /2 (2y—3) =0,
y°+ 56y°—64 (2y—3) = 0;
or, putting y = 2,
'+ 70 ~8v4+6 = 0,

a Hauptgleichung quintic for v, having only one real root between
2 and —3.

This equation can be factorized into
#*=v+3)(*+v*—20+2) = 0;

the factor V¥*—v4+3=0
giving v=1(1+iv1l);
while P+ —204+2=0

has only one real root
v=—13[1+¥{37+3/(114)} + ¥/ {87-3./(114)}].
Otherwise, the equation in ¢ factorizes into
(F+22) (B +5,/2 8 —-2t+22,/2) = 0;
in which equation t=—p0.

A = 42. Taking Fiedler's form of the modular equation of the
21 order,
v —22y"" =0,

where ZV = kA 4iN =1,
00 = — (VN + VKR ¥AEN + (/K — /X)) VN
—(Vx—/X) ¥K;
and putting A=w, KN =2, B= v

an equation can be found for the determination of w and 8, and thence
of x and A.
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A = 46. Taking Fiedler's or Russell’s form of the modular equa-
tion of the 23 order,
P—4R =0,
where P =¥+ ¥¥N=1,
B=— ¥\,

A=ab N =2

and putting
then P=2+42a—1=—z(t—¥2),
R=— %22
putting = ——z;
z
and then (t—92y—4/2=0,

t—/2— /2 42=0;
1 s =y2(v/2+D),

1 o 2=3.,2(/2+1),

% —a = /(50+36.,/2),

-:—l‘- —a' = (/241) vV (4/2+3),
= 84/2.,/(294+208 ,/2)
= 64/(147+104./2),

=

8

vy = 52+86,/2=4(134+9,/2).

A = 58. According to Hermite (Equations Modulaires, p. 51), this
is o determinant A for which the number a is integral, and by
approximate numerical calculation from the formula

16a = — e"V4+104,
we find a=—2x3x11%, 3=198 y=26+58.
If we put KN = 247,

KA = w‘,

and then t=— —n,
and substitute in Mr. Russell’s modunlar equation of the 29™ order,
we shall obtain an equation of the 15" order for ¢, having a factor
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corresponding to the value 8 =198, and thus affording an indepen-
dent verification of the numerical coefficients in this modular equa-
tion.

A = 62. Taking Schriter’s, Fiedler's, or Rusgell's modular equa-
tion of the 31* order,
(PP—4Q)*—4PR =0,

and putting A=ab N =2
then P= Y+¥VN+1 =a(t+42),
Q= VAN + YA+ VN = 2* (/28 +1),
R= YN =424,
where t= 1 +z,
@
then {(t+4/2)°—44/2t—4}'—4 4/2 (t+ ¥/2) = O,
factorizing into

(£—(2—/2) &/2t—6+3./2} {££—(2+ v/2) ¥/2t—2+ v/2} =0,

of which the second factor will give the required numerical results.

A = 78. Taking Fiedler's form of the modular equation of the 39*
order, and putting

A=2° KN =20 t=z— %—,

then Z,= a+422—1 ==(t+4/2),
Zy=¥2—2— 2z =2’ (¥/2t-1),
Zy= — Y22,

Zy = 2 {t— 2/2)24-4} ;
and then the modular equation becomes, dividing out o7,
(t+ &/2)° {(1— 4/2)*+4} +4 2 {(1— ¥/2)*+4}*
+20 /2 (1+ /2)° {(t— ¥/2)°+4} —8 /2 (¢t + ¥/2)*
—144/2 (¢4 4/2) = 0,

an equation of the 7** degree for ¢.

A = 94. Taking Fiedlor's or Russell’s modnlar equation of the 47"
order, and putting

V= @, YN =142z, l-+m=t,
T
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then P= 2+42z+1 =za(t+¥2),
Q=4¥22"+a"+ {22 =2’ (¥2¢+1),
R =14/22,

and PP—4Q =2* (1 —24/2¢t+ /2—4)

= o {(1—4/2)'—4].

Then Russell’'s modular equation of the 47*" order (Proec. Lond
Math. Soc., Nov., 1887) becomes, dividing out z°,

{(t—4/2)—4}3—284/2 (¢+ 4/2)*—96 &/2 (¢ + ¥2) (&2t +1)
—128./2 =0,
a sextic equation for ¢.

But, if we take Hurwitz's modular equation of the 47'" order
(ath. Ann., x1v.),

{2(VeX+ YN 1) — /4 VXX )
=8 (VA VKN +1)—7¥16 VX,
and put kA = a8, KN = 2,
then 2 +2/22—2—,/2 3/22)°
= 82'+8+24°+8-14v22°
= 82*—06 v22°+8,
or {227+ 4/2 (2—v/2) —2}" = 8a* —6/2 27+ 8,
o' +44/2 (2— v2) 2+ V2 (6—4v2) 2 —8a*
—44/2 (2—v2)z+4 =8x"—622+8,
or dat—4 /2 (2— v/2) P — 42 (3—2v/2) a4 4 4/2(2— v2) 24y =0,
e /2 (2= v/2) P = V2 (3—24/2) &+ /2 (2— /2) z+1 = 0.

Putting _]T“T._.m =,

this equation becomes
¥—-4/2(2—-/2)v—-3./24+6=0,
(v— J2—-1)’_ 9-8,/2
¥2 /T J/2

But putting % 4o =1,
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then 8—2+ &2 (2—./2) J/(#—4)— /2 (3—2+/2) =0,
£—3,/2+2+ /2 (23— /2) /(P—4) =0,
£ —(61/2—4) 1 +22—12,/2 = (6/2—8)(#—4),
$#—(124/2-12) #~10+12,/2 =0,

o quadratic for ¢, from which the equations for 8 and y can be
derived.

Appendiz.

[The current number of the Acta Mathematica,XI. 4, contains an article
by H. Weber, “Zur Theorie der elliptischen Functionen” (zweite
Abhandlung), which gives a number of numerical results for the
modular functions in Complex Multiplication, agreeing in many re-
spects with the results given in this paper. By the aid of Weber's
calculations, it is possible in some instances to add to and simplify
some of the cases considered above, examples of which are given
herewith, as well as developments of cases not treated completely
before.

Crass A,

This is the case of A = 3, mod. 8; it was convenient to put
a= A=) _ (1—256s")

# 256s% '
so that 2 = 2565 = 16«°x%;
and then 8T g'.
With this notation, then, for A =35 (Weber, Acta Math., xt.,
p. 388), ‘ 28—~ (v54+1)(s"—s)—1=0.
A=51: P+E+(V174+4)t=1=0 [p. 385].
A=091: 28+ (v/13+1) 8 +2s—1 =0 [p. 385].

A=99: £4+(v3344) 0+ (13+2+33)t—1=0 [p.384],
leading to the value of a, namely

a = 2 (4591804316 + 799330532+/33) [p. 384].

Curass C.
A = 17. Weber's equation gives
1

—_ 8 k') =1 ‘\/_ 1).
Ty + V() = (VIT4D)
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A = 29. Weber’s equation for

1

V@)

is 208 — 90 —83—5 = +/29 (z+1);

which when rationalised becomes the reciprocal sextic
—9z°+ 52* — 22— 52 — 9z —1 = 0.

T =

The corresponding equation in 2z = —%; agrees with the one given
in this paper, p. 328,
28+ 5882°— 97924 + 19602+ 9792 + 588: —~1 = 0,

which therefore can be reduced to the cubic

A +2942° + 1552+ 70 = +/29 (5528 + 282+ 13).

A = 41. The equation for

z=a+ —,

whero % = 8/(2x’)

is, according to Weber [ Acta Math., x1., p. 388],
F—1 (VA +5) 2+ (7+ V41) = 0;
80 tha,t z is the root of the biguadratic
A—5P+82+3:+2=0;

and then the equation for y = éf—“ + 2k’

is easily calculated, and also the equations for « and f3.

A = 73. Since p = 2 for this number, as well as for ‘A =17, we

can anticipate that a, 8, ¥ will each be of the form 3+ 73+N; and,
in fact, by approximate numerical calculation, we shall find

Lo = y = 493073+ 42120,
SKK
equivalent to \/(2“) + &/ (2°) =3 (V73+5)

=193. This is another number for which p =2, according to
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Ganss (Werke, t. 11,, p. 288); and from the approximate values of

V_é’Tfﬂ’ namely, %/2 e V3, we find
/(2 3 + &(2x') = +/193+13,

whence a, (3, y can be inferred.

Similarly, for & = 97, we shall find

¢(2 3 + ¥/ 2x) = L (V9749).

leading to vy = 33210.,/97 4+ 327080,
instead of the value given above, p. 338.
These valunes lead to the approximate equations
“™V7 = 9 /97 485,
ATVIB 2 52 /193 4 720
10¢% Oct., 1838. ]

Thursday, May 10th, 1888,
Sir JAMES COCKLE, F.R.S., President, in the Chair.

The following communications were made :—

Some Theorems on Parallel Straight Lines, together with some
attempts to prove Kuclid’s 1 \\elfth Axmm J. Cook Wilson,
M.A.

On Cyclicants or Ternary Reciprocants, and allied Functiong
E. B. Elliott, M.A.

On the Flexure and the Vibrations of a Curved Bar: Prof. H.
Lamb, F.R.S.

On the Figures formed by the Intercepts of a System of Straight
Lines in a Plane, and on Analogous Relations in Space of
Three Dimensions: S. Roberts, I.R.S.

Lamé’s Differential Equation; and Stability of Orbits: Prof.
Greenhill, F.R.S.

The following presents were received : —
Cabinet Likeness of Dr. Glaisher, F.R.S., for the Society’s Album.
¢ Procecdings of the Royal Society,’” Vol. xrni., No. 264.
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# Educational Times,’’ for May.

¢ Proceedings of the Physical Society of London,” Vol. 1x., Part 11., April, 1888..

¢¢ Mathematics from the ¢ Ilducational T'imes,”’* Vol. xvv.

¢ A Treatiso on' Hydrodynamies,”” by A. B. Basset, M.A., Vol. 1., 8vo; Cam-
bridgo and London, 1888.

¢¢ Bulletin de la Société Mathématique do France,” Tome xvi., Nos. 2 and 3.

¢ Beiblitter zu den Anoalen der Physik und Chemie,” Band xu., Stick 4;
Leipzig, 1888.

¢ Journal fiir die reinc und angewandte Mathematik,”” Band crn., Heft 1. ;
Berlin, 1888.

¢ Acta Mathematica,” x1., 2.

¢ Rendiconti del Circolo Matematico di Palermo,’’ Fasc. 1 and 2, Tomo 11.

¢ Jornal de Scicncias Mathematicas e Astronomicas,” Vol. vur., No. 3; Coimbra,
1887.

“ Vierteljahrsschrift der Naturforschenden Gesollschaft in Ziirich,” Jahr. xxxir.,
IIoft 1v.; Ziirich, 1887.

¢ Atti della Reale Accademia dei Lincei—Rendiconti,”” Vol. 1v.,, Fasc. 1;
Gennaio, 1888, Roma.

¢¢ Bollettino delle Pubblicazioni Italiane, ricevute per Diritto di Stampa,’” Nos.
65 and 56.

¢ The Earth’s Polar Floods in Perihelion,” by G. T. Carruthers (Subathu, India,
March, 1888, 6 pp.).

Durchased ; * Yeav-book of the Scientific and Learned Societies of Great Britain
and Ireland ” (Fifth Annual Issuc; London, Charles Griffin & Co., 1888).

On the Flexure and the Vibrations of a Cuwrved Bar.
By Professor Horace Laus, M.A., F.R.S.

[Read May 10th, 1888.]

The flexure of a curved bar has been treated in a general manner
by Kirchhoff, Clebsch, and Thomson and Tait, but the special appli-
catious which have been made of the theory are very few. In this
paper I propose to discuss the flexure in its own plane of a uniform
bar whose axis forms in the unstrained state an arc of a circle. After
establishing the general equations and the terminal conditions, some
simple statical problems are solved, and I then proceed to discuss the
vibrations of a ¢ free-free ” bar, with special reference to the case
where the total curvature is slight. This latter problem is interest-
ing as bearing on some observations by Chladni, rveferred to by
Tyndall in his book on * Sound,” Chap. iv.

Taking the centre of the circle as origin, and denoting the radius



