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the left-hand side of the last equation can be easily shown to be equal
to 8rf (a). Multiplying by a and integrating, we obtain

(24),

which is the equation of energy.

Equations (22), (23), and (24) are the equations obtained by
Dirichlet.

Solution of the Cubic and Quartic Equations by means of Weier-

strass's Elliptic Functions. By A. G. GREENHILL.

[Bead May 13M, 1886.]

A. Solution of the Cubic Equation.

1. The solution of the cubic equation, when presented in the form

4xs-Sx-T-0,

by means of the trigonometrical circular functions, is well known;
for, putting a> = ny, then

and, comparing this equation with

4 cos8 a — 3 cos a — cos 3a = 0,

we can put y = cos a, and as = n cos a,

Tprovided that n% — \8, and cos 3a = —-;

the other two roots being TOCOS (a =fc -|JT).

Denoting the discriminant /S8—27Tsby A, and the absolute invariant

— by J, according to Klein, then

cos8 3a = —- =
S3 ~ J '

sin8 3a = —, or cosec* 3a = J.
J
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2. Changing the sign of x, the cubic equation becomes

which may be compared with

4 sin8 a —3 sin a-f sin 3a = 0,

so that a5 = rcsina, or nsm(a±f i r ) ,

Tprovided that w2 = \S, and sin 3a = — ;
IV

and then sin8 3a = ^ == *LL- = ^ = 1 ,

cos2 3a = —, or sec2 3a = / .
J

In these two cases it is assumed that

A = Si-27Ti

is positive, so that all threo roots of the cubic equation are real.

3. But, if A is negative, two of the roots of the cubic are imaginary;
and, if 8 is positive, the equation

must be compared with

4 cosh8 a —3 cosh a —cosh 3a = 0,

and then the roots of the equation are

?icosha and ncosh (a±|7ri),

m

provided that w2 = \8, and cosh 3a = — ;
' IV

so that . cosh83a = ? = ^ = ^ ,
na S3 J

sinh8 3a = —, or cosech* 3a = — / ;
J

and these are real, because J is negative.

4. If A is negative, and 8 is negative, then, changing the sign of /S,

the cubic equation 4a}*+Sx—T = 0
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must be compared with

4 sinh3 a + 3 sinh a — sinh 3a = 0,

and then the roots of the equation are

?isinhci and wsinh (a±-|W),

Tprovided that w? = \S, and sinh 3a = — ;
r 3 ni

m2 27T2

and then sinh8 3a = —- = — - j - ,
71 O

cosh9 3a = S* + 2JT3 = 1 , or sech3 3a = J".

Similarly, changing the sign of x, the roots of the cubic equation

will be — ?icosha and — wcosh (adb|7ri),

where cosech2 3a = — J,

J being negative; and the roots of the cubic equation

will be —n sinh a and — nsinh (a±f7r£),

where sech2 3a = / .

According to this method, the solution of the cubic, when only one
root is real, depends on the values of the hyperbolic functions, which
have the inconvenience of an infinite period, and so cannot con-
veniently be tabulated.

5. In the preceding cubics the second term of the equation has
been removed ; but, if we consider their reciprocal equations, we shall
have a cubic equation of the form

a cubic equation with the third term removed, equivalent to the pre-

ceding equation 4aj8—Sx— T — 0,

and the roots of this new cubic in a will be all real, or one real and
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two imaginary as before, according as

A = S3—27T* is positive or negative,

a8-276

"We may always suppose T, and therefore 6, is positive ; for, if nega-
tive, changing the sign of x and z would make them positive in the
equations; the roots of the new equation

will therefore be all real, or one real and two imaginary, as a8—276 is
positive or negative, on the supposition that T and 6 are positive.

6. Now, consider two variable quantities s and t, connected by the

relation t = s — -^ ;
5

then ^
ds

and

if h3 = 27<78;

so that dt ds

i dt I" ds

J, TWTh) = J. Tcv^T) = M suppose
i

But, according to the definitions of Weierstrass, the absolutely
simplest elliptic function, denoted by -pu, of a variable quantity u, is

defined by u =
J J .

and s = p w,

so that -̂ - = -p'u i= — \/(4s3—^9s—5f3).
du

When it is desirable to indicate the quantities ga and git called the
invariants, then the notation

s = P 0* 5 &> 0s)
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is employed; so that we may now write

s = p (u; 0, gs),

t = p ( « ; 0, -h3).

7. By means of the fundamental relation

P (w; 9i, 9s) = i»»

we find, putting m° = — 27, m9 = — 3, m = *V3, that

t = p («; 0, -ft,) = - 3p (w^/3; 0, gj,

since fts = 2 ^ 8 ;

and therefore, omitting the indication of 0S,

- 3 p ( * W 3 ) = pw--&*-,

or p3tt + 3p (iu y/3) paw—0j = 0 ;
and, comparing this with the equation

we have z = ptt,

provided that a = 3p (iu</3),

gr8 = 4 & , gr, = 0 .

8. In order to tabulate the function pw, we must select some parti-
cular value of g3; we shall find it convenient to put gt = 4, and then,

., f" ds
if s = -pu, u = I

or -r
and then, in the notation of Legendre and Jacobi,

, for h = sin 15°.

9. In the general notation of Weierstrass, the roots of the equation

4s8-0j8—08 = O

are denoted by en eJt e8; so that
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and, if <au wa, w8 denote corresponding values of u, so that

P «"i = "i. Vwi — e2> P^a = es'»

then (D,, «a> w3 are called the periods of the elliptic functions; but they
are connected by the relation

W1 + WJ) + WS = 0,

als o el + e, + e3 = 0.

In our case of ^3 = 0, two of the quantities ev ea, e3 are imaginary ;
ea is then taken to be real, and, with g3 = 4, we have

e, = 6;, e2 = 1 , es = <oa;

w and w8 denoting the imaginary cube roots of unity, such that

u— a*8 = i^/3.

Then, since s = 1 when w = wa, and 2M V^ = 2JT, in Jacobi's nota-
tion ; therefore K = wa V3.

Also 6i8—w, is positive imaginary, and is denoted by io'2 by Schwa rz,
and then iK' = a>a 4/3 ; so that

10. Then, as u decreases from w2 to 0, pw will pass through all real
values from 1 to oo ; and as iu increases from 0 to wai, or iu^/Z from
0 to Wa, p (iu </3) will pass through all real values from — oo through
0 to + 1 ; as exhibited in the following Table, kindly calculated for
me by Mr. A. G. Hadcock, Inspector of Ordnance Machinery, Royal
Artillery, in which the periods w2 and w'2 have each been divided
into 180 equal parts, and the corresponding values of p u tabulated
in the same horizontal line.

Then wa = T2143, and p ^ b can bo calculated from the formula

_ 1 u* u10

Also, denoting p ^ by s and p ^ - by 8y then
loO loO

whence p ^ ^ can be calculated when p r-^. j s known.
loU 180
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r = 91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

S ~ P 1 8 0

+ 2-67366
2-61713
2-56253
2-50974
2-45868
2-40928
236141
2-31541
2-27023
2-22679
2-18467
2-14303
210347
2-06523
2-02809
1-99207
1-95715
192327
1-89043
1-85856
1-82745
1-79759
176819
1-74016
1-71272
1-68605
1-66069
163554

. 1-61108
1-58746
1-56439
1-54194
152275
1-49926
1-47876
1-45887
1-43961
1-42091
1-40275
1-38509
1-36797
1-35141
1-33527
1-31961

+ 1-30458

~ P180

- -70470
•67770
•65112
•62490

. -59900
•57339
•54802
•52310
•49804
•47337
•44886
•42402
•39980
•37580
•35187
•32803
•30429
•28063
•25705
•23352
•20990
•18656
•16317
•13974
•11637
•09298
•07010
•04G74
02333

- -ooooo
+ -02336

•04681
•06744
•09343
•11682
•14019
•16348
•18677
•21002
•23331
•25651
•27959
•30273
•32580

+ -34856

r=136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

rw2
S~Pl80

+ 1-28989
1-27562
1-26183
1-24846
1-23564
1-22310
1-21105
119934
1-18798
1-17710
1-16657
1-15639
1-14662
113720
1-12805
111932
111101
1-10290
1-09514
1-08773
1-08073
1-07394
1-06757
1-06147
1-05558
1-05011
1-04484
1-03999
1-03528
1-03099
1-02690
102323
1-01969
1-01651
1-01360
1-01103
1-00861
1-00653
1-00473
1-00327
1-00229
100120
1-00050
1-00010

+ 1-00000

ru>'2
Pl80

+ -37141
•39420
•41679
•43929
•46140
•48357
•50543
•52716

• -54877
•56994
•59090
•61163
•63195
•65196
•67180
•69112
•70987
•72851
•74669
•76436
•78133
•79807
•81405
•82956
•84476
•85909
•87306
•88610
•89891
•91073
•92210.
•93242-
•94244
•95155
•95994
•96738
•97447
•98058
•98590 •
•99023
•99340
•99620
•99840
•99960

+ 1-00000
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11. Now, put z = Q- in the equation
m

then y*+amy2—46m8 = 0,

or, if w8 = 4 - = Z7,

o

then ?/8-f amyi—4 = 0 ;

and, comparing this with

when <72 = 0, gs = 4 ;

then ptt = ?/,

if PC'

and then

/-I

24-

Then, if two roots of the equation are imaginary, the value of

-—r lies between — oo and 1; and, to solve the cubic, look out the

value of p (iu </3) corresponding to ^=j, and then the corresponding

values of pu on the same horizontal line; and then the value of x is
rn mi

— ; the other two values of x being

If the three roots are real, the value of —. lies between oo and 1;

so that iu</Z is real; and therefore, putting

and looking out the value of v corresponding to

v = —

the value of x will be — ; the other two roots being

This method of solution of. the cubic has the advantage of requiring
only the tabulated values of a doubly periodic function of finite
periods.
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B. Solution of the Quartic Equation.

12. Next, suppose the general quartic equation

JJX - (a, 6, c, d, e) (x, I)4 = 0

is presented for solution.

Denoting the Hessian, changing however its sign to what is
usually employed, by

Hx = (b*-ac) as*—2 (ad-bc) a;8+(3c8-ae-26d!) a2

then, if Gx denote the sextic covariant,

where a e — ,

ace + 2bcd—ad2 —eba—c8

a,

b,

c,

b>

d,

c
d

e

the qibadrinvariant and the cubinvariant respectively.

Then, if we put s = -7^ »

(Cayley, Elliptic Functions, page 347),

and 4 s ~~g%S'—g$ — —? |

so that, if we put the general elliptic integral

f dx _

: 1 cfe
then

or

du =

2u =
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so that, in Weierstrass's notation, we may put

and _ ^ . = 2^=2p'
dn JJ*

Wo may, therefore, use the notation

dx , i

expressing the general elliptic integral as a function of the covariants
Uan&H.

Mr. Robert Russell, of Trinity College, Dublin, has also shown how
to reduce the general elliptic integral to one of Legendre's or Jacobi's
canouical form, as a function of the quotients of the quadratic factors
of the sextic covariant Ot the squares of these quadratic factors being

13. Suppose, now, that x = oo when u — a, then

o V-ac
p2a = .

a
On the assumption that it is possible to expi'ess x as a linear func-

tion of pw, then the roots of the quartic will correspond to the infinite
values of p 2M ; so that a? = a?0, xu xiy x3, the roots of the quavtic,
when u = 0, wn w2l ws, in the notation of Weierstrass, previously
explained.

Thus, when u = \ -7~:,
Jx0 v(t/*)

we have p2w= ~ ;

aj0 denoting the root of the quartic TJX — 0, corresponding to u = 0.
To express p?t as a function of a>, we can employ Klein's foi*mula

(54) (Hyperelliptische Sigmafunctionen, Math. Ann., xxvn., p. 454),

p " = — 2 (*-,„)> •

where y and y0 are replaced by unity after differentiation; and then,
when x0 is a root of Ux = 0,

' _ (a, b, c)(xM l ) V + 2(6, c, d)(x0, lYx + (c, d, e)(xa) 1)\
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and, by (55),

, _ (a, b, o, d)(x0, \yx + (h, c, d, e)(x0, I)
3
 np u — — uz.

(X—Xof

Then, supposing x = oo when u = a, -

pa=£(a, 6, c)04 I)2,

p'a = - / a (a, 6, c, d)(aJ0) I)3 ;
,, , (a, 6, c, d)(a50) I ) 3

so t h a t ipu—po = v • / v »' . y

a;—CB0

or x—x0 = —

'a (x — x0) '

PiL
v/a(pw-pa) '

Or, otherwise, putting
A

* "'ft ~ ~

p w — p a

where A is some constant, to be determined hereafter; and then, with
the notation previously explained, we can put

x—x2 =

% — p a pa—e x

A pw—e,

ll/ —i(/S —

pw—pa pa —e2

A
3 pt t—pa pa—e3

Then Z72 = a (as—a!0)(a;—#!)(«—a;3)(aj—£

^l4

= a

Also

(pw—pa)* p'2a'

T=—7—K—r2;
azt (p?t —pa)

_ Ap'u j

so that du = ^ ~ ( P * P « ) a "

(pw —pa)' pa

and therefore A = — E-^-.
v / a

VOL. XVII.—NO. 270. T
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1 pa —ej .y/a pa—e, '

__ A _ 1 p'a
* pa—e3 \/a pa—e,'

pa—es \/a pa—e8

so that, since a50-t-a!i+a5a+a;a = — 4 — ,

)
a /

x/a \pa—^ pa—e3 pa—e8/

or a;0H = -

and, therefore,

a\pa—e, pa—e3 pa—es

1 /~3p^aa -j- — — - - i — -f- — -f- — i}

a 4v/a\pa—e! pa —ea pa — ej

, 6 1 / p'a , —Sp t̂ , p'a \
a 4v^a \pa—e, pa—e.t pa — e3/

., , 6 _ 1 / p'a , p'a , — 3p'a\
a 4v/a\pa —ej pa — e8 pa —e8/

Then V = 1 / ' " P ' X = 1 {p ( t t -a)-p (n + a)}\
a (pw — pa)4 a l

as in M. Halphen's paper " Sur l'inversion des Integrales Elliptiques,"
Journal de VEcole Polytechnique, 1884.

14. These preceding investigations indicate the advantage of the
substitution of §61 of Bui'nside and Panton's Theory of Equations,
where the second term of the quartic

is removed by means of the substitution

z = aaj + 6,

or
a a
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so that the quartic becomes

V = z* + GHz2 + 4£z + a 2 l - 3H2 = 0,

wh ero II = ac—lr,

0 z= a?d-3abc + 2h\

Then the quad rin variant and the eubinvariant of Fare

275

also dv =
(Z;U (Ztt

so that u = v Va,

agreeing with tho formula

I
P (u 5 9i, 9a) = — P \° 5 #2> <?a)-

a

15. It will simplify matters, without any restriction on generality,
to suppose hereafter a is replaced by unity whenever necessary, so
that u and v are the same; also C?2 = gq, 6?8 = g3; and then, u denoting
the value of u which makes x, and therefore z, infinite,

p 2a = H, and p' 2a = — G;

and, denoting the roots of the quartic in z by z0, zu z2, z8; then, as be-

fore, z-z0 = ~ p a ,
ptt —pa

p u — p a pa—e x

2 pw—pa p a — e 2 '

? pit —pa pa —e3 '

I / P a i P a i P a \
z0 = — 5 I —x 1 ^ 1 '—— 1,

\pa — ex pa — e2 pa —e8/
, _ i /— 3p'a , p'a ,. P « \

\pa—e, pa—ea pa —e8/
T 2

also
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— ~ 4
—3p'aa . —3p'a , p'a \

r c 1 c I >
a—es/

I r c 1 c

\pa—ej pa —ea pa—es

a\- J •'a . —3pa
1 ^

pa—ej pa—e, pa

16. By means of the notation explained by Schwarz in Formeln
und Lehrsdtze zum Oebrauche der elliptischen Functioned we can trans-
form the above expressions for the roots z0, zlt zit zi} into

o«r'a (r'2a— x p"a
era <r2a p a

z —
axa &2a

EJi J. P a _- _ i p"
p'a pa— ex

 ?p'

gj = 2 ̂  — g 2 a — — i P-JL + P( t

ff9a a2a a p'a pa —

or, in another form,

EL".-}- P a — _ i P"
p'a pa - e 8

 a p '

ff, 2 a , <722a , <r32a

equivalent to

_ ffi2a
~ o-2a

_ ffl2a
<r2a

_ _ »i2a
tr 2a

ffs2a
o-2a

, c a 2a

a 2a

<r22a

o-82a

o2a »

«rs2a

ff2a '

, o-82a
+ <r2a 5

= v
/ (p2a-

h = - v/(p2a-eI) + y(p2a-e,) - v/(p2a-e8),

«s = - - / (p2a-e l ) - y(p2a~es)+ y(p2a-e8),

agreeing with the expressions on page 117 of Burnside and Panton's
Theory of Equations.

Then -Xs) = ( * 0 - * I ) ( * | - «B)
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and, similarly,

eu e2» ei denoting the roots of the reducing cubic

and replacing a by unity.

17. The simplest expression, however, of the roots of a quarfcic is ob-

tained by increasing the roots of the equation in z by ——, equivalent

, ... a'2a ,
to putting -—- = — 6

<r2oin the quartic equation

7/+46t/8 + 6c?/a+4<fy + e = 0;

when the roots of the quartic are

X II6X1 V t ""~~ V Q ~ ^ • W n ^ ~ 7 / A ™— • ™ i

so that (y1-y,)(y ly l ) = ^ v S
(pa-e,)(pa-ea)(pa-e8)

and, similarly, (y, - y0) (y8 - yj = 4 (e3 - e,),

Then, generally, y = ) ( J ^,
(T (w + a ) «r (w — a )

18. We may now compare these substitutions with those given by
Halphen (Journal de VEcole Polytechnique, 1884), where

z = i *• '—
pw—pu

a (u-\-v) o'u _ avm

( ) <TU cv'



278 Mr. A. G. Greenhill on the [May 13,

or, in our notation, with

z = p (u — a) — p 2a

_ i p' (u + a)+\)2a _ i p'(tt-a) — y (u + a)
p (« + «)—p 2a 2 p (M —a)-p (u + a)

_ a (u + a) _ a (u—a) _ g'2a
( ) tr ( M — a ) a 2 a ' .

or o- (w—a)'

with the notation of the last article (§ 16).

Then

and JT= — (p (w—a)—p

or

agreeing with Halphen's expression.

19. It remains to investigate the conditions for the reality or other-
wise of the roots of the quartic.

(A) When the discriminant

A = ^ - 2 7 ^

is negative, two of the roots eu ea, e8 of the reducing cubic

are imaginary; and then two of the roots of the quartic are imaginary
and two are real.

(B) When the discriminant A is positive, eu e3, es are all real, and
the roots of the quartic may be all real, or all imaginary.

TVift roots will be all real when p c and p'c are real; that is, when
p 2c or H lies between co and ex; otherwise, all the roots will be
imaginary.

The solution of the quintio by means of Weierstrass's functions
has been considered by Kiepert in Crelle, Vol. 87, page 120.



so that

also

F2 i 1 1 \a0 = — ( ) = If, also ax — 0;
C4 \ C3 Cj /
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20. Let us apply the preceding theories to the motion of a prolate
solid of revolution, moving through infinite liquid, under no forces.

Then, as explained in the Quar. Jour, of Math. (No. 62, 1879), if
cos 6 is denoted by x,

a? = a0 (a—x0) (x—«,) (x - «,) (x - x3)

= flo(u
4—4a! xs -\- 6a2x^ — 4

where

and if

then

and

and

p2c =
a0 a0

_ g/ (^ + c) _ o' (u—c) _ gr2c
a (u + c) a (u — c) a 2c

8 p («—c)—p2c'

<j(i(,—c) ac

p«—pc'

' ' p t t -pc pc—ej'

(B — { C o = — p c vu — ea

*¥* 1 1 *£ J^J

itt — pc pc—e3

— p'c pu — e3 _
pit—pc pc—e s '

! - CB0) (x-x1)(x- x2) (.u—.Ds)

__ p c p u
(pw—pc)4 p3c

— p
C P '

(pw-pc)4

(pw—pc)
( M _ c ) _
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and therefore

or
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du = >/aodt,

u == ya 0 £ + constant.

[May 13,

The constant must be taken to be ws, for -pit, to range between e8

and es, and therefore rc to range between rc2 and ass.

Then ^ = +

dt 2c4 l + cos0 2ca l - c o s 0 '

0

3'

du 2 2c4 / M 1 + cos 0 2c4 - / i f 1 - cos 6'

l + as) x . A/(1— a?0.1—^.1 -
21+COS0 2 1 -COS0

Now, suppose u = a when cos 0 = — 1,

« ^ b „ cos 0 ^ + 1;

then 1 + cose = J t £ E ^ ^ ( p u p a )
pa—pc ipu — pc (pa—po)(pw—pc)

E^ -PJL-= p p
—pc po—pc (po—pc)(pw—pc)

(pa-pc)4

also p'tt is negative imaginary, and p'6 positive imaginary,

so that # = | t - — / y - ^
du pc (ptt—pa) pc(po—

(pa—pc) (pw—pc) (p6—pc)(pw—pc)

8 (pa—

a . p a

(pb—pc)(pzt—p&)'

o dv/' p a . p a p b p'b
diu pa—pc pw—pa p6 —pc pit—p&

)—2—6;
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. . . I . . , a (u — a) a (u — b) , i .T>

so that 4> = h log ) ;—) ' + \%Pu,
a (u + a) a (u + b)

where P = — (a+c)+ — (a—c)
o a

- e
F

a (ti + a) o (u + b)

22. Then

pc a0 a a a a

c +^) = 2 £L C _ £ 2C = i 2c- 5L2C- - ^ 2c,

= 2 A c - °~ 2c = - ^ 2c + 2l 2 c - S- 2c,
< T 2 <r c a o

i 2c;
a8 , = = 2 c _ £ 2 c = 2c 2c+

p (c+w3) <r8 a <r a a

and, generally,

23. In order to agree with the notation of the Quarterly Journal,
we must suppose

JC0 — B, xx = a , JBa = (3, xa = y ;

and then (a — y)(/3—5) = 4 ( e ^ e8) ;

also, in order for ptt to oscillate in value between e2 and e8, we must

have u =
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Comparing "Weierstrass's notation with Jacobi's, we have

or (e1-e3)cdV(e,-c s )«;

cr n
(Schwarz, page 30);

and v/(el-<>3) « = £ y {ill ( o - y)(/3 -1*) } C

agreeing with the notation of the Quarierly Journal.

The determination of o, ft, y, S attempted in that article has thus
been effected, in terms of Weierstrass functions of c, the invariants
being g.2 and g$, the invariants of the quartic xr in terms of x.

24. Now

so that

and, similarly,

—EL£—,
pa — pc p&—pc'

1 —

l - o

so tha t

1 + a p6 — pc pa — Cy*

\—ft _ _ pa—pc jib — f.2
l-h/3 p6 —pc pa—e2'

I —y pa—pc p6 — cg

1 + y p6 —pc pa—es'

1 - a 1-/3 1 - y 1 - 3
1 + a

a1 a

and if this is put = —, and

A =

n;

<r, a (7oa ff.a

the biquadratic

+ 2a5 (BCD + CDA + DAB+ABG) - 4 4 B C D = 0,
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obtained by putting a+/3-fy + 3 = 0,

has a root «,

283

po —pc c) a (b — c)

the other roots being

pa— po axb _ pa —pc aj) _ pa—pc â 6
po—pc a\a pb-pc ajft* po-pc a\a

Denoting these four roots by x0) xu xit xz; then

_ , — (Pa~Pc) ff2^ ptt~P&
(po —pc) <r a pa —ej

so that
p& —pc ff2a (pa—e.2)(pa—e3) '

so that the iS and T of the reducing cubic of the last quartic becomes

8 — m'gv T = m*git

where pa —pc ff86 pa —po
po — pc a a p a

and this complication is sufficient to explain the difficulty experienced
previously in the attempt to solve the biquadratic (6) and its reducing
cubic.

25. Compared with the previous expressions in the Quarterly
Journal, Vol. xvi.,

1 + a
a • / a— y

an* %a = — -

>a — e, pc—e.
_ pc-et pa—e8 _ e1-e3

a-a 1 + y 1 + a .
i+a pc-e,

)c — e»

- 1 pa-es

on"&' = 3 ^ 1 + « - 1+V_ pa—e8__ pa-et
a—5 1 + y ^ 1 + a i pc—et pa—e8'

=
—8 1 + y ^_

1+/3

pa -e 3 _pa -e 8
pc—ea pa—e8
pa—e8
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and similarly sn2 (1

[May 13,

indicating that

pa—e3

dn2 (ib'+K) = £ ^ l £ 2 ;
pa—e8

a'=rwa, 6 = Wj+sw3)

where r and s are proper fractions, with Schwarz's notation (Formeln,
p. 74). Also, to the complementary modulus,

j / 1 + g pc—es pa—6j ex — e.

I., i+y
1 + 3

cn8a' = E ^ ^ ,
pa—e,

pa—e,

1 - pa-e,
pc-e8

snJ 6' =

-i

x
_ l - / 3

" 1 - a
•i 1 — p -I _ p6 — e a p c — e t

1 — o p c — e a p 6 — Oj

pc— po—el

e, - a.

26. Now put a; = cosfl = |—£, so that « = tanU0;
1+2/

then

or, if

then

where

x = ^ y , so that z = cot2£0,

4i2 = -

(Q-cfln)a
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Then the quadrinvariant Cr2 and the cubinvariant Qs of these
reciprocal quartics in y and z are the same, and

so that, if y = oo when t = a, z = oo when t — b, we may put, changing
from 02 and Os to ga and gs,

and # = \ JA. sec3 i0 + \ ̂ At cosec"
at

\ ?~ | (<+a) - \ -2- | (*-a)

or f - * f

Also -/^oyo = 2 — ia, y^l4z0 = 2 ~ ^6 ;

so that /*(yyd .
pit—pa

with #2 and 0y

Arranged in descending order of magnitude, we have

oo>aj, > 1 >ajj>oj>a;s>— 1 > xo> — oo;

also, when a; = oo, y — ~-1, z = — 1, w = c ;

« = »n 2/ = 2/n * = *n « = <"i j

£ 8 = 1 , y = 0, 3 = oo, w = 6 ;
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and now x, y, z have the real values of the problem; also

x = xs, y = ys, 2 = s3, u = u)i-i

8 = — 1, 2/ = QO, 3 = 0, w = a ;

* = ^o. 1/ = 2/0) 2 = % w = 0 ;

as = —oo, y = — 1, z = — 1, w = c.

Then i 8 = M(x—x0) (x — ajj (x—a?8) (a;—a;8),

4//3 = - Ao (y - yo)(y - y,) (y - 2/s) (y - yt),

4? =-At (z- z0) (z-Zy) (z-z2) (z-zs),

and now pa lies between ex and ea and p'a is positive imaginary,

p6 „ e3 and -co and p'6 is negative „

pw „ e3 and e8,

and w = t-\-wi.

APPENDIX.

Let us apply the Table to the solution of two representative Cubic
Equations.

(i.) To solve a;3+a;4—1 = 0, a modular equation of the 23rd order,
the real root of which is iy(16fc&'), when K/K= <S23.

Here a = 1, b = i, m = "/4j

p (it* 73) = |am = -529;

so that, to the neai'est integral value of r,

pit = -07882, and z — -7551.

(ii.) To solve cc8—5x3 + 6aj—1 = 0, the roots of which are

sin2 —-, 4 sin' —, 4 sin' r--.
14 14 14

Put x = -, then
2^ + 1

here a = 1, m = ^ 2 8 ;
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and p (w v/3) = | i/28 = 1012,

so that, to the nearest integral value of r,

iuv/3 = H > 2 (± 2wa), u = T 8 ^ ^ (± |«0 ;

p« = -2-226, +--996, -1-803;

and x = 1-573, '198, 316.

On the Cremonian Congruences which are contained in a Linear
Complex. By Dr. T. ARCHER HIRST, F.R.S.

[Read May Uth, 1886.]

1. In his well-known memoir,* published in the Monats Bericht of
the Academy of Berlin (17th Januaiy, 1878), Kummer dreAv attention
to the existence of two different, and equally general, congmences of
the third order and third class. One of these is contained in a linear
complex; the other, which for distinction might be termed the skew
cubic congruence, is such that the three rays thereof, proceeding
from an arbitrary point in space, are not, in general, coplanar. The
properties of the latter congruence were fully developed by Kummer ;
whilst those of the former were only very briefly alluded to by him.

2. A year ago, in a paper communicated to the London Mathe-
matical Society, I had occasion to study a special case of the above-
mentioned skew cubic congruence.f It was of the Cremonian

* tibcr diejenigen Fliichen, wclchc mit ihrcn recipro/c polarcn Fliichcn von dcrsclbcn
Ordmtng sind und die gleichen Singularitatcn besitzen.

t On Congruences of the Third Order and Class, " Proceedings of tho London Mathe-
matical Society," Vol. xvi., pp. 232—38, 1885.

I may hero mention that, in 1882, Dr. Roccolla published, at Piazza Armorina, in
Sicily, an interesting thesis entitled, Sugli cuti geomclrici dellospazio di rctli generati
dalle intersezione de complcssi correspondents in due o piu j'asci proicttivi di complcssi
lincari, in which, amongst other things, he speaks of a congruence of the third order
and class, definable as the locus of a right line constantlg incident with three correspond-
ing rays of three given projcclive pencils, arbitrarily situated in space. This congruence,
as I have recently shown, in a communication to the Circolo Matcmatico di Paler mo
(" Hcndiconti," t. i., scduta del 21 febrajo 188C), is itself a special caso of tho ono
studied by me, and referred to in tho toxt.

I am also informed by Prof. Sturm, of Lliinstor, that ho has been led, still moro
recently, and quite independently, to a somewhat similar, purely deseriptivo method
of generating the congruence described in my paper of 1885. In place of ono of tho
three projective pencils employed by lloccella, ho simply substitutes a quadric rcgulus,
ono of whose generators coincides with its corresponding ray in ono of tho two re-
maining projective pencils.




