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the left-hand side of the last equation can be easily shown to be equal
to 8zf (a). Multiplying by a and integrating, we obtain

(2+ :—,) at+8r { (%m)’a—f(a)} = consb. .........(24),

0
which is the equation of energy.

Equations (22), (23), and (24) are the equations obtained by
Dirichlet.

Solution of the Cubic and Quartic Equations by means of Weier-
strass’s Hlliptic Functions. DBy A. G. GREENRILL.

[Read May 13th, 1886.]

A, Solution of the Cubic Equation.
1. The solution of the cubic equation, when presented in the form
4da?=Sz2—T =0,

by means of the trigonometrical circular functions, is well known ;
for, putting @ = ny, then

T L

3

3_°I 7o)

¥y—= =0,

3

and, comparing this equation with

4cos*a—3cosa—cos3a =0,

we can Put Y = Co8 a, and @ = ncos a,
provided that W= 18, and cos8a = 1_’1;;;

the other two roots being = cos (a % ir).

Denoting the discriminant S*—27T° by A, and the absolute invariant

s by J, according to Klein, then

ry
™ 27 _ J-1
COS’ 30. = —5 = F = J ,
sin® 3a = 1 or cosec® 3a=/J. .

'f:
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2. Changing the sign of , the cubic equation becomes
48— S2+T =0,
which may be compared with
4 gin® a—3 sin a+sin 3a = 0,

so that @ = neina, or nsin (akir),

provided that 2* =18, and sin 3a = % ;

™_ oy J—1

and then sinf8a == = ¢ =

n® S J

c0s’3a = -}, or sec’®3a =/J.

In these two cases it is assumed that
A= S-27T
is positive, so that all three roots of the cubic equation are real.

3. But, if A is negative, two of the roots of the cubic are imaginary ;
and, if S is positive, the equation

4*—Sz—-T =0
must be compared with
4 cosh® a — 3 cosh a—cosh 3a = 0,
and then the roots of the equation are

ncosha and xcosh (adiwi),

provided that n*= 18, and cosh3a = 23 ;
. n

™ _ 21T _ J-1
80 tha:t , cosh’3a = n—o = ‘TST = T,

sinh?8a = — }— or cosech?3a = — J;
and these are real, because J is negative.

4. IfAis negativé, and Sis negative, then, changing the sign of S,
. the cubic equation 40*+ Sz2—T =0
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must be compared with
4 sinh® a 43 sinh a—sinh 3a = 0,
and then the roots of the equation are

nsinha and nsinh (atiw?),

provided that n? =18, and sinh 3a = n-z ;

3 s ?

and then sinh3a = L = ?;TT’,
cosh®8a = Si%,zg’ = 17, or sech?®3a = J.

Similarly, changing the sign of x, the roots of the cubic equation

42— Sz +T=0
will be —ncosha and —ncosh (a3ni),
where cosech? 3a = — J,

J being negative ; and the roots of the cubic equation

42°+ S2+T=0
will be —nsginha and —nsinh (a47i),
where 4 sech? 3a = J.

According to this method, the solution of the cubic, when only one
root is real, depends on the values of the hyperbolic functions, which
have the inconvenience of an infinite period, and so cannot con-
veniently be tabulated.

5. In the preceding cubics the second term of the equation has
been removed ; but, if we consider their reciprocal eqnations, weshall
have a cubic equation of the form

24ar—4b =0,
t

a cubic equation with the ¢third term removed, equivalent to the pre-

ceding equation 4e*~8Sx—-T =0,
. 1
if 2=—m—, a=%, b=%;

and the roots of this new cubic in 7 will be all real, or one real and
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two imaginary as before, according as
A = §°—27T" is positive or negative,
—a—27b

b8 » ”»

‘We may always suppose T, and thevefore b, is positive; for, if nega-
tive, changing the sign of # and z would make them positive in the
equations; the roots of the new equation

24at—4b =0

will therefore be all real, or one real and two imaginary, as a®—27b is
positive or negative, on the supposition that T and b are positive.

6. Now, consider two variable quantities s and ¢, connected by the

relation t=s— %s_;
§
then at _ 1+ 2_,_‘373,
s §
3 8 205\*
wad 10+1y = (48—g)) (1+ 22),
if hy = 27g5; l
dt ds
so that = ,
V(4 +hs) — /(45°=g,)
dt ° ds
d & = - .
an , J@FTT j‘ 7 —g) % Suppose

But, according to the definitions of Weierstrass, the absolutely
simplest elliptic fonction, denoted by pu, of a variable quantity u, is

. ° ds
defined b U=\ —5—>
Y R c=rr=r
and sS=pu,
ds — 3
so that T = Pu=— V(45 —gs5—95).
w

When it is desirable to indicate the quantities g; and g, called the
invariants, then the notation '

s=p(%; 9 Gs)
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is employed ; so that we may now write
s=p(u; 0, g),
t=p(u; 0, —hs).

7. By means of the fundamental relation

P (%; g5, g5) = m’p ('mu; %, iz),

m
we find, putting m® = — 27, m*= —3, m =1,/3, that
t=p(u; 0, —hy) =— 3p (1u/3; 0, gy),
since hy = 27g,;

and therefore, omitting the indication of g5,
—3p (i v/3) = pu— g’i,

or pu+3p(iuy/3) pPPu—gy, = 0;
and, comparing this with the equation
2P+at—4b =0,

we have z = pu,
provided that a = 3p (vu/3),
gs=4b, g;=0.

8. In order to tabulate the function pu, we must select some parti-
cular value of g5; we shall find it convenient to put gy = 4, and then,

ifs =pu w= r __ds
’ s v (45°—4)’
= _4d .
or 2u = l. J(F=1)’
and then, in the notation of Legendre and Jacobi,
e 14cn2u4/3 i 1ro
s=pu = 1+J3—_~1—cn2uﬁ/3’ for k = sin 15°.

9. In the generdl notation of Weierstrass, the roots of the equation
46’ —gys—gy =0
are denoted by e, ¢, ¢;; so that

d—g38—gy = 4 (3—e)(s—¢;) (s—ey) ;
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and, if w;, w;, wy denote corresponding values of «, so that
Pwi=¢€, PW;=¢6, PW;=26;

then w,, w,, w; are called the periods of the elliptic functions; but they
are connected by the relation

w1+wi+w3 = 0)
also e, +e+e=0.

In our case of g, = 0, two of the quantities ¢, ¢,, ¢, are imaginary ;
e, is then taken to be real, and, with g; = 4, we have

a=0 =1 ¢=do;

o and o° denoting the imaginary cube roots of unity, such that
o=t =1 V3.

- Then, since s = 1 when % = w,, and 24 4/3 = 2K, in Jacobi’s nota-
tion; therefore K = w, /3.

Algo wy—w, is positive imaginary, and is denoted by w; by Schwarz,
ond then +K’ = w;4/3; so that

fé:-i%:@ﬁ.

Wy

10. Then, as « decreases from w, to 0, pu will pass through all real
values from 1 to oo ; and as {u increases from 0 to w,1, or #u./3 from
0 to wy, p (fu+/3) will pass through all real values from — w0 through
0 to +1; as exhibited in the following Table, kindly calculated for
me by Mr. A. G. Hadcock, Inspector of Ordnance Machinery, Royal
Artillery, in which the periods w, and w; have each been divided
into 180 equal parts, and the corresponding values of p u tabulated
in the same horizontal line.

Then w,= 12143, and p % can be calculated from the formula

180
1 !
" e A IS E
Also, denoting p T2 i 80 2 by sand p ig& by 8, then
=_1l(_4
§= 3 (s s )’

whence p 1_8(2) can be cplculated when p 1?;) is known.
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=p% . —p T
*=Pigy | S=Pig =Pl | S=Pig
= 0 [ +Infinity —Infinity

1| +21972-6 —7324:200 |[r= 46|+ 10-3851 — 344934
2 5494-39 1831463 47 9-94817 3:30258
3 2331-61 7772033 48 9-53820 3-16474
4 1373-21 457:7366 49 915299 3:03507
5 878805 292-9350 50 879071 2:01297
6 599-074 199-6913 51 844971 2:79790
7 448413 149-4710 52 812796 2-68914
8 343-303 114:4343 53 7-82443 2:59636
9 271277 90-4256 54 7°53768 2:48909
10 219-726 732430 55 7°26630 2-:39685
11 181586 605286 56 7-00940 2:30932
12 152:593 508643 57 6:76574 2-22611
13 130-016 433385 58 653496 2:14710
14 112-103 37-3675 59 6-31568 2:07179
15 97:6523 32:55062 60 610721 2-00000
16 858317 2861038 61 590906 1:03149
17 76-0292 2534283 62 - 572044 1-86606
18 67-8150 2260471 63 554062 1-80344
19 60-8671 20-28867 64 536929 1-74351
20 54-9316 18-31009 65 520585 1-68608
21 49-8237 16:60736 66 504976 1-:63096
22 453966 15-13155 67 4-90066 1:57803
23 41-5363 13-84466 68 475815 1:52716
24, 38-1466 12:71461 69 4-62180 1-47818
25 351554 11-71738 70 4:49772 1-43333
26 32:5043 10-83350 71 4:36622 1-38546
27 30-1407 10-04543 72 424650 1-34156
28 28:0260 934030 73 4-13150 1-29905
29 261262 8'70678 74 4-02134 1-25799
30 24:4142 813582 75 391554 1-21821
31 22:8643 7-61888 76 381391 117964
32 21-4574 7-14956 77 3:71629 114222
33 201766 6-72226 78 362241 1-10586
34 19-0077 6-33221 79 3:53214 1:07051
35 17-9369 597482 80 3'44:533 1:03612
36 16-9542 564676 81 3:36163 1-:00255
37 16:0506 534502 82 3-28113 96986
38 152169 5:06654 83 320353 93792
39 144465 4-80911 84 312871 90669
40 13-7332 4-57066 85 3:05658 ‘87615
41 13-:0719 4:34950 86 2-:98703 ‘84623
42 12-4569 4:14371 87 2:91989 *81690
43 11-8843 395199 88 285504 ‘78811
44 11-3505 377316 89 279248 "75984
4514+ 108517 |— 360591 90| + 273200 — 73202
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=p T¥ = p T = T4 =p @
*=Pigo | =Pig *=Pigo | S=Pig
r=91| + 267366 — ‘70470 1r =136 + 1-28989 + 37141
92 2:61713 67770 137 1-27562 -39420
93 2:56253 65112 138 1-26183 41679
94 2:50974 62490 139 1-24846 *43929
95 2:45868 -59900 140 1-23564 46140
96 2:40928 57339 141 1-22310 48357
97 2:36141 '54302 142 1-21105 +60543
98 231541 52310 143 1-19934 52716
99 2:27023 49804 144 1-18798 -54877
100 2:22679 47337 145 117710 56994
101 2:18467 -44886 146 1-16657 59090
102 2:14303 *42402 147 1-15639 61163
103 2:10347 +39980 148 1-14662 63195
104 2:06523 37580 149 1-13720 65196
105 202809 35187 150 1-12805 67180
106 1:99207 *32803 151 1-11932 69112
107 1:95715 30429 152 111101 -70987
108 1-92327 -28063 153 1-10290 -72851
109 1-89043 ‘25705 154 109514 74669
110 1:85856 -23352 155 1-08773 76436
111 1-82745 ‘20990 156 1-:08073 -78133
112 1-79759 *18656 157 1-07394 79807
113 1:76849 ‘16317 " 158 106757 ‘81405
114 1-74016 13974 159 1-06147 -82956
115 1-71272 ‘11637 160 1:05558 ‘84476
116 1:68605 09298 161 1-05011 -85909
117 1'66069 -07010 162 1:04484 -87306
118 1:63554 04674 163 1-03999 -88610
119 1:61108 02333 164 1-03528 -89891
120 1:58746 — -00000 165 1:03099 91073
121 1:56439 + 02336 166 1-02690 92210,
122 1:54194 04681 167 1-02323 03242 :
123 1:52275 ‘06744 168 1-:01969 94244
124 1:49926 ‘09343 169 1-01651 95155
125 1:47876 11682 170 1-01360 95994
126 1-45887 14019 171 1-01103 96738
127 1-43961 +16348 172 1-:00861 ‘97447
128 1-42091 -18677 173 1-:00653 -98058
129 1:40275 -21002 174 1-:00473 98590 -
130 1-38509 24331 175 1-:00327 99023
131 1-36797 - 25651 176 100229 99340
132 1-35141 27959 177 1-:00120 *99620
133 1:33527 30273 178 1-:00050 *99840
134 1:31961 *32580 179 1:00010 99960
135 + 130458 + 34856 180 | + 1:00000 +1:00000
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11. Now, put z = % in the equation

2+azt—4b = 0;

then 3+ amy? —4bm® = 0,
or, if md = % =T,
then P¥*+amy*—4=0;

and, comparing this with

p*u+38p (tu/3) pPPu—4 =0,

when 9:,=0, gs=14;
then pu =y,
; ; —iam=S = (V.
if p (uv/38) = tam = ke (J—-l) ;
and then . z=M, x= E

T3 P%

Then, if two roots of the equation are imaginary, the value of

38—1“ lies between —o0 and 1; and, to solve the cubic, look out the

value of p (1u+/3) corresponding to — 5 a7 and then the corresponding

3T

values of pu on the same horizontal line; and then the value of z is

3
; the other two values of = being ( 1;:, )
32

If the three roots are real, the va,lue of 3§f| lies between o and 1;
so that u,/3 is real; and therefore, putting
/3 =9,

and looking out the value of » corresponding to

_ 8
PY= g
. v . m
the value of # will be — ; the other two roots being ——
P3¥ p (Fu=3 “’z)
This method of solution of the cubic has the advantage of requiring

only the tabulated values of a doubly periodic function of finite
periods.
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B. Solution of the Quartic Equation.
12. Next, suppose the general quartic equation
U,=(a,b,¢,d,e)(z,1)=0
is presented for solution. '
Denoting the Hessian, changing however its sign to what is
usually employed, by
H, = (b*—ac) 2*—2 (ad—bc) 2®+ (3c* —ae — 2bd) 2*
—2 (be—cd) .:c+d“—ce;
then, if ¢, denote the sextic covariant,
, G} = 4H: — g, H,U: — g, U2,
where . gy = ae—4bd+3c%,

3

gs = ace+2bcd—ad® —eb?—8,

Then, if we put ' § = II}" ,
ds _ mU,—H,U,
da U

(Cayley, EllipAtici Functions, page 347),

and =g =gy =733
go that, if we put the general elliptic integral

[ da _
_u’

V(U -
dx ds
tl du = =1_ s
1en U »\/(Ul) 2 \/(4-'33_-913_93)’
ls
or 2u = [._.‘— ;
R DVICEEr !
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so that, in Weierstrass’s notation, we may put

s-‘=%% = p (Qu; 9 gs;
and : —%=2gj= 21)' (2“3 g?rgs)‘

We may, therefore, use the notation

u= [ 7‘—1(%)=%p" (% g 0s),
expressing the general elliptic integral as a function of the covariants
Uand H.

Mr. Robert Russell, of Trinity College, Dublin, has also shown how
to reduce the general clliptic integral to one of Legendre’s or Jacobi's
canonical form, as a function of the quotients of the quadratic factors
of the sextic covariant @, the squares of these quadratic factors being

H,-qU, H,—e¢U, H,—eU..
13. Suppose, now, that # = co0 when u = q, then

_b—ac
pP2a= Pt

On the assumption that it is possible to express  as a linear func-
tion of pu, then the rootsof the quartic will correspond to the infinite
values of p2u; so that 3 = =, ,, 2, @5, the roots of the quartic,
when u =0, w,, w, w, in the notation of Weierstrass, previously
explained.

(= dx
Thus, when % =J —_
’ 20 VT’
H,
we have p2u = A

a, denoting the root of the quartic U, = 0, corresponding to = 0.

To express pu as a function of », we can employ Klein’s formula
(54) (Hyperelliptische Sigmafunctionen, Math, Ann., XXVIL, p. 454),

2 ) 3!
YUk (o 5tug,) i
s 2 (@2

where y and y, are replaced by unity after differentiation ; and then,
when 2, is a root of U, = 0,

U= ((l-, b, C)('EQLl)g o’+2 (b! ¢, d) (‘v“) 1)?.’1:-]-(0, d, &) (o 1)‘2 .
p ] 2 (w~@o)= ’
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and, by (55),

p'u —_— (a’t b’ C, d)(ﬂ’o, 1)8:6+(b, C, d, 9)(“’0, 1)8 Uz.
(z—m)?

Then, supposing ¢ = © when v = a, -
pa=}(a, b, ¢)(zs 1),
P'a =-a (a: b, ¢, d)(wor l)ai
— —_ a! b' G,.d)(wo, 1)3
8o that pu—pa (—_——w—wo -
—_—— E'“ N
T Va(@—w)’

’

a

or S R—my = — Jalpu—pa)’

Or, otherwise, putting
A

~ pu—pa’

T—,
where 4 is some constant, to be determined hereafter; and then, with

the notation previously explained, we can put

' 4 u—e
o—p = ——— BT

~ pu—pa pa—e,’

A u—-e,
p—z, = pu=e

pu—pa pa—e;’
gy, = A PUTE
pu—pa pa—e,
Then U= a (v—a,) (8 —u,) (2 —2,) (v —2y)
Y
(pu—pa)‘ pa
Also de . _ __ Apw ;
du (pu—pa)?
i —_ (—A;P————-—%‘)g du
tph t = 2 = pu—pa
so tha du 7(0) e yE U
(pu—pa)’ p'a
and therefore A=— R\}ia .

VOL. XVIL.—NO. 270. N
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oy = A 1 _pe

Then T, a"—pa—c,_ 7a pa—g’
p—iy= A =_ 1 _Pe

Pa—e Va pa—e,

gy = A =1 Ve

pa—ces Ja pa—es

so that, since Tyt agtay =—4 —2—,

Sy— @y —ay—ny =4 (w0+ —Z—)

_ 1 (pa  pa  pa).
va (pa—e1 + pa—e; + pa—-e,) ’
a J pa-—e1 pa e, pa—es

and, therefore,

wb bm Lo (U Yoy i)
=1 e e e
m“+%=—_4—s17¢(P“_el E‘iL_;f }%‘%L:‘)

Then U= =g B Gmmp ol

as in M. Halphen’s paper ¢ Sur l'inversion des Integrales Elliptiques,”
Journal de U Ecole Polytechnique, 1884.

14. These preceding investigations indicate the advantage of the
substitution of §61 of Burnside and Pa.nton s Theory of E quations,
where the second term of the quartic

az'+4ba + Gl +dda+e =0
is removed by means of the substitution

z = az+b,

or = -



1886.]  Solution of the Cubic and Quartic Bquations.

so that the quartic becomes
V=2*+0I+4Gz+d'I-3H® = 0,
where H = ac—1?,
G = a’d—3abo+ 20"

Then the quadrinvariant and the cubinvariant of V are

G, = a’¢y,

Gy = d'gy;
also dv = _da_ I —
JV)  J(U) Vo

50 that w=uva,

agreeing with the formula

1
P(; gy gs) = ;p(v; Gy, Gy).

2

5

15. It will simplify matters, without any restriction on genecrality,
to supposc hereafter ¢ is replaced by unity whencver necessary, so
that « and v are the same; also G, = g,, G4 = g;; and then, a denoting

the value of «# which makes @, and therefore z, infinite,

p2«=H, and p'2a=—G;

and, denoting the roots of the gquartic in z by 2z, #,, 2, z;; then, as be-

fore, 2—zy = __P_
pu—rpa’

2=z = —Pa pu=&

'~ pu—pa pa—e,’

B—zy = —Pa_ | ind

pu—pa pa—c,’

Z—zy = =pe_ i 8

Pu—pa pa—ey

also =—i( + P +L),'
pa—eg pa—e, pa—ey

-1 (_333 + Py _P___)
pa—é pa—é pa—e
T2
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z,=—%( pa +—3pa+ pa ),

pa—¢ Pa—e¢g pa—e;

zs"—’—i'( pa__, _pa +-—-3pa).
pe—e, pa—e; Ppa—e,

16. By means of the notation explained by Schwarz in Formeln
und Lekrsitze zum Qebrauche der elliptischen Functionen, we can trans-
form the above expressions for the roots z, 2, 2, 2, into

= ﬁ_q_l&‘—_}_ a
zo_zua 02a ’p’a ’
z,=2-ﬂf—a—di2—(—l=—lﬁl.+_ﬂ,a_=_ IE"(G'{'“’[)

S oa 02a *pPa  pa—eg I (atw)’

z’=2i"_ﬁ=__lp_a_+__ﬂa_____1 ”(a+w2)

oa  ¢2a *pa  pa—g ?p' (atw,)’
gl ek pe, Pa __ P (te),
% oga  02a ®pa +pa—e, —{p' (a+wy)

or, in another form,
0,2a , 6,2a , 0,2a

2z =
° - 02a 062 62’
2 0,2a 0,2a 0,2a
! ¢2a ¢2a 02a’
e 0,2a , 0,20  0,2a
! 02¢ 02a o02a’
— __062a 0,2a  0,2a,
= — T o T o

equivalent to

w= +(p2a—e)+/(p2a—e)+ v/ (p2a—e),
a= v(p2a—e)—v/(p2a—e)— v (p2a—e,),
4=—4/(p2a—e)+ /(p2a—e)—/(p2a—e),
2= —/(p2a—e) — v (p2a—e) + v/ (p2a—e,),
agreeing with the expressions on page 117 of Burnside and Panton’s
Theory of Equations.
Then (@o=2,) (23— 5) = (7—2)(25—%s)

= 4(p2a—e;—p2a+te,) = 4(eg—gy);
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and, similarly,
(=2 )(ms— 1) = (%—2) (25— %) = 4 (e5—e1),
(= 2g) (1 — ) = (2—25) (21— 2) = 4 (e,—€3) ;
e,, &, e; denoting the roots of the reducing cubic
=95—g =0,
and replacing a by unity.

17. The simplest expression, however, of the roots of a quartic is ob-

I

tained by increasing the roots of the equation in z by 22 , equivalent -
a
to putting = =—b

in the quartic equation
'+ 4by +6c’+4dy+e=0;

when the roots of the quartic are

yo=2gx yx—zala yp =222, y,=22°

g, o,a a3a

Then h— yo_’L— Ys— yo__B—" Ys '.‘lo_"E‘_

pa—e¢ pa—e¢, pa—é;
o
so that (y,— —y) = pa (e;—ey) = 4 (e;—ey),
(¥1=90) (¥s—Ys) (pa—e,) (pa—ey) (pa—ey) (e €s)
and, similarly, ¥ =9) s —1) = 4 (e—e),

¥s—Y0) (N —Ys) = 4 (e1—ey).
o (uta) o (u—a)
4 (u+a) o (u—a)’

. . _' dy
if u—[/(Uy).

Then, generally, Y=

18. We may now compare these substitutions with those given by
Halphen (Journal de I'Ecole Polytechnique, 1884), where

,'u — lv

pu—pv
= —H (uto — Z'ﬂ’._' Q-

o (u+v) ou o’

—_— 1
2=
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or, in our notation, with
s= P @=0=pa
p (u—a)—p 2a

- %p' (vta)+p2a _ %p' (u—a)—p (uta)
p (u+a)—p 2a P (u—a)—p (u+a)

_od(uta) o (u—a)_ o2a
o (u+a) o(u—a) o2’ .

or - o (uta) o (u—a)
Y T wta) "7 (u—a)’

with the notation of the last article (§ 16).

Then V= —P"—GL’ZH—‘
(pu—pa)
= {p(w—a)—p(uta)}’,
and 7=1{p@—0)-pa+a)}
or «/U:—}—a.{p(u—a)—-p(u+a)},

agreeing with Halphen’s expression.

19. It remains to investigate the conditions for the reality or other-
wise of the roots of the quartic.

(A) When the discriminant
A= g;— 279:
is negative, two of the roots e, ¢, ¢, of the reducing cubic
4 ~gi—9y =0

are imaginary ; and then two of the roots of the quartic are imaginary
and two are real.

(B) When the discriminant A is positive, ¢, ¢, ¢, are all real, and
the roots of the quartic may be all real, or all imaginary.

‘The roots will be all real when pc and p'c ave real; that is, when
p2c or H lies between o and e,; otherwise, all the roots will be
imaginary.

The solution of the quintic by means of Weierstrass’s functions
has been considered by Kiepert in Crelle, Vol. 87, page 120.
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20. Let us apply the preceding theories to the motion of a prolate
solid of revolution, moving throngh infinite liquid, under no forces.

Then, as explained in-the Quar. Jour. of Math. (No. 62, 1879), if
cos 6 is denoted by =,

& = a (2—,) (2= 1,) (21— 25) (2~ 25)

= qyu'~4a,23 + 60,2 — 4oy +ay,

where a,°=I—'ﬂ (-l———l—) =M, also ¢,=0;
s \es ¢
and if 2c=-2, p2%=ITs,;
P P P @
llc ” c+w _ .
then gy =—31E2° ml-=—%P' (c+w3’ Xy=..., By=...;

d . — 0 (utc) o (u—c) o2
an e o (ute) o (u—c) o 2

P (u—c)—p'2
P (v—c)—p2¢’

[N

d g =0 (ute) o (u—c) ,dc
an o= o (u+c) o (u—c) 2ac
— —Pc
pu—pc’

T—1x, = ____'.P_f_ pr—e
' pu—pc pe—e,’

T—y = _—Pe | i
pu—pc pc—ey
T—y = _—Pc pu—g ;
pu—pc pc—e,
so that (z—))(w—2,) (2 —2,) (B—25)
- Bl
(pu—pc)* p’e
p’c p’u
(pu—pe)*
= {p(u—0)—p(ut+)}’;
de _ pcpu
du (pu—pc)’

also p(z—c)—p (u+c),
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and therefore du = v uydt,
or u = ,/a,t+ constant.

The constant must be taken to be w, for pu to range between ¢,
and e;, and therefore  to range between «, and =,.

d Gten 1 G—cen 1

21. L = s e

1. Then dt 2, 1+cosB+ 2, l-—cosf’
dy _ , G+egn 1 G—cyn 1

du ~ *2,/M 1+cos0+ 20, /M 1—cos 8’

; V(ta,. 14214, 1+‘”s)+1i V=2 1—2,. 1—,.1—xz,)
i 1+cos@ 2 1—cos@ '

[

Now, suppose u=a when cosf=—1,
uw=="5 » cosf=+1;
then 1+cosO=_B.c___Rc_=__P'_°_£E“_'1PEl_,
pa—pe pu—pc  (pa—pe)(pu—pe)

l—cosﬂ_—:—E'c—__P’c_: _pe(pb—pu) ,
pu—pe  pb—ps  (pb—pe)(pu—pe)

a p”c
1420142, . 142, 142, = (pa—po)"’
gy /3
1—2.1—2,.1—2;. 1—2, = (pb?—p;)‘;
also p'u is negative imaginary, and p’d positive imaginary,
papc pbpc
so that Z—i’ =1 (pa—po) 1; (pb—po)’

pec(pu—pa) _  *'__pe(pb—pw)
(pa—pe) (pe—pc) (pb—pe)(pu—pc)
=4 Pe(pu=pe) ., pb(pu—pe)
(pa—pe)(pu—pa) * (pb—pe)(pu—pb)’

o _ _pPa_, pa _ _pb _ _pb_
diw  pa—pec pu—pa pb—pc pu—pb

= Z(at+t)+I(a—c)—2Za- 2 (u+a)+£—(u—a)+25'-ta,
(-2 (-4 o o (4 o

+Z (b40) =L =) +2 Lo~ L (utb)+ L (u-t)—2% b
a 4 [ q [ a
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o (u—a) o (u—>)

1iP
s (utayo(uis) I

so that Y= dilog
where pP= —Z— (atc)+ % (a—c)

U’ 6’
+-a—(b+c)+ - (b—c¢),

or 9-21‘& —_ ePu o (u—a,) o !u—b)

o(u+a)o (u+d)’
22. Then
“’o=—‘é‘L,G =9%, %o, %94 Bagey By
pc % 4 c o o
n= lm‘ c—i2c= %5 90— D090~ T8 2,
P (c+w1) t"1 .. 0 o o o

" (c+ w,) a; o o
= — =2-t¢c— —92=—— 3 2 s 2
Tg P (G+w2) Y p &6 2 + —= 2¢— p C,

Ty = — 213——_), (cto, —26"0———26——-—20 —3-204'3&2"3
(c+wy) 93 4 ¢

and, generally,

=3P =0)—p2_ o % -
2 o —o)—p2 @ (u+tc) ”(u c) 020,

d. 'cp'
%:/Mz;};—c_-?ﬁ:—)g =vM{p(u—c)—p (u+c)}.

23. In order to ngree with the notation of the Quarterly Jouwrnal,
we must suppose

=20 m=a, =0, 2=y;
and then (a=y)(B—=0) =4 (e,—¢e;5);
also, in order for pu to oscillate in value between e¢; and e;, we must

have u=Mt+uo;.
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Comparing Weierstrass’s notation with Jacobi’s, we have

2 -
pu—e, = (ﬂ}ﬁ) = (e,—¢,) (('Tl;? V(e—e)

ot

or (e,—e5) cd®/ (e, —e5) u;

pr—ey, = (%) = (e,—¢;) ds*v/(e,—¢) u,

pr—ey = (5&) = (e;—ey) ns’/(e,—e5)
(Schwarz, page 30) ;
and Ve—e)u =3/ {M(e—y)(3—=8)} t+2iK,
agreeing with the notation of the Quarlerly Jowrnal.

The determination of «, 3, y, ¢ attempted in that article has thus
been cffected, in terms of Weierstrass functions of ¢, the invariants
being g, and gy, the invariants of the quartic &° in terms of .

24. Now 146=—DC _ 1_5= D%,
pa—pc pb—pc

1-0 — . pa—pc.

1446 pb—pc’

and, similarly, %;: = - PZ—I::: ‘E?I::?,
- -4

1— /; _ pr~pc pb—e,

1+~ pb—pc pa—e,’

-y _ _pa—pepb—g,

l+y Pb—pec pa—e;’
-« 1—-5 11—y 1-9¢
l1+a_1+3_1+y_ 149
A
) -2 _a

so0 that

so that

B y 2
cr;'a, da cria, aa

and if this is put = %, and
A=2b p=mb g=nb p-ob
o' a U;G 6,Q oa
the biquadratic
42'—2* (A+B+C+D)
+23 (BCD+ CDA+ DAB+ ABC)—44BCD = 0,
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obtained by putting at+fB+y+d=0,

! — _pa—pedh _ _o(atc)o(a—c)
has & voot o pb—pec o~ a(b+c)o (b—c)’

the other roots being
_pa—pe aib _ pa—pc o3b _ pa—pe o3b
Pb—PC gja’  pb—pec oja’  Pb—PC dja’

Denoting these four roots by xy, 2,, @, @y; then

@y — g = (pa—pe) ¢*b pa—
(pb—pc) c'a pa—e‘

wy—ay = =P b (pa—pb)(ey—ey)
" pb—pe o’a (pa—e)(pa—e;)’

b

80 that

4
— a'b -
(n—r)r2) = (R=R)" 22 (RBP4 (o,

so that the S and T of the reducing cubic of the last quartic becomes

S =mlg, T =m'g,

where m = P2 poab pa—pb,
‘ pb—pe o’a  pa

and this complication is sufficient to explain the difficulty experienced
previously in the attempt to solve the biquadratic (6) and its reducing
cubic.

?

25. Compared with the previous expressions in the Quarterly
Journal, Vol. xvr.,

14a —] DPa—e pe—e

ondia’ = Y 140 _1+4y —Pc—e pa—e, _ e-—¢
a—3d 147y Lﬂ—l pe—e 4 pa—e;’
1439 © pe—e
: _1+5 1— Pe—&
entig = Y=98 1+a _ 1+y_ __pa—e__pa—g
: a-3 I+y 1— 1440 1— Pe—¢ pa—e;’
1+a pe—a
1_1+B 1P
dn’ia,.'=‘y—8 1+ﬁ= 14+y Pa—e;_ pa—e
B—&1+y y_1+40  y_pc—e pa—g’

145 Pa—e;
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and similarly

indicating that

Mr. A. G. Greenhill on the

8 (b’ — 66
sn’ (W' + K) = b—e.’

en® (i + K) = 2274,

pa—¢s

dn’ (ib’'+ K) = 22=%,

po—eg

0= 1wy b= w+sw,

[May 18,

where r and s are proper fractions, with Schwarz’s notation (Formeln,
p. 74). Also, to the complementary modulus,

1— l+y 1 —Pa—¢ pc—e

C 0

’

s’ = l4a pe—e pa—e _ _ &6
1_ 1+'y_ I_Eu_ea Pa’_el
144 pc—es
cnd o = Eg‘::ﬁ’
pa—e,
dotg’ =25
pe—e’
1—-1=8 1—Pb—¢
' = 120 Pe—e  __pb—g
1— 1—8 1— pb—¢; pe—e e, —é
l-a pc—e; pb—e;
en’d = m,
6—¢6
dn*b’ =P2=%,
e — 6
26. Now put = cosf = .1.:31, so that y = tan®36;
1+y
then 4 = — (4,y'—44,y° +64,y'~ 44,y + 4)) ;
or, if @ =2=1 so that z = cot?10
2+1 3 Y
then 48 = — (4,2*—44;2°+64,2°— 44,2+ A,),
where A4,= (G'*'_‘;ﬂ”),, 4, = @:_;’_ﬁr
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Then the quadrinvariant G, and the cubinvariant Gy of these
reciprocal quartics in y and z are the same, and

G, = 249m Gy=— 2693 H

g0 that, if y = o whent=a, 2 = © when ¢ = b, we may put, changing
from @, and G; to g, and g,

V=24 (t+a)——§(t a),

.
V=24 40— L3 (1),
and é‘—p—i\/A sec’ 1641 ./4, cosec® 16
=4t A)+} S 3 t+e) -3 2 } (t—a)
+1Z 1640 -3 S} 6-),

’

or + =3+~ -1 (-0)

&

=1
F)

G
Gy
LA 1% 1y
+1Z 30+~ 2360,

sothat =4~ t+llogM+11g o% (t+d)

3 (t—a) ot (t-b)’
Also x/Aoyo=2%%an \/Aﬂo:gi%b;
o
— - ,a
80 that ~/ Ay (y—90) = p_P_—u —pa

with G; and G,
Arranged in descending order of magnitude, we have
‘06>:v,>1>a:,>a:>w,>—1>:t.,>—oo;
also, when z=w, y=-—1, 2=—1, u=c¢;
| z=x, y=y, L2=%, U=o;
z=1 y=0, 2s=0, wu=b;

= Y=Yy E=2 U = wgj
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and now 2, ¥, 2 have the real values of the problem; also

%= @y, Y =y, 2=z U= wy;
s=—1, y=ow, 2=0, u=a;

T = ¥, Y = Yo, z = 2q, u=0;

s=-—w, y=-—1, z2=-—1, u=c

Then A= M(z—a)(@—a)(z—2)(z—2,),

4’ = — Ay (y =yo)(y—1) ¥ =) (¥ — ¥s)s
42" = — 4, (2= ) (z~2) (z—2) (2—2),

and now pa lies between ¢, and ¢, and p'e is positive imaginary,

pb ” e; and —co and p'b is negative ’»
pu » e; and e,
and U= t+w;.
APPENDIX.

Let us apply the Table to the solution of two representative Cubic
Equations.

(i.) To solve 2*+2a'—1 =0, a modular equation of the 23rd order,
the real root of which is ¥/(16kk"), when K'f K = v 23.

Here a=1, b=14% m=¥4;
P (tu /3) = lam = "529;
so that, to the nearest integral value of 7,
/8 = H3ul, v =i,
pu=-07882, and 2z="'7551.
(ii.) To solve #*—5a’+ 6z —1 = 0, the roots of which are

it T 4sin?Sr, 4sin?dT
4 sin v 4 sin’ T 4 sin e
F
= —0r, tl
Put 2 ST then

7854 72=1=0;
here a=1 m=3/28;
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and p (iu4/3) = 1%3/28 = 1012,
so that, to the nearest integral value of ,
/3 = Frju, (£ 20), v = ui (£ 307 ;
pu = —2226, +'996, —1:803;
and = 1573, °198,- 316.

On the Cremonian Congruences which are contained in « Linear
Complex. By Dr. T. Arcuir Hirst, F.R.S.

[Read May 13th, 1886.]

1. In his well-known memoir,* published in the Monats Bericht of
the Academy of Berlin (17th January, 1878), Kummer drew attention
to the existence of two different, and equally general, congruences of
the third order and third class. One of these is contained in a linear
complex ; the other, which for distinction might be termed the skew
cubic congruence, is such that the three rays thereof, proceeding
from an arbitrary point in space, arc not, in general, coplanar. The
properties of the latter congruence were fully developed by Kummer ;
whilst those of the former were only very briefly alluded to by him.

2. A year ago, in a paper communicated to the London Mathe-
matical Society, I had occasion to study a special case of the above-
mentioned skew cubic congruence.t It was of the Cremonian

* Uber digjenigen Flichen, welche mit ihren reciprok polaren Flichen von dersclben
" Ordnung sind wnd dic gleichen Singularititen besitzen.

+ On Congruences of the Thivd Ovder and Class, * Proceedings of the London Mathe-
matical Socicty,”” Vol. xvr., pp. 232—38, 1885.

I may here mention that, in 1882, Dr. Roccella published, at Piazza Armering, in
Sicily, an interesting thesis entitled, Sugli enti geometrici dello spazio di vetti generati
dall intersczione dé complessi correspondents in due o pi fasci proiettivi di complessi
lincari, in which, amongst other things, he speaks of a congrucnce of the third order
and class, definable as the locus of a right line constuntly incident with three correspond-
ing rays of three given projective pencils, arbitrarily situated vn space. This congruence,
as I have recently shown, in & communication to the Circolo Matcmnatico di Palermo
(“ Rendiconti,” t. 1., seduta del 21 febrajo 1886), is itself a special caso of the ono
studied by me, and referred to in the toxt.

I am also informed by Prof. Sturm, of Miinster, that ho has been led, still moro
rceently, and quito independently, to « somewhat similar, purely descriptivo method
of generating the congruenco desceribed in my paper of 1885. In place of one of the

_three Frojcctive pencils employed by Roccella, ho simply substitutes a quadric regulus,
one of whose generators coincides with its corresponding ray in ono of tho two ro-
maining projective pencils.





