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Some Applications of Weierstrass's Elliptic Functions.-
By Mr. A. G. GREENHILL.

[Bead June 10th, 1886.]

In this paper it is proposed to exhibit the use of Weierstrass's
Elliptic Functions, by showing their direct application to several
geometrical and physical problems, and thus to give illustrations of
the meaning of the analytical formulae expressing the relations be-
tween these functions.

The formulae are, in general, quoted without demonstration, and
applied immediately to- the problem requiring their use; the reader,
however, who is desirous of following out the rigorous demonstration of
these formulro by the methods of pure mathematics, is recommended
to consult Schwarz's Formeln und Lehrsdtze zum Gebrauche der
elliptischen Functionen; or Halphen's Traite des Fonctions Elliptiques
et de lews Applications, Paris, 1886.

I . Gonfocal Cartesians, and Quartic Curves.

1. Let z = pu,

where z = x+iy, w = £(£ + i'»?),

and pu denotes Weierstrass's elliptic function of u, defined by the

dzp
equation u = I

Js

so that z = pu,

and ( | ) ' = (*>'«)•

= 4 (s—e,)(a — ei)(z—e5), suppose.

Then, if eu e2, es are all real, they will define the positions of the
three foci Fu F2, Fs on the axis of « of a system of confocal Car-
tesians, given by the equations

i- = const., and »; = const.,

from the relation x + iy = p \ (£ + in) ;

and, from the properties of conjugate functions, it follows immediately
that these confocal Cartesians intersect at right angles.
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2. With the notation of the sigma functions explained by Schwarz
or Halphen, we put

\ au I

\ou I

pu-es = ( - ? - ) .
\ au I

In the ordinary notation of elliptic functions,

o r ^ -

sn v (e!—e8) u
O « f or (fl _e§) ds

) u
- e s ) n,

p u—c8 = (ex—e8) , — , or (ex—e8) ns* y/(<h—e8) w,
sn v (Ci~es) w

with A;* = *~~ 8, &'a = -1 *,

supposing e, > t', > e3.

3. Denoting by ?*!, r2, r8 the distances of a point P whose coordinates
are x, y from the three foci JF\, F3, FS, and denoting \ (J£, — irj") by v ; then

or tt o v' <T n a v ' a M c u '

and, expressed in a real form by means of formula [-Z?][9], p. 51, of
Schwarz's Formeln,

a u a v

a u (TM a v

or, again, r, = -J" ff*M

<r « <r,i4 a v
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p (ii.).
Similarly r, = - (e,-*) &La^±*ii£ig (iii.)f

and r> = - - ( e 3 - e 8 ) 3" ' . < T ' ! \ - (v.),

4. Therefore, from (iv.) and (v.),

the vectorial equations of conjugate confocal Cartesians ; and from
the remaining equations, by cyclical interchange of suffixes, we obtain

(B),

and ?-! *,$—r, a,{ =

also (e2—e8) rlal $+ (e3— e j ?-jffa £+ (el — ei) r^ $ = 0

(ea — es) TXvlit) -\- (es — ej) i'jCa'ifj4-(e1—ea) ?'8o'3i>/ = 0

and (A), (B), (C), (D) are the vectorial equation of the same confocal
Cartesians in a symmetrical form (Darboux, Annales Scientifiques de
Vficole Normale Stipcrieure, Tome iv., 1867).

5. To indicate the values of the invariants gt and gv the notation

is sometimes employed; and then it follows, from considerations of
homogeneity, that

fP (™u» ft. g») = ~iP 0*» 7)lV». 'As) .

a (mu ; g2, gx) = ma (u; m4gf« w'fli,),
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so that p ( i n ; ft, ft) = - p (7; ft, —9s)>

* (* i ; ft, ft) = *» (f; ft. —9»)>

»x( *«?; ft, ft) = *x(>?; ft, - f t ) ;

equivalent in Legendre and Jacobi's notation to a transformation to
the complementary modulus.

If = e, = <*„ = e8

then o>j, 0)3, w8 are called half-periods of the elliptic function pu ; but
of these only two are independent, as they are connected by the

relation w, + Wj+w8 = 0;

also ex + e9 + e8 = 0.

Supposing e, >ea>es, then tul is real, but w8 is imaginary; and

iT and ^ ' denote Jacobi's periods.

6. Then, when (=|-u,, the corresponding Cartesian is a circle, centre
Fu and containing FVF9 being the corresponding point to .Fa; and when
iri = |o»j, the corresponding Cartesian is a circle, centre Fit and con-
taining Fv Ft being the corresponding point to Fv

The two ovals of the same Cartesian are given by £ and <>>,—{, or
it} and w8—irj.
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7. If the discriminant gr*—27gra is negative, two of the quantities e^
e,, e8 are imaginary ; denoting them by ̂  and e8, where ex—e8 is positive
imaginary, the corresponding foci form an isosceles triangle .FJ.FJ.FJ,
and the origin 0 is at the centre of gravity of the triangle, since

Then z + iy = p |

denotes a series of orthogonal qnartio carves, associated with
Cartesians.

The values t, = ^w, or ti; = £w8 will each give r8 = Fl F2, so that
the corresponding qnartics double down into circular arcs of centre
F3, limited by Fx and Fs.

(J3.o\zmu\\eT}EinfuhrungindieTheoriederisogonalenVerwandtschaften).

If g2 = 0, the triangle JF\ J&'gî  is equilateral.

8. Incidentally we notice the electrical application of these formulae ;
namely, the electrification of an insulated cylinder whose cross section
in one of these quartio curves is proportional to (»"irar8)"*; and in par-
ticular, for a cross section the limited arc of a circle, the electrification
is proportional to for,)"*, r, and r8 denoting the distances of a point
on the surface from the edges of the cylinder.

Then £ = const, and rj = const, will represent either the equi
potential surfaces, or the orthogonal lines of force.
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9. Consider the system given by

dz

(Siebeck, Crelle, 57 and 59, JJeber eine Gattung von Curven vierten
Grades, 8fc.; Schwarz, Crelle, 77, JJeber ebene algebraische Isothermen).

or £ + • - , / ( „ ; 0,-1) ,

giving a system of sextic orthogonal curves.

, II. Reciprocants.

10. Consider the Mixed Reciprocant

to — 5ab = 0,

or &£&.5^&=0t

dx dx* dor dx*
given in Prof. Sylvester's Inaugural Lecture, Dec. 12, 1885, and
published in Nature, Jan. 7, 1886.

Then <pL/pl=5pL/<k.
dx*/ dx3 dx21 dx

and, integrating, log -r^ = 5 log ~ + const.,
dx dx

Multiplying by -p{, and integrating again,

or, changing the constants,
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so that x = I —p—

tdt- f
11. By a change of origin, we can make fi and v vanish, and by

orthogonal projection parallel to the axes we can reduce K and \ to
unity, so that we need only consider

_ rJ
or x = " dt

, = • *

l o w / • •>12.From(,.), . =

so that i*2 = ?̂ (a?; 0, —4),

and therefore pnpy — 1>

with <jr2 = 0, gr3 = —4; representing, in figure (i.), a series of nearly
circular curves round centimes whose coordinates are 2mw2, 2w'w2; and
a series of conjugate points at (2m + 1) w2, (2w' + l ) wa.

13. From (ii.),
!__ _ r

i - 6 -4) ' V "J ^ ( _
so that «"2 = #>(#; 0, 4),

^ = - p ( y ; 0 , - 4 ) ;

and therefore px py = — 1,

representing figure (ii.), and the figure of (iii.) is that of (ii.) turned
through a right angle; having

t-*=-p(x', 0,-4),

e = p(y,0, 4).
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3 €
€

cm
14. The intrinsic equation of (i.) is

r , if t =

the elliptic integral of the first kind, to modulus sin 60°; so that

2</> = am 2«,

and sin 2i// = sn 2s,

the intrinsic equation of the carve.

It is carious that the modular angle in the Cartesian equation of
the curve is 15°, and in the intrinsic equation is 60°.

15. Similarly, in (ii.),

=1
V {cos 2<K1-A sin8 2i/0};
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and, generally, • = [ $ c V r " > 0 *

-I;
which is expressible as the sum of two elliptic integrals of the first
kind.

16. The Orthogonal Reciprocant

c-10a&*+15a8 = 0,

obtained by integrating the above Mixed Reciprocant, has been in-
tegrated by Mr. Hammond (Nature, Jan. 7,1886, p. 231) in the form

" \ / t n v.— * - . . . . - - ,+*
J V I K K.••••""lv

_ f t_dt

^ J v/{ic(l15i9+15^^)+X(6^20^+655)} K>

changing his X into 2X; and then we see that

H , = f d+it)dt
J •{i(«-&)(i+«Jl+M«+a)(i-<9i}

17. By a change of origin we can make /* and ̂  vanish, and by turning
the axes through an angle £ tan'1 X/K we can make X vanish; so that

dt

_ l f Vi+rt/

V C \l + it)

_ 1 f \l-itJ

so that, replacing ^c by unity, which may be done without loss of

generality, ( f l i ! ) ^ ~ p (aJ+*y '> °* 4)<
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18. Changing the sign of i,

so that p (%+iy) p (x—iy) = 1;

agreeing with Mr. Eogers's form (Proc.Lond.Math.8oc, March, 1886),
and giving a curve as in the annexed figure.

Also, with <72 = 0 , 0j = 4,

P (x + ry) p (a-tj,) = E-

and the numerical values of px and piy are given in the Table,
calculated by Mr. Hadcock, in Proc. Lonil. Math. 8oc.} Vol. XVII.,

p. 268.

We may also write the above relations as

cos4i{/+ism4$ = —p (x + iy),

co 4i// - i sin 4i/» = — p (x—iy).
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19. When g3 = 0, and w denotes an imaginary cube root of unity,

fplOU = UipU,

the simplest case of Complex Multiplication of Weierstrass's Elliptic
Functions ; so that our equation above (§ 18) may be written

pw (x+iy) pwJ (%—iy) — 1,
showing that the coordinate axes may be turned through 120° with-
out alteration of appearance, as indicated in the figure.

In Legendre's and Jacobi's notation, the equation of the curve to a
different scale, with 8 \/3K = 1, and X = 0 in § 16, may be written

fc'3 tna (a, fc) = k* tn3 (y, k')

for the inclined branches; and
k* sn2 (x, k) = k'% sns (y, k')

for the horizontal branches (Sylvester, American Journal of Mathe-
matics, Vol. VIII., p. 235), with k = sin 15°, k' = sin 75°; equivalent

to am(a;± Jf, k) = am(j/± JT, k')>

or am (x ± %K\ k) = am (y ± iK, k'),
where

20. This Reciprocant

when expressed in the intrinsic form, has been shown by Captain

MacMahon to become ^ + 1 8 (^ V = 0.
ds* \ds I

Integrating this equation,

i', putting r— = — = o; and denoting by m the maximum value of q,
as p

1

the solution of which is

Therefore 3 v/2 ^ = j en (3 s/2, ms) d (3 v"2

= v/2 sin"1 f - ~ sn (3 v/2 ms) | ,
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or sn (3 </2 ms) = </2 sin 3^,

sin 3^ = —p- sn (3 </2 ms),

or cos 3i/> = dn (3 </2 ms).

This is the intrinsic equation of a curve whose equation in Car*
tesian coordinates, using Jacobi's elliptic functions, is of one of the
preceding forms of § 19, or

dn (a, h) dn (y, V) = ft,

where h = sin 15°, k' = sin 75°, as mentioned in Mr. Hammond's
paper (Proc. Lond. Math. Soc.y Vol. XVIL, p. 130) ; and then another
curious result is obtained, analogous to that of § 14, of a curve, whose
Cartesian equation involves elliptic functions of modular angle 15°,
having its arc expressed by an elliptic integral of the first kind of
modular angle 45°; no simple transformation existing from one
modulus to the other.

III. Euler's Equations of Motion.
21. These well-known equations, when there are no impressed

forces, written in the form

A&-(B-O)qr =
(It

B^[-(O-A)rp =
at

are satisfied by Ap% — — (B—G)(z—el)

provided that

or -A =
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so that z = pu,

w h e r e ^ = _ (B

since (B—O)(O—A){A—B) is negative; and then

u = Mt + a, constant.

22. Then T = Atf+.Btf2 + Or3

= (B-C)ex+ (O-A) ea+ (4-J

and G3 = ^

also 0 = ex 4- ea 4- e8;

-OA-AB)
80

_ GP(A-2B + C)-T(-B0+20A-AB)

= Gfi(A+B-2C)-T(-BO-OA+2AB)
S(B-O)(O-A)(A-B) ;

and then gra= — 4 (e^+e^ + e^), ga = 4e1eJe8.

AT _ ^r-ga

•° ei~~e*-(o

and g% = f

Also the discriminant

= 16 ( 6 , -



368 Mr. A. Gr. Greenhill, Applications of [June 10,

23. Supposing A>B>C; then
(i.) When the polhode encloses the axis A,BT— G2 is negative, and

then e3—e8 is negative, ei—el is negative, and e1—e3 is positive; so that
e1>e3>e2) and.pu oscillates in value between e3 and e3, so that we

have u = Mt+<i)3;

(ii.) when the polhode encloses the axis G, BT—GP is positive, and
then e3—e3 is negative, e8—e1 is positive, and e,—e3 is positive; so that
e8>ej >ea, and pu oscillates in value between ex and e3, so that

u=
as before.

IV. The Spherical Pendulum and Top.

24. In the spherical pendulum, of length I, the equations of motion

may be written £Za (63 + sin20»//a) = g (b-lcoad) (1),

the equation of energy; and

Z2sin80 $ = O (2),

the equation of conservation of angular momentum about the vertical;
using as coordinates, 6 the polar distance on the sphere in circular
measure from the highest point, and \p the longitude.

Eliminating ^ between (1) and (2),

i&sinW+i?.= 0(&

or isin9fl(9a = - ^ ( c o s 9 0 - l ) ( c o s 0 - | - ) - i y (3).

25. Put cos0=22 + y; then .

and then, if
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so that z = p (u ; g^ gt),

and w = w-^-£ + a constant,

where g% = 3ys + l, 9i = y ( y ' - l ) - ^ / ^ .

and cos0=2pt t + y,

where y = -̂ 6 / £.

26. If (? = 0, then the discriminant

D = ( l -9y s ) s (Salmon, .Htgffor Algebra, p. 171),

and the solution of the simple circular pendulum is obtained.

Then (i.) when the pendulum oscillates, cos 0 ranges from — 1 to
b/l, and pu ranges from e8 to e3, where

and therefore' u = ^ /-2_ t + w8

In small oscillations, 6 = — i, y = — ,̂ and ej = e8.

(ii.) When the pendulum revolves, cos 0 ranges from — 1 to + 1 ,
and pu ranges from e8 to ea, where

e, = y, ea = - ! ( y - l ) , ea = -

and therefore , u = . /-2- < + wSJ

as before.

In the separating case, b = Z, y = £-, and ej = e2.

27, Returning to the spherical pendulum,

am*

4

= i

pa—pu pu—pb
putting pa=— i(y—1), p& = —|(y + l ) .

VOL. XVII.—NO. 276. 2 B
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Then sin9-1-0 = pa—pu, cos2-i-0 = pu-pb,

since pa—pb = 1,

and &? #=**=£».

pu—pb

also p'ia = p'ib=-G'i/4gli;

, , , d4> i ip'a . . ip'b
so that -f- = | —s + A —8—_

aw pu—pa pu—pb
since, as we shall see in § 34, #/a is positive imaginary, and p'b is
negative imaginary (Maggi, Bendiconti, Beale Istituto Lombardo,
Serie n., Vol. XVIL, Pisa, 1884).

28. In this case of the spherical pendulum, a and 6 are connected

by the relation $Pa = p^b,
so that p' a — —p b,

equivalent to p(a—b)+pa+pb = Q,

an equation discussed by Halphen in the Journal de VJEcole Polytech-,
nique, 54 Cahier, 1884: Note sur VInversion des Integrates MUptiques.

It may be noticed here that the solution of this equation, when the
invariant gr2 = 0, is a = 6»&, where w denotes a real or imaginary cube
or sixth root of unity.

29. In the more general case of the motion of the Top, or solid of
revolution, moving under gravity about a fixed point in its axis, the
previous equations of motion for the spherical pendulum are but
slightly modified; equation (1) being again applicable, and equation
(2) must be changed to

4sin30i£+Cfocos0= G (3)

{Quarterly Journal of Mathematics, Vol. xv.: " On the Motion of
a Top, and Allied Problems in Dynamics ") .

Again, eliminating \p as before,

= -y- (cos 6— d)(cos 0-cosa)(cos 0—cos/3),

suppose, 0 being supposed to lie between a and /3, so that a < 0</3.
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30. Putting, as before, cos 0 = 2z + y,

then z* = j - (4za-g2z-gs),

provided that 3y = — + 1 -75-;
fc g A

so that 2 = pu,

where u = * / 4 - * + a constant,

and ^3 = 3>a + 1

31. Then if, as before, for the spherical pendulum,

u = a when cos 0 = 1 , so that pa = — £ (y—1),

u = b „ cos0 = - l , „ #>& = -

then sin2 ifl —pa—pu, cos2i0 = pu—pb,

^ . . - j j . (€=*)',

— Cw cos 0

aa A l - c o s 0 a A l+cos0

we obtain, as before,

_ i >

du pu—pa pu—pb

32. Introducing at this stage <rw, the sigma function of Weierstrass,

as defined by — log o-w = — pu,
du

and also the fundamental formula

a (u + v) <r(u—v)

2 B 2
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called by Schwarz the pocket edition of the elliptic functions; differ-
entiating this formula logarithmically with respect to u and v,

p'u _ a (u + v) • a (u—v) _QO'U

pu—pv <r(u+v) or (U—V) ~~ 'au

—p'v _ a (u + v) _ o (u—v) __o ff'v
pu—pv <r(u + v) a (u—v) av

and integrating with respect to v and w, respectively,

p u dv
pu—pv

p'v du
pu—pv

• a (u+v)
a (u—v)

, a (u—v) .

2 a u

au

2u°'V

Weierstrass's form of the Third Elliptic Integral; so that

U'u dv+p'v du , 2u Q±_^!±^
J pu—pv av cru

corresponding to Jacobi's formula for the interchange of argument
and parameter in the third elliptic integral.

83. Then equation (4) becomes

du
.cr'(u—a)
*—7 ( i l 7 ; (

a (w—a) a (u + a)
.v'(u-b) _H<r'(u+b)
<r(u-b) * o(u

a a—a a

<rb '
and, integrating,

• , . , a (u—a) a (u — &) . .la a . a'b\
r a &<r(u + a)<r(u + b) \aa abl

34. The values u,, w2, w8 of w, and therefore the values eu e2, e8 of
M, correspond to the values d, cos a, cos /3 of cos 0 ; so that

\—d _ pa—e1 _ __ t^ia\21 /gi&\a

l + d~e!—p6~ [a a) I \<rb) '

\<x al I \o bl1 + coso
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In order that pit should oscillate in magnitude between ea and e8,

we must put u = * Mr-1 + w8.

Also, since ex > pa > ea,

therefore we can put a = ô  + rwg, when r is a proper fraction ; and
then p'a is positive imaginary; and, since

e8 > pb > — oo,

therefore we can put b = sw3, where s is a proper fraction; and then
p'b is negative imaginaiy.

35. When 0=0 or On=Q, then p^a = p'*b, and the motion of
the Top is directly comparable with that of a spherical pendulum.

When 0 and On are both zero, the Top oscillates in a vertical plane
like a simple circular pendulum, and then a = wu b = w8.

If a = <«>i, then #— On = 0 ;

and if & = o>8, then (r + (7n = 0.

If a + & = u)l + wS} then 6r— Oicosa = 0,

and the trace of the axis on the unit sphere of reference has a series
of cusps on the parallel of latitude 6 = a.

36. According to the method of Hermite (Sur quelques Applications
des Fonctions Elliptiques, 1885, p. 109), taking the axis of z vertically
upwards, the equations of motion of the spherical pendulum are

with cc2+t/a + z a = P;

the two first integrals of which are

* (* + *' + *') = 0 (*-«),'
xy—xy = Q.

Then, as before, z = I cos 9 = I (2pu + y),

where y = \cjl.
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Also xx+yy+z»+Nl = — gss,

or, since xx+y y+z z+xP+y^+z* = 0,

= -gs+2g (c-») = flf (2e-3«),

^ representing the pressure per unit mass on the sphere.

37. Then JL(x+iy) = --^(x+iy) = •£ (8»-2e)(«+ty),

or __

Lamp's differential equation for n = 2; and the solution is
(M + &) / ff'a o'b \
\ ' exp w,

oil \ <T a obi

2il \
era orb

n'i<r(u—a) a (u—b) I o-'a , o'b\
or x~ty = 2il-± J~r-\ exp ( — + —-) u,

oaobo u \ <ra obi
where y = p(a—6) = — pa—pb.

This may also be obtained by combining the value of e1* from equa-
tion (5) with the result of § 27 or § 31,

sina0 = 4 (pa—pu)(pu—pb) ;

and it is interesting to compare this result with Hermite's (p. 112)

where to and X are constants ; the equivalence of the two forms being
secured by putting w = a+6, and

\ = p'(a—b) = p'a — —p"b — <f

using Halphen's notation (Chapter v.) t,a for —; also
GT a

K{a-b) - fa-Zb.

V. The Trajectory for the Cubic Law of Resistance.
38. In Volume xiv. of the Proceedings of the Royal Artillery Institution

the trajectory of a projectile in a resisting medium, with a tangential
resistance varying as the cube of the velocity, is investigated, and it is
there shown that a great simplification is effected by the employment
of Weierstrass's functions.

The equation of the trajectory referred to oblique axes, one the
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tan gent at the point of infinite velocity, and the other vertical, is then

y = — 3zc£6—logtr (6—») — wMoger (&—tox)—w logo-(6—w8a:) ;

and the time of flight is given by

i = — logff (b—x) — o> logo1 (6—wx) — walog<r (6 — a>9a;) ;

6 denoting the value of x at the vertical asymptote.

VI. Uniplanar Electrical and Hydrodynamical Problems.
39. Referring to the Quarterly Journal of Mathematics, Vols. XTII. and

XVIII., " Solution by means of Elliptic Functions of some Problems in
the Conduction of Heat and of Electricity," and " Functional Images
in Cartesians," for the statement of the problems to be solved and of
the notation employed; then, for a source of strength 2n at z'= ® -\-iy\
within the rectangle bounded by x = 0, x = a, y = 0, y = 6,

(j> +1$ = log<ra cr/3 cry crd,

and for a vortex of circulation 2w at z\

Here a = x—aj'-f- i • y—y\

(Z = x + x'+i.y—y',

y = x+x'+i.y+y\

I — x—x'+i.y+y'-,

so that a, (3, y, 5 represent the four vectors AP, BP, OP, DP, pro-
ceeding to any point P from A at z, and the images B, 0, D of A in
the coordinate axes.
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The remaining images form similar groups of four, round centres
in the plane whose coordinates are 2ma, 2m'b, where m and m are
integers.

To be accurate, the sigma functions should have certain simple
exponential factors, but these are cancelled by placing an equal and
opposite source, i.e. a sink, inside the rectangle, and then the physical
impossibility of zero flow across a boundary with a single source is re-
moved ; and by placing the source and sink at corners of the rectangle,
we obtain the various results of the article in the Quarterly Journal,x.Yii.,
" Solution by means of Elliptic Functions, &c"; and now Wj = a, w8 = ib.

40. Transforming the coordinates by the use of conjugate func-

tions, given by a+iy = f (x + *p)>

then, for a right-angled quadrilateral figure bounded by

X = Xo> X — Xu P = Po> P = Pi>

we must put the vectors

7 = X+X-2xo+» • p+p'-2p

Then, for a source at (x', p')>

<p -\-i\{/ = log a a or (3 try

and for a vortex or an electrified point,

and here w, = Xl—Xo, w3 = %. Pl—Po,

the periods of the Weierstrass functions.

41. For a doubly connected plane region, bounded by p = p0 and
p = pu we may put, as in " Functional Images in Cartesians,"

supposing x to increase by Wj in a complete circuit of the region.

I t is easily verified in these expressions, from the fprmulro given by
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Schwarz, that \p and <px have constant values round the boundaries
^ = x0, x == Xi» 9 = Po> 1° = Pi > o r c a n be made constant by the addi-
tion of simple expressions.

42. When a source or vortex is placed at z inside an equilateral
triangle OAB, then the vectors of the images are given by

wz\ wY, and z", u>z", wW,

where / ' = — a?'.+ iy', and w8 = 1, so that w denotes an imaginary cube
root of unity ; and similar groups of six images ranged round centres
of hexagons forming a tesselated pavement, the coordinates of the
centres being

2mh, 2 m W 3 , and (2m+l)h, (2m'+l)

where h denotes the altitude of the equilateral triangle, and m and m
are integers.

Then, for a source inside an equilateral triangle, like OAB,

(j>+i\p = logo- (a — z') a (z—wz') o (z—wV)

<Ta {z—% ) ffj (Z — b)z' ) <T3 (z — OlV )

a (z—z") a (0 — wz") a ( z - u V )

Q% {z—%") <r8 (2—wz") (r8 ( z — w V ) ;
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and for a vortex, or electrified point,

(T \Z"~~Z ) IT (Z~~" U)Z ) (7 [ Z^~ U) Z )

/ / \ / / \ / 2 / \

( / / \ x //\ / a / / \ t

z — a ) <r2 ^ — w j i f ) <r2 ^z—&> 2 ^

and here Wj = h, w3 = t^v/3,

so that -^i- = i —- — i y 3 ,
Wj K

and therefore the modular angle is 15°.
(0 . Zimmerman, Das Logarithmische Potential einer gleichseitig

dreieckigen Platte, Diss. Jena. 1880.)

VII. Attractions.

43. The well-known expression for the potential V of the homo-

<e3 ?/9 3 3

geneous ellipsoid —r- + -75- H—5- == 1
& • r a2 62 c3

of mass ilf at an external point aj, y, z, viz.,

(B2 V 2 39 \

where a9 + X, &2 + X, c2-|-X are the squares of the semi-axes of the con-
focal ellipsoid passing through the point x, y, z, is reduced to
Weierstrass's functions by putting

a,2 + X = pit—e,, 62 + X = pit—e2, c2 + \ = pit—e3,

supposing a2<ft2<c2, and therefore e1>e2>e8.

Then p u - i (a2 + &3+c2) + X,

since ex + e2 + e8 = 0 ;

and ei = i ( - 2 a a + 62 + c3), e2 = i (a 8 -26 2 + c2), e8 = | (as + 69-2c9);

so that gr2 = — 4(e2e8+e8e1 + eie2) = 2(e^ + e2 + e8)

and D = g\-21g\ = (e 2-es)
3 (es-e i )

- (63_c3)3 (c
3-a2)2 (a8-63)3.
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pw—ex pu—e.2 pu—e

a l s o f " ^ &« + «

so that, if aa-f/u = pv—eu & + /* = pv — e2, c*+fi — pv—ea are the
squares of the semi-axes of the confocal hyperboloid of one sheet, and if

c? + v = pw—el7 bi + v = pw—e^ c* + v = pw—e3i

of the confocal hyperboloid of two sheets through the point (®yz), then

where r, 5, ^ are proper fractions; and

with similar symmetrical expressions for y* and za.

On the Converse of Stereographie Projection and on Contangential
and Coaxal Spherical Circles. By Mr. H. M. JEFPEEY,

F.E.S.
[Bead May Uth, 1886.]

On System's of Spherical Circles.

1. The first section is on a form of conical projection and inti'oduces
the equations and processes herein used. The second treats of systems
of coaxal and contangential circles. Next, similitude and inversion
are defined and illustrated. Lastly, the processes are applied to the
solution of the problem of Contacts.

In developing the analogies to Plane Geometry, it is shown that
theorems which are distinct in Planimetry are dual in Spherics;
that those which relate to the magnitude of angles are identical in
both Geometries; while theorems on arcs are modified when the
radius of the sphere becomes infinite.

On the Converse of Stereographie Projection.

2. By stereographie projection, curves on a sphere are projected on
an equatorial plane, whose pole is the pole of projection. The con-
verse process is here considered ; lines and curves on the equatorial


