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I.

Introduction and Summary of Besidts.

1. The contents of this paper are designed as a supplement to those
of my recently published pamphlet, " Orders of Infinity, &c." {Cambridge
Tracts in Mathematics, No. 12, 1910). When writing this pamphlet
I was compelled by considerations of space to condense the proof of one
theorem at any rate almost to the point of obscurity, and to omit the
proofs of others altogether. Apart from the new results contained in this
paper, the interest of the theorems that I refer to seems to me sufficient
to justify a return to the subject.

2. I shall use throughout the paper the system of notation explained
in the first section of my tract,* which attaches a special sense to the
symbols v , w ^ .

0, K, S, A, xQ, e.

To the conventions there explained I propose to add two others.

(i) I shall frequently employ formulae containing constants restricted
to be rational. Such constants I shall denote by small italic letters
s, t, .... When the constant is not restricted to be rational, I shall use
large italic letters A, B, — Thus Axs is an algebraic function, but
xA is in general transcendental.

(ii) I shall frequently (when no confusion is likely to arise from the
practice) repeat a letter or letters without implying that the numbers
denoted by them are the same as when the letters were previously used.
For example, I shall write ,x

Afdt = Axs,

* " Orders of Infinity," pp. 2-7. I shall refer to this tract henceforth simply as " O.I."
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meaning thereby, " if / is a constant multiple of a rational power of x,
then its integral is a function of the same kind." I might add, " unless
s = — 1 " ; it would, of course, be evident that this clause referred
to the s on the left-hand side of the equation.

8. Let A (x) denote generally a real one-valued algebraical function of
x—it will, of course, be a branch of an algebraical function of a complex
variable, which we suppose to be real for x > x0 (i.e., for all real values
of x from some dennite value onwards). Thus A (x) might be

x, \Jx, —*/x, Ax\ s/{x-\-\)—l/{%+\\

or be defined as an implicit function by an equation which, like

y5—y—x = 0,

has one root which has the property stated.
Then in my tract I defined a logarithmico-exponential function

(shortly, an L-function) substantially as follows :—

An L-function is a real one-valued function defined by a finite com-
bination of the functional symbols

A (...), log (...), e<">

operating on the variable x and on real constants. *

It is, of course, to be understood that, if necessary, we confine our

attention to values of x greater than some definite value x0.

4. I also classified L-functions according to orders, by a method due
in principle to Liouville.t Thus

are of order 1;

eeT, log logx, xx =

of order 2 ; and so on. \ It should be observed that it is not obvious that

* "O.I.," p. 17. I there confined myself to the case in which the algebraical functions
are explicit; but I pointed out that no additional difficulties arose from considering the more
general case. I also pointed out (p. 18) that '' the result of working out the value of the
function, by substituting the value of x in the formula defining it, is to be real at all stages of
the work."

t Journal de Mathimatiquea (1), t. 2, pp. 71 et seq.
+ "O.I. ," p. 18.
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(e.g.) log log x is really of order 2. It is obviously of order not greater
than 2. That it cannot be expressed as an L-function of lower order
demands a proof. Such a proof was, in fact, given by Liouville* ; another
proof follows from results which will be established in this paper.

The following additional definitions will be found useful.
We shall say that fn, an L-function of order n, is integral if it is of

the form!
II — 1 ' '

where the functions with suffix n—1 are L-f unctions of order n—1 and
K1} K2, ..., Kh are positive integers. We call

the logarithmic degree, or, simply, the degree, of the typical term of fa;
if X is the greatest value of K 1 +/C 2 +. - .+ 'QI . we say that/m is of logarithmic
degree X. If the number of terms of degree X in fn is /A, we say that
/( l is of logarithmic type (X, n).l We shall in general denote integral
L -functions by the letter M, with or without suffixes, indices, &c.

If an integral L-function is of degree 0, i.e., of the form

we shall say that it is exponential.
If an integral exponential L-function contains rs terms, we shall say

that it is of type vs ; if CT = 1, we shall say that it is simpkj exponential.

Thus (Ixf efX}:f is a simply exponential L-function of order 2, while

is an integral function of order 2, of type (2, 1). We shall in general
denote integral exponential L-functions by the letter N.

If /„ is the quotient of two integral functions, i.e., of the form MJM^,
we shall say that it is rational.

If Mx and Jlf2 are exponential, i.e., if fn is of the form NJN2, we shall
describe fn as a rational exponential L-function.

• L.c, pp. 99 et seq.
t I write Ix, Lx, ..., ex, etx, ... for log I, loglogx, ..., eJ\ ee , ..., as in my tract.
J A function of type (A, fx) may be immediately reducible to a lower type. Thus

The left-hand side is of type (1, 2), the right-hand side of type (1, 1). In some kinds of argu-
ment it might be essential so to frame our definitions as to be free from such ambiguities;
but they in no way affect the arguments of this paper. See further, § 6.
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5. We shall constantly be making use of the following facts:—

(i) The derivative of a simply exponential function is a simply ex-
ponential function, with the same exponential factor.

(ii) The derivative of an integral exponential function of type TT is an
integral exponential function of type cr. If one of the terms of the
original function is a constant, the derivative is of type TST—1.

(iii) The derivative of an integral function of logarithmic type (X, /x) is
in general a function of the same type. If the exponential factor pft_ieo-u_i
of one of the terms of degree X is a constant, then the derivative is of type
(X, fj. — 1) ; if /x = 1, the derivative is of degree X — 1.

(iv) In general, the derivative of an L-function of order n is an
L-function of order n. In exceptional cases the derivative may be of
order n—1.

These facts are all immediate consequences of the formal rules of the
differential calculus. The only one which possibly requires a word of
additional explanation is (iii). The derivative of

where K1+K2-\-...-\-KI1 = X, plainly consists of h terms each of degree
X —1 only. When we differentiate

we obtain one term of degree X (by differentiating the exponential factor)
and h of degree X—1.

6. Before proceeding further, I wish to make a few remarks about the
relation between my results and those of Liouville. The subject-matter
appears very much the same, but the methods used and the results
obtained are entirely dissimilar.

I regard an L-function essentially as the embodiment of an "order
of infinity," as expressing a certain rate of increase or decrease or of
approach to a limit; and for this reason I consider only functions of a
real variable which are real and one-valued and (as I shall show) ultimately
monotonic, excluding altogether oscillating functions such as sin x. These
ideas do not appear in Liouville's work at all. He was interested'solely
in problems of functional form: sin a: was for him exactly on the same
footing as logic or e*. From his point of view, each of my orders of
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L-functions would present itself simply as a sub-class of his correspond-
ing order of "elementary transcendents."* But his classes do not, as
classes, possess any of the properties with which I am concerned in
this paper; and so, even when we seem to be engaged by very similar
questions, our results are in reality widely divergent.

Thus Liouville proves that log log a; and zV2 cannot be expressed as
elementary transcendents of order one. I prove that the same functions
cannot be expressed as L-functions of order 1; and in so doing I do
indeed prove a part of what Liouville proved. But the substance of what
I prove is something quite different from any question raised by Liouville
at all, viz., that the rates of increase specified by log log a; and x*2 cannot
belong to any L-fuuction of the first order.

It is then only to be expected that the processes of argument used by
Liouville should be entirely unlike any of mine—how different a single
consideration is enough to show. Liouville considers, as I do, functions
of order n built up by means of the simple functions

(see § 4 above). In all his arguments it is absolutely vital to suppose
these simple functions genuinely independent and reduced to the smallest
possible number—that is to say, to suppose that no algebraical relation
connects them with one another and transcendents of lower order. Thia
assumption plays no part in any of my arguments: it will, in. point of
fact, usually be satisfied, but it is in no way essential.

7. It is easy to see that any L-function (or any elementary transcen-
dent in Liouville's sense) is a solution of an algebraic differential equation,
which may without loss of generality be supposed to be of the form

P(x,y,y', ..., 2/(fc)) = 0,

where P is a polynomial. And in the case of an L-function (more
generally, a Liouville's transcendent) of order n, this equation cannot be
of order less than n. The lines of a proof have been indicated by Konigs-
berger,+ who has also established some simple results as to the forms of
transcendents that can satisfy equations of specified order.

* For a short account of his classification, see my tract, " The Integration of Functions
of a Single Variable " {Cambridge Tracts, No. 2, 1905).

t " Bemerkungen zur Liouville's Classificirung der Transcendent en " (Math. Awnalen,
Bd. 28, S. 483).
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The classification of transcendents adopted by Liouville, however, does
not run parallel with any obvious classification of algebraic differential
equations. Thus ee* satisfies an equation of the second order, viz.,

yy" = iy+y')y'-
So do the functions of the first order

ij = ex+\ogx, y = e*+e4x\
the equations being

x*(y"-y')+x+l = 0, (x-l)y"-xy + (x2-x+l)y = 0.

Generally, an integral exponential L-function, of order 1 and type CT,
satisfies a linear and homogeneous equation of order VF, whose coefficients
are algebraic functions of x ; and other particular remarks of the same
nature may be made. And it is possible to obtain a certain number of
more or less general results concerning the possible modes of increase of
the solutions of algebraic differential equations of specified types : I shall
make a few further observations on this point at the end of this paper.
But it is clearly impracticable to base the fundamental properties of
Z/-functions upon the nature of the differential equations satisfied by them.
As soon as we adopt the standpoint of the differential equation, the
properties of L -functions are lost in those of larger and vaguer aggregates
of functions.

It would be unjustifiable to conclude from this (as Konigsberger
appears to have done) that Liouville's classification is in some sense
illegitimate or trivial or uninteresting. It must not be forgotten that the
particular is often more interesting than the general: and, in my opinion,
the main interest of Liouville's classification lies in its application to
two special problems—indefinite integration in finite terms on the one
hand, orders of infinity on the other.

8. It will probably be convenient if I give a rapid summary of the
results which I propose to prove. Some of the proofs, I am afraid, are
long and rather tedious : that this should be so is, I think, inevitable
from the nature of the subject. The results, too, are of the class that
seem more obvious than they are.

In Section II (§§ 9-11) I prove that every Z/-function is continuous
and monotonic from a certain value of x onwards. This theorem and its
corollaries form the basis of all the subsequent work.*

* A proof of this theorem (but of no other proved in this paper) is contained in my traot
(" O.I.," pp. 18-20). The proof given here is not different in principle, but has been remodelled
in such a way that I hope it will be found simpler and clearer.



60 MR. G. H. HARDY [Dec. 8,

In Section III ($§ 12-16) I discuss the limits of rapidity of the increase
of an L-function of given order. I state in my tract,* but without proof,
that an L-function of order n cannot increase more rapidly than en{x*) or
(if it tends to infinity at all) more slowly than (l,,x)&. I now prove more
precise results of which these are corollaries.

In Section IV (§§ 17-19) I apply the results of the preceding section
to determine generally the order of the integral of a given L-function.

In Section V ($§ 20-22) I consider systems of standard forms for the
increase of L -functions of given order. I give a full investigation in the
case of n = 1, which shows incidentally that such modes of increase as
are given by l^x, e2x, xx, x*2, ... are impossible for functions of order 1.
I then state the corresponding results for n = 2 and for higher orders ;
but I have not written out a detailed proof of these results. It would be
long and tedious, and the nature of the arguments employed will be clear
from the simpler discussions which precede.

In Section VI (§§ 23-26) I discuss shortly the construction of functions
whose rate of increase corresponds to a gap in the logarithmico-exponential
scales of infinity, and in Section VII (§§ 27-28) various topics of a mis-
cellaneous character.

II.

Proof of the Fundamental Theorem.

9. THEOREM \.--Any L-function is ultimately continuous, of constant
sign, and monotonic; and tends, as x->&, to oo, or to zero or some other
definite limit. Further, if f and <f> are L-functions, one or other of the

relations / v * t ^ A> t s A.

/></>> f~4>> f<<t>>
holds betioeen them.

Two preliminary remarks will be useful.

(1) I f /and <p are L-functions, fl<j> is an L-function, whose order is
not greater than the greater of the orders of / and <p. Thus the second
part of the theorem is a mere corollary of the first part; for it follows
from the first part that / / 0 must tend to infinity, or to zero or some other
limit.

(2) The derivative of an L-function is an L-function of not higher
order [§ 5 (iv)]. From this it follows that if all L-functions are ulti-

• P. 20.
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mately continuous and of constant sign they are all also ultimately
monotonic ; for their derivatives are also ultimately of constant sign.

10. The results of the theorem are certainly true of functions of zero*
order, that is to say, of purely algebraical L-functions. Any such function
can, in fact, be expressed in the form

where ar and br are rational, and Pr is a power series convergent for
sufficiently large values of x. It is therefore sufficient to prove that, if
the results of Theorem 1 are true of functions of order n—1, then they
are true also of functions of order n.

(1) The results of the theorem are true of any simply exponential
function of order n.

It is, in fact, obvious that

fn = pn-\e<Tn-\

is ultimately continuous and of constant sign; and the same is true of its-
derivative r, . ,

Jn — (Pn-l

(2) The results are true of any integral exponential function of
order n.

This has just been proved wheD the function is of type 1 (§ 4). Let us-
then, assume it true for functions of type rs—1 : and let

fn = 2p,i_ie<rH-i
be of type TT.

If pn-ie<rn-i is any one of the terms of fn, the function

fn =fnl(pn-i

is of type cr, with one term a constant (unity). And so/,! is of type vr—1
[§ 5 (ii)]. Hence J"n is ultimately continuous and of constant sign : and
so the same is true of fn, and therefore of fn. Finally, /,[ is of type zr,.
and so (after what has just been proved) ultimately of constant sign; and.
so fn is ultimately monotonic.

(3) The results are true of any integral function of order n.

Suppose that
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is of logarithmic type (X, jui). The results have been proved true when
X = 0. Hence it is enough to prove

(i) that, if true for functions of logarithmic degree X—1, they are true
for functions of degree X and type (X, 1) ;

(ii) that, if true for functions of type (X, n — l), they are true for
functions of type (X, /x).

Suppose that the typical term written above in the expression of /„. is
one of the terms of degree X, and let fn = /,l/(/3,l_i<?o-Tl_i) as before. Then
/,[ is of type (X, fx — 1), unless m = 1, when it is of degree X--1 [§ 5 (iii)].
Hence, whichever of the inductions (i), (ii) we are engaged in proving,
/,[ is ultimately continuous and of constant sign ; and we deduce as before
that/u is ultimately continuous, of constant sign, and monotonic.

(4) We are now in a position to complete the proof of the theorem.
Any L-f unction fn is of the form

f _ A I g . (1) , ^ ( 2 ) pd(,) 7 / ( 1 ) 7 / (s) (1) ( 0 I

say, where q = r-\-s-\-t.

There is therefore an identical relation

F(x, y) = Moy
v-\~M1y

p~1-{-.r.-\-Mr = 0,

where y =fn, and the coefficients Mlt M2, ..., Mp are integral L-functions
of order n.

The derivatives of these coefficients are also integral. It therefore
follows from what has already been proved that

vF ^ dMi . dF ~ , -v, r „ ,- i
•<— = 2 —rJ-iip~%, -^- = 2 (»—z)Miijv~ Sox (i) ax oy ($

considered as functions of the two variables x, y, are continuous for all
sufficiently large values of x and for all values of y.

Let i, t] be a pair of values of x and y satisfying the equation F = 0.
Then, if only £ is large enough, dF/dy cannot vanish for x = g, ?/ = >?.
For, if F and dF/dy both vanish for x = g, y = »/, then the eliminant of
y between F = 0 and dF/dy = 0 vanishes for x = £. But this eliminant
is plainly an integral L-function of order n, and so cannot vanish for
values of x surpassing all limit.

Now there is a well known theorem which asserts that* if F is a

* Goursat, Cours d'Analyse, t. i, p. 40; Young, Proc. London Math. Soc., Ser. 2, Vol. 7,
pp. 397 et seq.
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function of x and y which vanishes for x = £ y = 17, and has derivatives
dF/dx, dF/dy continuous in a region including (£ 17), and if dF/dy does
not vanish for x = £, y = ij, then there is a unique continuous and
differentiable function y of x, which is equal to r\ when x is equal to £,
and satisfies the equation F(x, y) = 0 identically. Hence / n is an ulti-
mately continuous function of x.

Moreover fn is ultimately of constant sign. For /„ = 0 involves
Mp = 0, and we have already seen that it is impossible that this equa-
tion should be satisfied for values of x surpassing all limit.

Finally, /„' is a function of order n. Hence, applying the same con-
clusions to /„', we see that fn is ultimately monotonic. The proof of the
theorem is thus completed.*

11. COROLLARY.—If/, 0, and F are L-functions, then

F(f)jF{<f), F(f)-F(<p)

tend to infinity or to some definite limit.

This requires no further proof. It is of some interest in connection
with Pincherle's extensions of some of Du Bois-Reymond's work.t

III.

The Limits of the Increase of an L-Function.

12. I also stated, but without proof, the following theorems I:—

THEOREM 2.—An L-function of order n cannot satisfy

fn>en(x%

THEOREM 8.—An L-function of order n cannot satisfy

1 <fn < (lnX)S,

or dnx)-*<fn<l.

Theorem 2 is not only obvious to the eye of common sense, but very
easy to prove. Assume the result true for functions of order n—1: it is,
of course, true for functions of zero order.

* I should mention that the idea of attempting to construct a formal proof of this theorem
was suggested to me some years ago by Mr. V. Kamaswami Aiyar.

t "O.I . ," pp. 13 ef seq.
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Any function of order n is an algebraical function of certain arguments
efa-it ..., hlrn-\> ••-, Xn-i> •••» the increase of anjr one of which, is ex
hypothesi less than that of

e (e-a^ xs) =• en (x*)

for some value of A*. Hence the increase of the function is less than that

for some values of A.and A,.; and so less- than, that of en{xS2) for some-
value of A^ Thus the theorem, is established.

Theorem. 8 appears to be much harder to prove. It is indeed naturaL
to 8uppose-thai.it ought to be deducible as a corollary of Theorem 2. But
for such, a deduction we appear to need some such theorem as the
following :*—

If fn. *s an L-f unction of order n, tending to infinity with x, and f is
the function inverse to /„., then there is an L-f unction fa, of degree n at
most, such that

/ ~ fa-

ll this is true* Theorem 3 may be at once deduced from Theorem 2.

For the inverse- of {lnx)s is en (xl's); and so, if
1 <fn < (hxf,

it follows that / > e « M for sufficiently large values of x,\ and so
0n y en{x*), which, is impossible. I have, however, not been able to
prove the result assumed in this deduction, and I am not inclined to
commit myself to a definite opinion as regards the probability of its being:
true, t

13. It therefore appears to be necessary to proceed to the proof of
Theorem 3 by a different road. It is convenient to recall one or two
theorems, from my tract which will be needed in the proof.

THEOREM 4.—The relations f >- <f>, / ^ 0, / - < <j> involve the correspond-
ing relations v

y rx > rx

f(t)dt^
Ja. _^ Ja

* A less precise result might be sufficient. The possibility of the truth, of the theorem
was suggested to me by Mr. Littlewood.

t "O.I.," p. 16.
* I shall return to this point in Section VII.
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fdx, \ <f>dx is divergent. If both integrals

are convergent, then ^

Here/and <f> are supposed to be positive, continuous and monotonic—
there is, however, no difficulty in interpreting the results so as to apply
them to negative functions.* The theorem, may be stated briefly thus :
relations of the type / > • 0 may be integrated.

THEOREM 5.—The relation / > - 0 involves / ' > <f>', unless / ^ l ;
fyZ.<f> involves f ^=L<pf, unless / ^ ^ > S l ; / -< ^ involves f -< 0', unless
0 ^ 1 ; provided always that it is known that one of the relations f >- <j>,
f ;=; <p', f -< $' MUST hold between f and $'.

The exceptional cases mentioned in the enunciation are in reality of a
trivial character, and are due to the fact that, if /;=; 1, then / , when re-
garded as the integral of / ' , is dominated by a constant of integration-
Thus, if / = 1-hr*, 0 = I/a;, t h e n / > <p, but / ' < <f>'.

Theorem 5 may be stated thus : relations of the type f >• <j>, ... may
(except in certain special cases) be differentiated, provided we are assured
a priori that some relation of this type must hold between the derivatives.

When / and <f> are L-functions, so are their derivatives: thus we
obtain:

THEOREM 6.—Relations of the type f^~<f>, ..., holding between L-
functions, may be integrated and differentiated, subject to certain restric-
tions relating to the cases in which / ^ 1 or ^ 1 .

14. I shall now establish Theorem 3 as a corollary of a more precise
theorem.

THEOREM 7.—If fn is an L-function of order n, and

then fn ^ (lnx)"f

where s is a rational number. In 'particular, if fn is rational, s must be
an integer; and if fn is integral, a positive integer; and if fn is an in-
tegral or rational exponential function, then s must be zero.

* " O.I.," pp. 36 et seq.; this reference applies also to Theorems 5 and 6.

8KB. 2. VOL. 10. NO. 1102. F
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I shall base my proof upon two lemmas:

LEMMA k.—If (Lx)~s </< (lmx)s,

and it is not true that / ^ 1, then

(lmx)-*<xlx...lMx.f'<(Lx)\

The truth of this follows immediately upon differentiation.

LEMMA B.—If ( W 8 •< f/<p < (lmx)\

while, for some positive y,

<j><(Lx)-y or <j>>(lmx)\

then (Lx)-'</'!<!>'<(lmx)\

For

(1) <}>(lnx)-s<f<<t>(lmxf.

It is evident from the conditions, that-no one-of the-relations

is possible^ if 6 is small
Hence-(Theoremi5) we-majrdiffereiitialG, and sa we obtain

(2)

Now

But l<f>

and so -2- >
j

xlx... lmx'

WEen-y is- fixed, we can- find K and xOt so that

Thus^it 8 <. %Kt tha ratio oi the functions.

<f> xlx... lmx'
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lies, for x > rc0, between \ and \ . As they are L-functions, we must have

<p xlx... lmx <p

and a similar result holds when —8 is replaced by 6. The truth of the
lemma now follows immediately from (2).

15. We shall now assume Theorem 7 to be true for functions of order
n—1, and prove it true for functions of order n. As it is plainly true for
n =. 0 (when ln-\x is ex and lnx is x), it will follow that it is true generally.

(1) If fn is a simply exponential function, and

then fn ;=; 1.

Suppose^ e.g., that/« >- 1. Theo-

Klfn< In*,

1 / '

and. so —: ; -—, rrr* ">• JT~ " xlx ... Zn_xa; '

the second relation following from the differentiation of lfn -< n̂̂ » the first
being a consequence of the fact that

dx

is convergent.
Hence, if fn ^ /on_ie<rn_i, we obtain

(in-iX)-' < (XIX ... ln.lX) (
\Pn-l

which is impossible, as the function in the middle is of order n—1.

(2) The same result holds for any integral exponential function.

Suppose that /„ = Z/)n_i#rn_i
is of type CT, and that the result has been proved for functions of type
CT—1.

Two cases are conceivable. Either all the terms of/« satisfy

pn_ie<r«_i S 1,
F 2
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or there is at least one which does not. We consider the latter case-
first.

(i) Let pn-ieo-n..! = ll<f>

he one o£ the terms which does not. Then, by what has already been

proved, ^ W or <f>>(ln-ixr

for some positive y.

Let /» =/n/tfy so that.

The conditions, of Lemma £ are satisfied, and so

But fnl<j>r is clearly of type z*—1. Hence these last relations are only
possible if _, . ,

-e' ^ *k<

i.e., iifn^<f> or fn K 1.

(ii) If every /ow_ieo-n_i satisfies/On_iecrn_i S[ 1, we define <p as above by
means of any one of thenu

In this case it is plain that fn =̂  1..

Now (ln-.lx)-s<fn<(ln-lx)\

and so, by Lemma A,

unless fn^l or fn ^ 1. Bui xlx... /n_i3 ./« is-of'type nr— 1. Hence
we must have

which involves /„ H /n H ^x,

and this is impossible, since / n =̂  1. Thus we are driven back on the
conclusion that fn ^ 1.

(8) I / /n *5 any integral function, and

tlien fn ^ (lnx)\

lohere q is a positive integer.

We shall prove this by establishing, as in § 10 (3), inductions from



1910.] PROPERTIES OP LOGARITHMICO-EXPONENTIAL FUNCTIONS. 69

functions of degree X—1 to functions of degree X and type (X, 1), and
from functions of type (X: /x—1) to functions of type (X, fx).

Suppose, then, that fn is of type (X, /ix), and consider the factors
/>n-ia>n-i of the fx terms in fn of degree X. We must distinguish two
cases exactly as under (2) above.

(i) Suppose that among these y. factors there is one of which it is not
true that

e

and let fn = Jnl<t>> Arguing precisely as above, we find

The function in the middle is of type (X, fx — 1), or if fx = 1, of degree
X—1. Hence we must have

where q is a positive integer. Now

© > ('a—\X) OV (b s~ (tn_]

tso that l(p 1> yln.x,

<t> v 1 . 1
0 J ; Z X ... Zu_iic x l x . . . l n x

ThU8 -'— V "T~ 1°8 "I Un%)q \ >
0 dx

or (7n«c)a 0 ' ~- — •' (Inx)'1 <b \.
ax

Hence /|; ^ — {(̂ o;)« 0},

Thus in this case the required induction is established.

(ii) Suppose that all the fx functions />n_ie<rn_i satisfy pn^ecrn-\ S 1.

and so, by Lemma A,
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unless fn ^ 1 or /„ ^ 1. Apart from this case we must have

and, dividing by the logarithmic factors on the left and integrating, we
obtain _ _ ^

Thus again our induction is established, and the proof of (3) is completed.

(4) If fn is any rational function, and

then fn K (hx)'1,

where q is a positive {or negative) integer.

Suppose that fn = MJM^,

where Mx and M2 are integral. When M2 is simply exponential, the pro-
position reduces to one already proved. We shall prove first that it is
true when Ma is any integral exponential function. In these cases q may
be restricted to be positive.

Let pn-i&Tn-i be one of the VF terms of M^; let

/>«-!«»»-! = 1/0, Mx = MJ<f>, M2 = M"2/0 ;

and let us assume that the proposition has been proved when iifa is of
type sr— 1. Then

(1) (ln.xx)-"

If (J.-iaB)-*-<flr9-<(*•.-!»)•,

we must, by what has already been proved, have

M* X {lnxf*

(q3 a positive integer). In this case Mx satisfies similar relations, and so

Mx ̂  (Lx)*, fn = Mj/fii X (Inx)**-*',

which is what we want to prove. Thus this ease may be dismissed, and
we may assume that

Ma < (Zn-iz)-* or ilf2 > (ln.xx)\
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Then it follows from (1), by Lemma B, that

(2) (ln.lx)-s<miM2<(ln.lx)s.

As M't is of type tar—1, we must have

where q is a positive integer- It then follows, just as at the end of (3) (i),
that _ _ _

M1 ^ {lnxf Mq or fn X (lnx)q.

Thua tha induction from tr—1 to ra- is established; and (4) is proved when
M2 is any integral exponential function, q being so far necessarily positive
or zero.

We now suppose M% to be of logarithmic type (X, /A), and we have to
establish our customary inductions from, degree X—1 to degree X and
type (X, 1), and from type (X, /UL — 1) to type (X, /u).

Suppose, then, that the relations (1) are established. The assumption
that Jlf3 S (lnx)(l2 leads, precisely as before, to the conclusion that

Rejecting this hypothesis, and pursuing the same train of argument, we
arrive at the. relations. (2). As M2 is of type (X, fx — 1), or, if m = 1, of
degree X—1, we must have

MllMl X {lnxy.
If q = 0, we have

Ml S M2', Mx S Mg, fn ^ 1.

Suppose then q > 0, so that

Li M'2

we have M[ ^ {lnxf+q*,

* It is easy to see that I (lnx)i dx. ~

see 8eotioaIV.
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If it is not true that M'2 X (lnx)'12,

we must have M? < (Zn_iz)~Y or M* > (ln-ix)y,

and then we prove that /„ X (LxY1 precisely as at the end of (8) (i). The
case in which q is negative may be treated similarly, and so the proof of
(4) is completed.

Before proceeding further let us point out that it is easily proved (by
reasoning of the same character) that, if fn is a rational exponential func-
tion, then q must be zero.

16. We are now in a position to complete the proof of Theorem 7.
Ufa is any L-function of order n, there is [§ 10, (4)] an equation

wherein the coefficients are integral L-functions of order n. If we denote
by XQ, Xlt ..., Xp the various terms of this equation, any pair Xi, Xj must
satisfy one of the relations

X ^ - V ~Y N—^ XT "XT J XT"

(Theorem 1). Moreover, as their sum is zero, there must be at least one
pair such that v ^ v

Thus /£'

Hence, if (^,i-ia;)"

we have also (ln-ix)~&

and so Mj/Mi ^ (lnx)q,

where q is an integer. Therefore

fn X dnX)S,

where s is rational, being in fact an integral multiple of ll(j—i).
It is possible to obtain, for the different cases which we have con-

sidered, more precise information as to the indices of the powers (lnx)q,
{lnX)B which figure in the theorem. To do so would however, lead
us into a more elaborate analysis of the possible forms of L-functions of
order n ; and the theorem embodies all that we shall require in the sequel.
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IV.

The Integration of L-Functions.

17. We are now in a position to establish a general system of rules
which define the orders of greatness or smallness of the integrals

\'MM, \ MM.
Jn Jx

We choose the first form of the integral or the second, of course, according

as I fn{x)dx is divergent or convergent. In either case ive denote the
integral by F(x).

We observe first, that if / is an L-function, then either (i) f>xA or
(i i ) / -<arA or (iii) / = xafv where

a'* <fx < **•*

THEOREM 8a.—If />• x* or f< x~*, then

Iff=*afv then F-^Tl^

unless a = — 1, when further investigation is necessary.

(1) If / > x* the integral is obviously divergent, and

fr
Now, since / >• it*, we have

log/ > log x, flf>l/x,

J> >£'*$
and so

• "O.I.,"p. 21.
| We suppose a chosen so that the functions are continuous for x ^ o.
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The case in wh ich /<£"* , when the integral is obviously convergent,
may be settled in the same way.

(2) If/=~ica/i, where a > — 1 , the integral is divergent. We have
then

But x~& <fi< x\ and so

The case in which a < — 1 , when the integral is convergent may be
treated similarly. But when a — — 1 (when the integral may be conver-
gent or divergent) further analysis is required.

18. Suppose now that. / =fjx (x~* <fx<xs).

Then either (i)./i > (lx)* or (ii) fx < (lx)~* or (iii) / i =( te)o i / a , where

THEOfiBM 86.—*/ / —fxJX (X~6 -<fi^ Xs),

then, if fx > (fo)^ or fx < {lx)~\ we have

F^ftlxfl
If fx =_ {lx)aif2, where (lx)~6 <f2< {Ixf, we have

unless <xi = — 1 , when further investigation is needed.

We have, in fact (taking the integral, to be divergent),

1x f flog* flog*

• ^ « = fi(eT)dT = Fx {r)dnr,
a Z Jlogo Jloga

say. If, e.g., fx >- (lx)*, we have clearly Fx >- T^, and so

tff ,
a F[(\ogx) xfi'

Similarly in the other cases.
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It is evident that this process may be continued : thus we obtain

THEOREM 8C—If f = fjxlx, (lx)~* </2< (lx)s,

then if /„ > (l2x)* or /„ <

we have F

If h ~ (W^/ai where (^x)"6 -</3 -< {l2x)s, loe have

unless a2 = — 1 , when further investigation is necessary. And so on
generally.

19. THEOREM 9.—The various forms of Theorem 8 (a, b, c, ...) apply
to ALL L~functions.

Consider first L-functions of order 1. The only case not settled by
8a is that in which - .,

f=fi/x,
where x~*

By Theorem 7 we must then have

The only case not settled by Theorem 86 is that in which

* t h F

Similarly L-functions of order 2 are dealt with by 8a or 86 or 8c, unless

and. so on generally.

V.

Standard Forms for the Increase of L-functions.

20. The preceding theorems enable us to establish systems of standard
forms for the increase of L-functions of a given order.

THEPREM 10.—Any L-function fx of the first order, ultimately positive,
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may be expressed in one or other of the forms

If fx is rational, t must be an integer; if fx is integral, a positive in-
teger ; if f\ is an exponential function (integral or rational), t must be
zero.

(1) The conclusions of Theorem 10 are valid when fx is a simply
exponential function poea-Q.

If fx ^ 1, there is nothing to prove. If fx > 1 or fx < 1, then

the only difference between the two cases lies in the fact that in the first
case log/i is ultimately positive and in the second ultimately negative.
Let us suppose, to fix our ideas, that fx > 1. We have then

= j* ;) dt = A j e(\+e)dt,

since the subject of integration is algebraical. Since log/j >- 1, s ̂  — 1.
It is evident that, unless s = — 1, we obtain +

log/! = Ax°(l+e)r fx = eA* <1+e>.

Here, of course, A and s are positive. If s = — 1, we have

A+4 = 1
pQ X

But e is algebraical. Hence we must have

e=0(x-«) (a

h x

l°g/i = A

h = Axx
A(l+e).

It remains to be seen that A is rational and may be replaced by s.
Now o-o, being the derivative of an algebraical function, cannot, when

expanded in descending powers of x, contain any term in 1/x. And p'olpo,
being the logarithmic derivative of an algebraical function, can contain
such a term only with a rational coefficient. 1 Thus A must be rational.

• As explained in § 2, s, t denote rational numbers.
t Not, of course, with the same A and s ; see the remarks in § 2. Of course, too, " un-

less s = — 1 " refers to the first s.
X The logarithm of an algebraical function is necessarily of the form alogx+ ..., where

a is rational, and the remaining terms involve negative powers of x.
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The case in which / •< 1 may be treated in the same way.

(2) The conclusions of the theorem are valid for any integral ex-
ponential function / y . . _

Assume this proved when/j is of type vr— 1. If we divide fx by poe<rOt

differentiate, and restore p0e<r0 to the other side, we obtain

(1) / l -No/i ~fa>
where fa is an integral exponential function of type zr—1 and

sQ = — -=- log (p0 e(r0) = — -£-Si- —<r0

is algebraical.
In the equation (1) there^ must be at least one pair of terms which,

can be connected by the symbol ^ . We have thus to distinguish three
possibilities.

(i) We may have sofx ^ fa.

As fa/s0 is of type TBT—1, our induction from cr—1 to zr is in this case
immediately established.

(ii) We may have fi ^ fa.

As fa is of type vr—1, it follows that f[ must have one of the forms

and it then follows immediately, from Theorem. 8a, that fx itself has one
of these forms, except in the special case when in the second form s =-—1.
In this case f{ _ AjXj ^ _ A logXm

But this is impossible, obviously if fx -< 1, and, by Theorem 7, if / x >- 1.

(iii) We may have fi ^ so/i»

in which case fi/fi = r ^4ics(l-h«)-

Unless s = — 1 , we at once see thafe/j is or the form eA*'<1+<>. If s = — 1 ,

we have / ' A

fx x
and the same argument as was used under (1) above may be used again
to show that A is rational.

Again, e = {xf[ — Af^)IAfx

is a rational exponential function, and must therefore,* by Theorem 7,
be of the form 0 ( a . - a ) ( a > 0 ) .

* Seo the last remark in § 15.
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Hence 4 = — +O(ar1-a),*
h x

Thus (2) is completely established.

(8) The conclusions of the theorem are valid for any integral function

We shall prove this by our usual process of induction from degree
X—1 to type (X, 1), and from type (X, fx—1) to type (X, /*).

Dividing by poe<rQ, differentiating, and restoring poecrQ to the other side,
we obtain

(1) /i+«o/i = fc»
where,s0 is the same function as before, and fa is of type (X,fi—1) or, if
fi =^1, of degree X—1. We have again three possibilities.

(i) If S,,/! ;=C 0i, our. conclusion follows immediately,

(ii) If f{ ^ 01( we have /{ =_***•<>+•>

or /1'=-^«'(fa;)t(l-|-e).

It then follows, from Theorem 8a and Theorem 86, that / i itself has one
of these forms. The case of exception, to Theorem 86, viz.,. s = — 1 ,
t = — 1 , cannot occur, since -tis- ex hypothesi zero or a positive integer.

(iii) If fi ^ soflf we have

/i'//i = Ax*{l+e),

and our conclusion again .follows at once unless s = — 1.

Now *=tofi—AfMAfx

is rational, and so, either e < a;"7,

for some positive y, or <• ̂  (lx)~q,

where g is a positive integer. If e < x~y or g > 1, we have

(2)

* We have replaced A, proved to be rational, by s.
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If q = l, we have fy = — + -4~ (!+<?),
ji x xlx

where now e=^0\ (lx)~q\ (q > 1).

Hence we obtain lfx =.

(3) / ^ ^
It may be shown* as before that A is rational: that B is rational follows
at once from Theorem. 7. Thus in any case the proof of our induction,
ia completed.

(4) The conclusions of the theorem are valid for any rational function
of order n.

Let ^ = MJM*

The truth of (4) has already been established when. M2 is simply
exponential. We require to establish inductions

(i) from the case in which M2 is exponential and of type zr—1 to the
case in which it is exponential and of type vr,

(ii) from the case in. which M2 is of logarithmic degree X—1 to the
case in which it is of degree X and type (X, 1),

(iii) from the case in which is of type (X, n—1) to the case in which
it is of type (X, fx).

In any case let Po6(ro = 1/0*

a factor of one of the terms of il/2, chosen as usual,, and let

Mx = Mjf, M2 = MJfr / t =• MxIMa.
Each of Mt1 M2 is. of one of the forms

where s is rational and t is integral.
There is only one case in which it is not evident that fx itself is of one

of these forms.. This case occurs when. Mx and M2 are both of the first
form, with the same values of A and s. Then.

~ log JkT2 ~~ Ax",

and so fx ~ Mi/Mi
Now M'I is of type (X, fx—1), or of degree X—1, or of type cr—1, accord-
ing to the induction which we are proving. Thus in any case the in-
duction is established.
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(5) We can now complete the proof of Theorem 10. For fx satisfies-

an equation Jfiyf+tf1/r
l+...+tf,=O

whose coefficients are integral functions of order 1. Of the terms
XQ, Xlt ..., Xp of this equation, onfr pair at least must satisfy a relation
Xi ^ Xj. Thus

and the theorem follows now as a corollary of (4).

21. Theorem 10 enables us to recognize at once that certain types of
function cannot be L-functions of order 1. Thus

where a is irrational, is of order 2. This was proved quite differently by
Liouville.* The same is true of

loglog£,t /, Xx.
Again :

THEOBEM 11.—No function of order 1 can satisfy

or (log x)s < f < xs.

Thus e<l08I)* (a
is of order 2.

22. Let us pass to functions of order 2. It is easy to recognize

e^\ e^lx)t, aafilxYikx)*

as fundamentally distinct types of increase for such functions. By
arguments similar to those of § 20 we can establish the theorem—

THEOREM 12.—An L-function of order 2, positive and tending to
infinity with x, can be expressed in one or other of the following forms :—

(i)

(ii)

(hi) a;5e±o(te/(l+<),

(iv) axs(lx)

• Journal de Math., T. 2, pp. 94-98.
t Ibid., pp. 99-102.
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where a is positive, and s, t, u rational, and, moreover,

(i) s > 0 ;

(ii) s > 0 or s = 0, t > l ;

(iii) s > 0, 0 < t < 1 or s = 0, 0 < t < 1 {when the positive
sign must he taken), or s = 0, t = 1 (when again the
positive sign must be taken, and a is irrational*) ;

(iv) s > 0, or s = 0, t > 0, or s —0 , t = 0, w > 0.

By means of this theorem we recognize, for example, that

l$x, esx, x^, (lx)a (a irrational),

(« =jt 1),

are in reality of order three.
Again, no L-function of order 2 can satisfy

It is, of course, possible to proceed further in this direction. Thus for
functions of order 3 the standard forms are

x s

and so on generally. No function of order 3 can satisfy

<P# <f< e^'.
No function of order 4 can satisfy

no function of order 5 can satisfy
e(ih)> . , . Jib*e <f < ee ;

and so on generally. We shall make use of this remark in the sequel.!

* Were a rational, enl°B* could be replaced by x".
I On the subject of the functions er(l,x)1', see " O.I.," pp. 21 et seq.

BEB. 2. VOL. 10. NO. 1103. G
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VI.

On Gaps in the Logarithmico-Exponential Scales.

28. I have in my tract considered the question of the construction of
functions whose rate of increase cannot be measured by functions of the
logarithmico-exponential scales; i.e., of functions / such that the relation

is impossible for any L-function <f>.
Such functions are furnished, for example, by any function / such that

f>eM or Kf<Ux).

A simple example of the first type is given in my tract.* An example of
the second type can be constructed by means of the functional equation

0(e*) = e<t>(x).

It is easy to define, by means of a geometrical construction, a solution of
this equation which tends steadily and continuously to infinity with x.
The fact that 7 , « v ,

for all values of h, at once suggests that the increase of <f> must be slower
than that of any logarithm; and it is easy to prove that this is in fact so.

A still more interesting question is that of defining functions whose
increase cannot be measured by any L-function, although it falls within
the limits of the logarithmico-exponential scales. I showed in my tract!
how we could, by a geometrical construction, define a continuous and mono-
tonic solution of the equation

<t><f>(x) = e*.

I was compelled, by considerations of space, to content myself with the
briefest indications of a proof, which I will now complete.

24. The solution of the equation was defined as follows. Let

x0 = 0, xx — £, xa = 1, x3=^/e, xt = e, ...,

• "O.I . ," p. 33.
t "O.I.," p. 34.
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and generally z2n = ^ (0) = en_x (1),

Then <f>{x) is defined by the equations

and generally <f>{x) = X«_2(a;) = en_2 (in_2j:)
Ve («2n < a; < *2»+i),

fjLn-2(x) = en_i (Z»_2aj)1/V'e (x2n+i < a;

Thent Xo -< Ax •< X2 < ... •< Ma •< ^ < Mo.

I shall now prove that (as was asserted in my tract)!

XP -< 0 "< A*<2

for all values of p and g.

25. In order to prove that <p > Xp for all values of p , it is plainly
sufficient to prove that J ^ . .

0 > X 2 (a;

Now, if a; > x2«» 0 is equal either to one of the functions Xm_2 (m ^ ?t) or
to one of the functions Hm-z (m^ n).

Now Xw_j > XTO_2,

if e(Zn_,x)V e>(^_2x)V e ;

or, putting y = in-2a?, if

ly

Now, for x = aj2n = e«_i(l), we have y =•«. And

« >

• We may agree to interpret Z.** as ei,x and e.»ias lkx.
t " O.I.," pp. 21 et seq.
X " O.I.," p. 35.

G 2
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if V«-l>i

which is obviously true. Hence X«_i > X7l_2 for x > x*n; similarly
X,, ̂  X,,_i for x ̂  a?2n+2, and so on. It follows that

0(X) > X»_2 (X) (X > Z2n),

certainly throtigiwut the intervals in ivhich <p coincides with one of the
functions X.

Again ^n_2 > Xn_2,

if e(y^e)^yVe,

or, putting y = zVe, if e2 > 2e.

Now the equation e2 = 0* has a root when 0 = e : and e? > / if z > e.
Thus /un_2 > X,,_2, if y > eVf, or

Similarly Mn-i > X«_i, if x > a^+s, and, a fortiori, JU»_I > Xn_2, and so
on. Thus . . ^ . . . . . v

<p(x) > Xn_2(x) (3 > xin),

also in the intervals in which <f> is equal to one of the functions ix. And
so

Similarly we can prove that 0 Or) ^ Mn-2 (#) {x^%u+\)> and from this

it at once follows that

for all values of p and q.

Thus the function <f> enables us to divide all L-functions into two
classes, such that if Lx and L2 denote any members of the respective
classes, then T , , T

The increase of 0 would, in Borel's notation,* be denoted by

We could similarly define the mode of increase <oll+4, where n is any

* Legons sur la tirtorie de la croissance, pp. 14 et seq.
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integer, positive or negative: and indeed wa for any rational a. All
these modes of increase are distinct from those of all L-functions.

26. There is another method of constructing functions whose increase,
so to say, hits off a gap in the logarithmico-exponential scales. This
method is simpler but less interesting than that just discussed, and I
shall content myself with some very summary indications.

Consider the function / =

Since e*+1'x ~ e\

the increase of the function is the same as that of the simpler function ex.
A series of closer approximations to the function / would be furnished

But we cannot in this way find a function <p such that

However many terms of the series for exlx we retain, the difference f—<f>
remains of order greater than ajA. To put it roughly, we can only express
/ with the degree of approximation implied by the equation / = 0-f-e, by
taking <j> equal to / itself. Similar considerations apply, evidently, to any
function

where P is a convergent power series.

If now F=e/ = eeX+l">

we see that, in order to express F by a simpler function </>, with the degree
of approximation indicated by - , _ , . , >

—i.e., with sufficient approximation to fix the increase of F—we must take

<j> = F .

Similar considerations apply, of course, to the more general function

Thus, by taking P (l/x) to be a power series whose savi is not an ele-
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mentary function—such a series as

, . 1 1 . 1 1 I ' 1 _ 1 -L
1 + T* T+ VT& "? + la.29.8a IF"1'-

—we are led to functions whose increase is not equal to that of any
L -function.*

These considerations can be extended to cases in which P(l/x) is a
summable asymptotic series, and the factor e* is replaced by a more
general factor—we are thus led to such functions as

vn.
Miscellaneous Remarks and Conclusion.

27. Inverse Functions.—The present is a convenient moment at which
to make a few additional remarks as to the possible modes of increase of
the inverse of an L-function (a question already raised in § 12).

Suppose that y is an L -function of order 1, ultimately positive and
tending to infinity with x. Then, by Theorem 10,

or y=rAaf{lxY(l+e).

In the first case x = Ai(ly)*lQ-+*)t

and in the second x =

unless s — 0, when x —

Thus the standard forms for the increase of the inverses of L-functions
of order 1 are the same as for the L-functions themselves.

* Several theorems have been proved with reference to the possible forms of power series
whose sum is an elementary transcendent in Liouville's sense, or, more generally, a solution
of an algebraic differential equation: see, for example, Hermite, Cours (4th edition), p. 195,
where a theorem, originally due to Eisenstein is proved. This theorem has been extended
widely: see Heine, Crelle, Bd. 45 and Bd. 48; Hurwitz, Annales de VEcole Nonnale, t. 6
(series 3) ; Pouet, Legons surla tteorie des fonctions analytiques (2nd edition), t. 2, p. 123,
whare further references are given.

Hermite (I.e.) also refers to an extremely interesting theorem of Tschebyschef, of which,
no proof appears to have bean published (see Wassilief, P. L. Tschebyschef und seine wissen-
schaftlichen Leistungen, Leipzig, 1900, p. 42 and p. 54).
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Similarly, if y is o! order 2, it has one of the forms

(1) ceA*{1*'\ (2) e^cirfo+o, (2a) ^<wto+-> (t > 1),

(3) x4eW<1 + < ) (t < 1), (8a) ^(^d+«) (t < 1),

(4) i^^'^rfl+e), (4a) i^ '^ rd+e) , (46) ̂ (WU + e).

It is easily verified that the forms

1, 2, 2a, 8, 8a, 4, 4a, 46

invert into 46, 4a, 3a, 3, 2a, 4, % 1.*

Thus the standard forms are also the same in the case of order 2, and
this conclusion may be extended to any order.

It is easy to see that many of the theorems proved in this paper are
true not only of L-functions but also of their inverses. This is certainly
so, for example, with Theorems 2, 3, 7, 10, 11, and 12. Again, if / a n d <j>
are inverses of L-functions, one of the relations / > 0, / Si #, / •< 0
holds between them; and if / is an L-function, and 0 the inverse of an
L-function, one of the relations / > - 0, ... holds between them.

But whether or not it is true that, given an L-function <f> and its in-
verse 0, there must be an L-function \Js, such that

I cannot say; and, as I said in § 12, I am very doubtful whether this
is BO.

Consider, for example, the equation

(1) y = xlx:

an equation whose solution was proved by Liouvillet not to be expressible
explicitly in finite terms. Then

(2) x ~~ y/ly.

If, now, we consider the equation

(8) y =

* The special case of 2a or 3a, in which t = 1, A being irrational, inverts into itself.

| Journal de MatJUmatiques, t. iii, pp. 526-531.
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we have

More1 precisely* x = e \ 'j~-\

But in order to express the solution of (8) in the form

we should, haye ta express the solution of (1) in the form.

X being an L-function: and it seems to me very improbable that this is
possible.

In. any case- it should be observed that all the information that we
have acquired concerning the modes of increase of the inverses of L-
f unctions has been obtained by the use of Theorem 7 and its consequences,
and so cannot be used in order to simplify the proof of that theorem.

28. Algebraic Differential Equations.—Borelt has indicated the lines
of extremely interesting researches concerning the possible modes of
increase of functions denned by differential equations. Thus he has
proved that the equation

(l) / (* , y, y') = o,

where x and y are real, and / is a polynomial, cannot have an increasing
solution, of order as great as &e*

Similarly the corresponding equation of the second order cannot have a
solution whose increase is as great as that of e3x ; and there can be no
doubt of the truth of the corresponding general theorem..

The discussion even of the two simplest cases is rather elaborate when
so general hypotheses as M. Borel's are adopted. At present I propose
only to point out how, in the case of the equation of the first order, we
can obtain, much more precise information about the possible modes of

• •• O.I.," p. 46.
I " ^lemoire sur les series divergentes," AnnaUsde VEcole Normale, t. 16, pp. 25 etseq. :

see alsa Boutroux, L&qona sur les fonctions dCJinies par les equations differentielles du premier
ordre*
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increase of the solutions, if we assume this increase to be, so to say,
sufficiently regular.

Let us assume that the equation (1) has a solution y, such that any
function of the form w, ,.D

where m, n, p are integers, is ultimately monotonies. We shall express
this by saying that y is of strictly regular increase. It is possible to
prove that, in the case of the particular equation

(2) %L = ,
dx Q(x, y)'

where P and Q are polynomials, any solution which is ultimately con-
tinuous is of strictly regular increase ; but it would carry us too far to
enter upon the details of a proof at present.

It then follows that any two of the terms of (1) must satisfy a relation
of one of the types <p^~\fr, ^ f 0 -< \/r, and there must be at least
one pair which satisfy a relation of the second type. We must therefore
have a relation of the type

(3) yvy' - Ax*.

If neither /x nor v is equal to — 1 , we obtain a relation

(4) y ~ Ax\

If v (but not î) is equal to — 1 , we obtain

(5) y=e^o(1+«>.

If fx (but not v) is equal to — 1 , we obtain

(6) y^A(lx)\

If ft and v are each equal to — 1 , we obtain

ly ~ A Ix,

(7) y=xA+\

This equation is less precise than the relation (4). To make it more
precise, we must put y = xAz and form the equation satisfied by z.

Let us (to cut the matter short) confine ourselves to the equation (2).
We find that y must be expressible in one of the forms

(8)
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It is not difficult to see that a and y must be rational. This is not true
of #—as is obvious from the fact that y = x? satisfies

y' = Pylx,

whether /3 be rational or irrational.*
Apart from this circumstance, the forms (8) are the standard forms of

Theorem 10. Thi3 parallelism at once suggests a number of further
questions which demand a more careful analysis of the equation (1) and
its extensions : to some of these questions I hope to return on another
occasion.

• More precisely, the possible forms are
y =

y =
Here p and q are integers.


