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1. Definite integrals are of two kinds—finite and infinite* In
finite integrals the range of integration is finite, and the subject of
integration finite throughout it. A finite integral, simple or multiple,
is defined as a single limit; thus, for instance, the simple integral

\Af(x)dx (1)
Jo

is the limit when n tends to infinity of a certain finite sum

a = a:0 < xl < ... < x,,^ < xlt = A, a\-i i££•-],,-^.av

When a or A is infinite, or / (# ) has infinities lying within (a, A),
the integral (1) can be defined, if at all, only as a double limit.
Thus, if, to take the simplest case, ,f(&) has a single infinity £ in
(o, A), it must be defined as the limit of

\J« J f + e '

when the positive quantities e, e' tend, independently or otherwise, to
zero ; that is to say, as the limit of the sum of two single limits,
i.e., a double limit. The only case which is considered in any detail
in the books is that in which this limit is determinate when e, e' tend
independently to zero ; that is, when it is the same for all possible
ways in which they can do so. We shall say then that the integral
(1) is unconditionally convergent. Unconditional convei'gence may
be of two kinds—absolute or relative; but this is a distinction with
which we need not concern ourselves at present.

* There are, so far as I know, no English words of general use in this con-
nexion equivalent to the German eigentlich, unclgentlich. " Finite " and "infinite "
do, I think, really express the distinction in a way the German words do not. It
has indeed been suggested to me as a possible objection that " infinite integral "
ought to mean " integral whose value is infinite, divergent integral." But nobody
supposes that an ' ' infinite series ' ' is necessarily divergent, and I hardly see why
confusion should be more likely to arise in one case than in the other.
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Conditionally Convergent Integrals.

2. We shall now suppose that this is not the case. We have then
to consider the possibility that a definite limit may result if the
quantities «, e, while they tend to zero, continue to satisfy one or
more relations. If such relations can be found, we shall say that the
function under the integral sign is conditionally integrable ; that the
integral is conditionally convergent; and that the limit which corre-
sponds to any such particular set of relations is & particular value of
the integral.

These definitions can only be useful when the subject of in-
tegration changes its sign within the range; the integral of a
function of constant sign is either unconditionally (and absolutely)
convergent or determinately divergent. And when a function is
only conditionally integrable different sets of relations will generally
lead to different results.

3. Consider, for example, the simple case of a function/ (a;) which
is finite and integrable throughout the range (a,1 A) except at one
point X; and is positive throughout a finite interval (X—$, X),
negative throughout a finite interval (X, X'+£). Suppose, more-
over, that

rx-e CA

lim = + 00 , lim = — <
•CO

Then any quantity m whatever is a particular value of

\A\fdx.

For let %, 77,, ... and rj'h TJ',, ... be any two sequences of descending
positive quantities whose limits are zero. Let

Let mu m2, ... be any sequence of quantities whose limit is on. We
can determine Mu M[ so that Ml>IIl, M\>H'U and Mx — M\ = m,.
Then we can determine M.,>]\[v M^>M\ so that il/2>Iif2, M'>>W.,
and M2—M', = ?>?2; and so on.

We can then determine c,-, t\ by the equations
'A

=-M'ti
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rx-ti rA
so that I + I = w,-.

.'a JX+t'i

Also e, < 77,-, e'i < 17-; so that lim e, = 0, lim e| = 0. Hence, if e tend to 0
through the sequence of values e,, e2, ..., and e' through the sequence
€ i > e n • • • > / rx-e rA v

lim + = TO.
«, « ' - 0 \ J o JX+t't

Tlius ?)i is a particular value of . For instance
la

r ([X~\ \A \ dx , / A-X\hm + ) = log ( K ,
«-ic«'-0 \ Ja J^T+e'/aJ —A \ A — a /

Av.hich may be made equal to any quantity we please by choice of K.

4. There is only one form of " particular value " with which we
shall be concerned in the following pages.

The Principal Value of an Integral.

Suppose that / (x) possesses a convergent integral over any part
of (ft, A) which does not include any of a finite number n of points
Xh distinct from a or A, and that

x\-'i
•••+ )f(.x)dx

*i )xn+JJ K J

tunds to a finite limit when the quantities e,, ..., e.u tend independ-
ently to 0. Then this limit will be called the principal value of the

integral I , and will be denoted by

P I ffoA fir

o. Historical and Critical Xotc.—The set of relations which serves to define the
principal value is, in fact,

e . = t'. (i = 1, 2, ..., n).

The priucipal value was first defined by Cauchy. But Cauchy's ideas on the sub-
ject of infinite integrals had not the degree of precision required by modern
analysts. So far as I am aware, he does not recognize the distinction between un-
conditionally and conditionally convergent infinite integrals at all. In some of his
earlier memoirs, indeed, he does not distinguish principal values from ordinary
finite integrals. And he does not seem to have observed that, if the subject of
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integration becomes infinite like {x—Xy, the only case in which the definition of
the principal value is useful is that of /x = 1.

There is so much that seems arbitrary, at any rate from the point of view of the
theory of functions of a real variable, about the conditions

by which the principal value is defined, that its theory has been practically
neglected. Thus Riemann, who was the first to give a precise form to the defini-
tion of the infinite integral, expressly excludes it from consideration. And in the
best theoretical treatises (as, e.g., Stolz, Jordan, Harnack) it is generally dismissed
with a remark ; sometimes its very legitimacy appears to be called in question.
For instance:

" Cauchy hat . . . Hauptwerthe (valours principales) in Betracht gezogen, auch
wenn . . . keinen Sinn hat. i s istjedoch tins unseren Ueberlegungen klar, dass man
besscr thut, diescr Einfuhrung nicht zufolgen" (Kronecker, Vorlcsungen, p . 211).

" Dass der Begriff der vahur principale eineu Integrales, den Cauchy aufstellt.
nicht statthaft sei, braucht nicht eriirtert zu werden " (Schltifli, Ada Math.,
Vol. VII., p. 187).

It is, at any rate, quite clear that the principal value is not what the last writer
asserts it to be: "wan er [Cauchy] so nennt, ist einc Summe von Integralcn, dir
eitiandcr nichts angehn." For instance, if f(x) be a function of the complex variable,
analytic near the origin,

ti r—«
is determinate. But the principal value is neither the sum of I , I nor the sum

M rf) J< J - l
of 1 ,1 , which are not convergent.

Jo J-i
Again, in the Encyc. d. Math. IFiss. (i. ii. 1, p. 38) it is asserted that the ordinary

formula of transformation cannot be applied to principal values. We shall see
later that in such cases as ordinarily occur this statement is untrue. The fact is
that the interest of the principal value depends upon its frequent occurrence in
connexion with the ordinary, elementary functions of analysis, such as

—, log x, cosecz.
x

These are of course extremely special functions. But we must distinguish, with
Borel ("Memoire sur les Scries divergentes," Ann. do VE. N., xvi.), between the
theoretically general and the practically general. The simplest Bpecial kind of infinity
of a function across which its integral is only conditionally convergent is a simple pole ;
and in general analysis this is, of course, the most important kind of all. Indeed,
when we look at the matter from the standpoint of the theory of functions of a
complex variable, and consider the methods used in contour integration, in which
poles are often excluded from the range of integration by semicircles having the
poles as centres, the particular significance of the at first sight arbitrary conditions
e(. = ej becomes quite plain.

It is worth remarking that formulae involving principal values are very often
c 2
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simpler than the corresponding fonmilre which involve ordinary integrals. Thus,
for instance,

f" '** = 5 . i> f" (lx: = 0 •
Jo fl2 + .f2 'i'j' Jo a--x-

[' .___^___ = . » , j> [' ^ = o.
Jo cosh a —cosa; t>inh a" Jn cos a — cos x

The consequence of this is that the easiest way of evaluating an ordinary integral
is often by means of its connexion with a principal value. And by the use of
principal values the range of some of the fundamental double limit problems of the
integral calculus can be considerably extended. I hope to illustrate these points
systematically in a series of further papers. For the pvesent I may refer to a paper
in the Quart. Jour, of Math. (June and September, 1900).

Elementary Properties.

6. (i.) P \A f(x) dx = - P f" / («) dx.
J a J A

(ii.) r IA 2/, (a) dx = 2 P (Aft (x) dx.
Ja 1 1 Ja

(iii.) P I nf (a:) ck- = *?[ f (x) dx.

(iv.) If P /(&) dx is determinate, so is P I /(x) dx (a<c< A)y

.« J a
except possibly for a finite number of values of c, and

[c ,'A [A
P +p\ =P\ .

J a } c J re

(v.) P I f(x) dx is a continuous function of A for all values of A for
Ja' * .

which it is defined. It has a derivate equal to f {A) for all values of A
for which f (A) is continuous.

We need not delay to prove the above almost obvious theorems,
which result immediately from the definition and the corresponding
properties of ordinary integrals. We will only remark that they are

rA
equally true of any particular value of an integral , when the

Jo
range only includes a finite number of points across which the in-
tegral is not unconditionally convergent.
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(vi.) If f (x) be continuous in general in (a,A), and F(x) be continuous
except at a finite number of points Xt, distinct from a or A, and there
become infinite or discontinuous in such a way that

and if F (a1-) have a derivate equal to f (x) at all points at ivhich the latter
is continuous, then, for all values of a. in (a, A) other than X{,

F (x) - F (a) - P / (x) dx.

J a

For, if, e.g., Xt < x < Xi + U

T f(x)dx=F(x)-
JXi + 'i

and on adding and proceeding to the limit the theorem follows.

7. Suppose, in particular, that \L (x) </> (x) is a product of two
functions which satisfies the conditions imposed upon F(x), while
4> (x) (j>' (x), v/-' (x) <i> (x) satisfy those imposed upon/(.r). Then

the formula for integration by parts.

(
where p > 0. Then

Jo
logfl—E-

o ^ «" / Jo p—x-

We only defined P I when A was finite. But, if there be only a finite
Ja

number of points Xit all < H, P I is simply P + I , if this be
]a Jo Jff

dideterminate.
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Convergence* of the Principal Value over an Isolated Infinity.

7. The principal value P has so far only heen defined in the

J«
case in which (a, A) includes but a finite number of points X, across
which the integi-al is not unconditionally convergent. Wider defini-
tions will be given .shortly. But first Ave must consider more in
detail the possible characters of these points Ar

t. There is only one
case with which we need seriously concern ourselves. As we have
already pointed out, the principal value is a special notion which
derives its interest from its frequent occurrence in connexion with
certain familiar functions. It would therefore be futile to attempt to
state theorems connected Avith it with the utmost generality of which
they are capable. That would be to try to generalize what is
essentially a special case. Our object will be rather to prove a few
theorems general enough to give an account of such cases as Ave shall
meet.

Infinities X'\

8. We define the functions

Ix, lsx, ...

by the equations Ix — log [re|, Z2.r = llx, . . . .

We shall say that a function/ (re) has an infinity Xr at a point re = X,
if a finite interval (X—£, X + £) can be found Avithin which/(re) can
be expressed in the foiTn

where (i.) 9 (a*) is a function Avhich possesses a continuous derivate
throughout ( X - £ X + £), and

( i i . ) ft ( M ) = \ u \ ' r \ l u f»I Fu \rK..\ l"u |

* It is, no doubt, verbally inaccurate to snv that "the principal value is con-
vergent " ; the principal value is a limit to which something else converges. How-
ever the expression eaves a good many rather awkward periphrases. And it is
quite usual to say that an ordinary infinite integral converges, although this is open
i o the same criticism. Strictly speaking, to say that

Jo *
is convergent is only a short way of saying that it is a limit to which something
else converges.
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It is to be understood that some or all of the symbols of the absolute
value on the right may be omitted, provided no difficulty as to reality
arises. Thus \j/v («) might be

u , I n I , u I hi | , ... .

It is also to be observed that, if r < 0, or if r = r, . . . == r<_! = 0,
r< < 0, the point is really not an infinity, but a zero. But no con-
fusion will arise from this.

9. To avoid misunderstanding later we add the following remarks on the subject
of these logarithmic factors." All of

lit, Pn, Pu, ...

become infinite for M = 0, oo . But also

| Pu | = oo , n = ± 1

= 0, it = ± c,

| Pu | = oo , M = ± 1 , ±e, ±e~'

= 0, « = ±ce, ±c~e, ±e* ,

and so on. We are, however, interested in these logarithmic products only in
connexion with the behaviour of a function in the immediate neighbourhood of u = 0.
So we 6hall suppose all these other possible infinities excluded from consideration,
either by a sufficient restriction of the range of integration, or by a suitable choice
of exponents r, ru ..., ru.

Since, if <p (») be real,

~dii
d ,„ 1

l» = _ ;
<*« nluPu...r~xu

d , 1
just as T^°S u

du

du u log u log- n ... log""l «

As soon as u is small enough I'M = log" ti;

but, by using the functions I", a good deal of possible ambiguity as to sign and
reality is avoided.

I t is well known that the integral j f (x) dx is absolutely convergent

across X, if r < 1, or if r= 1, r, < — 1, or if r — 1, rx = r2 ... r,_i = — 1,
r< < — 1. When r = 1, we shall write O,, for \J>,,; so that

Slv(u) = — n |Pf*|r<.

Some of the Bymbols of the absolute value may possibly be omitted.
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In what follows we shall suppose, for simplicity, as we evidently
may, that the range is so restricted that all of the functions I'u,
i = 1, ..., v are positive.

THEOREM.—If f (x) = ft, ( a - X) Q (x),

where 9 (x) is a function which has a continuous derivate vear % = X,
and

nv(u) = —n \Vu)r*',
u i *•

and £be a sufficiently small finite quantity, then
P\ f(x)dx

will be convergent.

,{X+t rx-e.
For ( + /(*)««»

= £{f(X+u)+f(X-n)}du

= f n (̂tt) {e(X+u)-e(x-u)} du

= 2f n{Vu}r*e'(x+On)du, (-i<e<i);
Je 1 — —

and the limit of this for e = 0 is plainly finite and determinate, since

for any positive value of y. Hence the theorem follows.

It should be observed (i.) that, if the exponents r,- satisfy certain
rx+t rx+£

conditions, not only P I , but also, is convergent; (ii.) that
jA'-f Jx-f

j (x—X) f (x) d.v is evidently convergent across x = X ; and (iii.)

that f(x)dx becomes at most logarithmically infinite for x = X, in

the cases in which it does not converge up to x = X.

J x
f(z) dx becomes infinite, its modulus remains less

than the value of a certain logarithmic product. This may be proved as follows :—
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fn the first place

- f i i i {'''«}'••• © [X -u) du.
Je M 1

We may suppose the upper limit (say {) so small that 0 is of constant sign
(say > 0), and < . . .
x J ' ln> I, i — I, ..., v (0 < «^.{). [a)

Also we may suppose r2) »-3, ..., rv all > 0, and t\ + l > r3 + ra... + rv. For, if
these conditions are not satisfied by the indices r{, we can substitute for / a
function/' whose indices »•,• satisfy the conditions

»"2i »\s, ..., r'u > 0, r\ ^_ r,-, »"i + 1 > r2 + r'$ ... + r'v ;

and then, if we can prove our conclusion for / ' , it will follow a fortiori for / , in
virtue of (a). Then

<p(X-e)
 l-. fr f. {;«}'.•» n {I'uV' © (Z-i») du

7-! + 1 J e du ' 2

»', + ! 2 Je « l J 2 l j i + l l J

1 v

* ( « ) + r 2 >•,• \|/,- (e), say.
»"i + l 2

Here * (e) is the sum of

and terms which remain finite as e tends to zero. And we may therefore suppose
A so small that

*(«) > 0, 0 < e ^ { .

Also tyi (e) > 0. and, since the subject of integration in tyi is less than that in <p, for
every value of u in question [by («)]

e ) > ^ ( « ) (» = 2, 3, ..., v).

Hence 0 < I 1—^— U(X-t)< <p(X-<) 2 »".^.(«) = *(«);
\ f"+ ! / »' ! 1

r, + l - 2 r , >-, + l - 2 » -
2 2

where JI, K are some finite constants.
Thus our conclusion is established.

11. We shall not have occasion to consider in any detail principal values other
than those in which the subject of integration behaves like this near each isolated
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infinity across which the integral ceases to be unconditionally convergent. An
example of another kind is

pf1
 8 i n ! ^ = lim(OO8l_co8i-) = 0.

J - l X Z2 e = 0 (. € f J

12. We shall also find the following lemma useful in the sequel.

A Lemma analogous to the First Theorem of the Mean.

LEMMA.—If 9 {x), <f> (x) be functions which have continuous derivates
in (X—£, X+£), and 9 (a;) do not change its sign, and

f(x) = nv{x—X)Q(x),
then will

(X+t
P\ f{x)<f>{x)dx

rx+f rx+$
(x-X)f(x)dx,

where — $ ^_ fx ^_ £.

That each of these three terms is determinate follows immediately
from what precedes. Also

,rx-< rx+tx
. + )f<t>dx

\ix-t ix+tf

= <̂ (X) J' [f (Z + t») +/(X-u)} du

-[*f (X-u) {<f> (X)-<l>(X-u)} du.

When e tends to zero the first term on the right tends to

<i>(X)P\ f(x)dx.
)x-t

The second is

£
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The first form shows that the term tends to a limit for e = 0. The
second factor of the second form also tends to a limit; and therefore
<f>' (X+\) tends to a limit, which must evidently be

Thus the limit of the second term is

\ (x-X)f(x)dx.
ft
\ u
Jo x

Similarly the third term tends to

4> (X-K) [ (x-X)f (x) dx.
)x-s

Since (a?—X)/(«) is of constant sign, we may replace the sum of
these two limits by

*'(* + /«) [X**(x-X)f(z)dx,
J A—f

and the lemma is proved.

If, in particular, 6 = 1,

P f f Clv (x-X) <f>(x) dx = <t>'(X+p) r f (x-X) Clv (x-X) dx.

Thus,e;flf.f P T + ^ ^p = 2^'
J X—j; X — A-

Infinite Limits.

13. We shall now consider the case in which the range is infinite.
If there be but a finite number of infinities across which J / (a;) dx is
not convergent, no new point arises. It may indeed happen that

Km I / (x) dx

r
is finite and determinate, although is not. If so, we call the

J-oo
former a principal value. We shall not be concerned with this,
however; and indeed principal values of this kind are not particu-
larly interesting, and may always be reduced by simple substitutions
to those of the kind which has already been considered.
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We suppose then tha t / (x) has an infinity of such infinities,

X,<X,<A r
8 . . . (lira X% = + oo ) ;

further, that each of them is an infinity X1 .(§ 8), and that there is
a positive constant H, such that

XUI-X{>H (.- = 1,2,...).

Then p\Xf(x)dx (1)

is determinate for any finite value of a? > a and distinct from any X,;
in particular, for values of x > a which satisfy the conditions

| » - X ( | > 8 (*=1,2 , ...), (c)

where 8 is any small fixed, positive quantity.

Then, if, when x tends to oo through any system of values which satisfy
condition (c), the principal value (1) tend, hoiuever small be 8, to a
finite limit independent of the particular system chosen, this limit (which
must evidently be independent of 8) will be called- the principal value

of the integral I , and denoted by
Ja

rf(x)dx.
ja

P

Similarly for an infinite lower limit.

14. AVe shall shortly give a still more general definition, which
may be used when condition (c) cannot be satisfied, or when f{x) has
infinitely many infinities X1 within a finite range. But we may first
illustrate the preceding definition by some examples.

_ j . , . sin ax 1
15. (i.) Let /(*) sin x 6" + a;2

Here X, — iir. Suppose 0 < 8 < \ir. Then

o Jo i J( I -1J* J-v»+«

+i,r) dx

i.-.i,. ~ J - l / ' 8 i n a ; »* + (•-• + *»)'•
, .• . f4* piu»a: dx

— (—) COS «»ir - . - >—. r ...

. ,,• . . p f'' CO8«J; dx

+ {-)Bn«fPj^-s7jl+ ^ ^
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We can determine a finite constant Z, such that

sin ax

and then the modulus of the first term is
I

the general term of a convergent series. Again, the conditions of the lemma of
{12 are satisfied by the principal value in the second term, if we put

Also

Hence

Bin x

fl' cos as dx , / , , fl' x , . . < < l \
>\ .... --—. .—- = A (u) - . — ax ( — *ir u_ tn)

J _ , . Binz e 2 + (a; + ijr)a r ^' J . , . s i n x K = ^ - i '

_ f _ a s i n an 2 cos «/t {u * h)~\ „

~ [_ B'+~(fi + in)' ]e- + (M + i*)i)*J

in absolute value, K being some finite constant. And this again is the general
term of a convergent series.

rNw + S

Hence P tends to a finite limit for iV= oo . For the last term of (1) evi-
Jo

dently tends to zero. And so does f* •[iS7»r + 8 < x < (2V+ 1) ir—8]. Hence,

according to our definition,

Jo sin.-c 62 + x!

is convergent. As a matter of fact its value, if a < 1, 8 > 0, is

jr_ sinh «0
20 siuh 0 '

16. (ii.) We shall nqw establisli the convergence of a general class
of principal values which includes the preceding example as a
particular case. In the general case, however, we are obliged to use
an ai'gunient which is not quite so simple.

A General Convergence Theorem.

THEOREM.—If ij/ (x) be a function which possesses a continuous derivate
\}/'(x) for all positive values of x, and i[t(x), $' (x) tend steadily to zero
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for x = oo , then

•r, f" sin ax , / \ j n f°° cos aa; . , N ,
P — i/f (a;) aa-, P \lr (x) dx

J sin® Jo cosaj
will he convergent, provided a he not an integer*

Take, for instance, the former of the two. It will be clear, after
the discussion of the preceding section, that it is sufficient for our
purpose to prove that we can choose N so large that

A" rfi+J)ir
2 P

* + 1 J(i-J)»

for all values of N'>N; <r being an arbitrarily small positive
quantity. Now

(i-J)ir JV+1 J —in- Sin 05

("*"• s i n aaj « , v< • , / , • \ j= - . — 2 (—) cos anr & (x 4- zn-) aa:
J _ j f f s i n a ; jv+i

. Tj P * c o s arc « / • > . - . • , / , • N j / i \+ P —r— 2 ( —) sin anrxb (a?+ur) rfa;. (1)
J_$,r SinfC A'+l

Now the series

2 ( —)' cos aiir tp (x + iir), 2 (—)' sin aivr

are uniformly convergent for values of x in ( — -̂ TT, ̂ n-), if a is not an
odd integer.

For, by a well known lemma due to Abel,
n' n' -1

if F< = r,,4-v,,+1 ... +Vi.

Let, for instance, v, = (—)' cos aiv, «,- = ty (X+%TT).

Then V{ oscillates between finite limits as i increases. And, owing
to the conditions imposed upon \p (a;),

• If a is an odd integer, the integrals are of the ordinary kind, and are convergent
or divergent according as »

Jo

is convei'gent or divergent. If a is an even integer, the first of them is an ordinary
integral, and convergent; the second is a principal value, and convergent.
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converges absolutely and uniformly, and «,• tends uniformly to zero.
Hence 2«jVj converges uniformly. A similar proof applies if

Vi = (— )' sin aiir.

It follows at once that we can make the modulus of the first term
of (1) assignedly small by choice of N. And the second, by the
lemma of § 12, used as in the preceding section, is

r if . . . . ~\' fa x
cos aa; 2 ( — Ysiiiaisr \p (x + irr) I ——dx,

L jv+i Jx=n J-jn-sma;

where — \ir ^ /i ^ \-n.

The quantity in square brackets is

— ftsina/u - (—)'sin aiir \J/(fi + iw)+cos cifi 2 ( — ) i s i
00

Now 2, ( — )' sin aiV i//

is also uniformly convergent, by the same argument as before.
Hence tho modulus of the second term of (1) can also be made
assiynedly small by choice of N. And so the theorem follows.

A similar conclusion holds for

P f sin ax , , ^ 1 -,-, f cos ax , , \ 3 fr\ ^ \\p (x) dx, P —— \L (x) dx (0 < c),
Jo cos a; Jo siha;

P i sin ax tan x \f/ (x) dx, ...,
Jo

„ f" sin az , , x 7

P - — - — \b (x) dx,
Jo suite—sin a

P f cos ax I / \ 7 /A \
: w, fx\ i2x (0 < a < TT),

Jo cos x—cos a

Thus i/f (.u) may be, for example,

It is obviously sufficient if the conditions as to the steady decrease of
\p (x), \j/' (x) are satisfied after some finite value of x.
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Principal values of these types are interesting in many ways.
Cauchy evaluated some of them, as e.g.,

p f sin ax dx. pt° cos ax dx

Jo sin hx l-rtf*' Jo cos bx 1+ar '

but. ho never defined precisely the sense in which they are convergent;
nor, so far as I am aware, has any later writer done so.

A more general Theorem.

17. (iii.) THEOREM.—If ij/ (x) satisfy the conditions of the preceding

section, and (J> («) be a function which has a continuous derivate for all

values of u, 0 f: n ^ . 1, then

(•GO /»0O .

P I cos ax / n \ , / \ i n I sin ajx '/ • « \ , r \ j
•<f> (cos" x) \b (x) dx, P . • • - ((> (sin* x) \\f (as) dx

J cos a1 J sin x

will be convergent.

Arguing as before, we obtain, instead of equation (1) of § 16,

iV' r(i + 4)n- fin- em nv X'

2 H = | fiili^rf,(sin-a:) ^ (-)'cosaiV^ (x + in) dx
•v+' J(i-i) n- J-Jir sin a; .v+i

+ p f̂  2?1™Q (sinSaj) 2 ( - ) ' sin ai* if, (x + irrjdx;
J_jn- Sin X J\'+l

and, as before, the first line can be made assignedly small by choice

of iV̂ , and the second, is (using the lemma of § 12 once more)

Cos ax <i> (sin3 a;) 2 (— )' sin aiir d/ (x + iir) \ I -.-—dx.

The conclusion follows as before.

It would not be difficult to generalize these theorems further ; but what we have
proved will be sufficient for our present purpose. "We inay inentiou, among
formulae of other types, the two

cos a;—/i^sina; rt-'+.r- '2« (cosho+/;rt sinh «}

These follow easily from Cauchy's theorem. We have only to observe that the
roots of i / n\

cot a: = p.v (p > 0)
aro all real.
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Transformation of Principal Values.

18. We shall now consider the question of the transformation of a
principal value by the substitution of a new variable. We shall
begin by considering the case of a principal value defined as in § 4.
When we attempt to apply the same process to the case in which the
limits are infinite, and the principal value defined as in § 13, we shall
find that the definitions already given are inadequate. We shall thus
be led to a more general definition.

CA

19. Let us suppose that P I / (x) dx is convergent, the range of

integration including one, and only one, infinity X1, viz., x = X;
and that, if £ be any positive quantity, however small,

r, r,
Ju JX*£

can be transformed in the ordinary way by the substitution

finally, that <j> and its first two derivates . are continuous in the
immediate neighbourhood of x = X, and that <•// (y) is not zero when

x = X. Then P I can be transformed by the ordinary rule, that is to
say, J«

p\Af (x) dx = P ['' / |> (y) ] f' (y) dy.
J«. Jb

In the proof of this theorem we shall need the following lemma.

20. LUMAIA.—// ' / («) = n*(u) 9 («),

where Qv(u), 0 (ti) are functions of the type considered in §§8, 9, 10,
and K, K tend to zero in such a way that

lim = 0 (^ > 0) ;

K

then limPT / (tt) rZn = lim P f" = 0 ;

and so, if $ be small enough,

vur,. xxxiv.—NO. 766.
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For / (w) du = " Qv (u) 9 (u) du.

Now we may suppose K, K SO small tha t flv (u) does not change its
sign in (K, K ) , and increases as u decreases, and K> K. Then this is

9 (X) ilv (w)du (K < \ < K)

Avhich tends to zero with K, K.

21. Let b = x\, (a), 7* =

and suppose, e.g., b <B. Then

P f'Vds = lim f fA~f + T )/(da)

Since <f>

Now

a n d <f>

where

' (y) *s

(v)—i

l

not zero for

-A(

)]
1—<

1

a: =
Z - (

= 0,

HY)

0

f) < tp (J

•{*(y)-

^ 4- i A/ -

< 0 < 1 .

< B.

+ terms which remain continuous at a; = A'.

AISO 1(X-X) = l(y-

= I (y- Y) + Zf (Y) + (</- Y) 6 t (y),

where 6 , is continuous.

We shall suppose for simplicity tha t
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when there are more factors the argument is more complicated, but
in principle the same. Also we shall suppose that c is the greatest
integer in r,,

(0< s< 1).

Then | l(x-X) |'-

= \Ky-Y) |

+ \l(y-Y) \"*p (y) + (y-Y) 11 (y-Y) |--> q

where a4 is a constant, andp (y), (/ (y) are continuous functions.

Again,

where yK is a constant, and \ (?/), /̂  (?/) are continuous functions.

On forming the product Qv we sec that it is the sum of—

(i.) A finite number of terms each of which possesses a convergent
integral across y = Y. It is to be remembered that

is a term of this kind, if <£ (y) is continuous and p < — 1; so that
these terms include, e.g.,

(ii.) A finite number of terms of the form

AQAy-Y),
D 2
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where A is a constant. Hence

\

b

is convergent. Also, if

= r+y,

——Hence ,

remains finite as q, TJ' tend to zero with £; and therefore, by equa-
tion (1) and the lemma of § 20,

P ['f (x) dx = P [*/ [> (?) ] f (y) dy.

22. Thus, for instance, if x = y*, and II ^ nn,

i ^
in?/ ^ ^o sin JB .r/* JO sin?/

If II tend to co through a sories of values included in the intervals

{?!«• +8, (n

each side of the equation tends to a finite limit, and it is natural
to write

Jo sun: a;M J RHIT/-

But the right hand cannot be defined asjin § 13, since the intervals

{ } (,, = 1, 2, ...)

diminish indefinitely as n increases. This suggests that our former
definition may be extended.

23. The following- general definition includes as particular cases
those which we have been considering, and justifies eqnation (1)
of § 22.
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A General Definition.

Let / (OJ) be a function which possesses a convergent integral over
any part of an interval (a, A), where A may be co, which does not
include any one of an infinite series of isolated points Xh

while P \f (x) dx

is convergent across any point X,. Let the points Xt be included in
a series of open* intervals

no two of which have any point in common. And suppose that the
interval f. s depends on a parameter 8, and that as 8 tends to zero

each of its extremities tends steadily to Xt. Let the remainder of
(a, A) be denoted by Rs.

If x < A be any point of lis.

(x)dx (1)
Jn

is convergent.
Then, if, token x tends to A through any series of values lying entirely

in Bs, (1) tends, hoivever small be 8, to a finite limit independent of the
particular series chosen, this limit—which must evidently be inde-
pendent of 8—will be called the principal value of the integral
CA

I , and will be denoted by
Ja

>\Af(x)dx.

Further generalizations are at once suggested. It is clear, for
instance, that we may extend our definition to meet the case in
which the infinities Xt form any enumerable set, and that similai-
definitions are possible for "conditionally convergent" integrals
other than principal values. But, for the reasons stated in § 7, f
shall not enter into this.

24. I shall conclude this paper with an illustration of the
theorem of §§19-21, and the definition of § 23. I shall determine

An open interval is an interval which does not include its extremities.
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whether w t

p f * . . . '±H
I . / , fr \ re '

Jo s i n I r w + ••-}
\ a; /

where a, b > 0, ab < 7̂r2,

is determinate or not.

The infinities of the subject of integration are

* = 0, ax=imr±J{(%i*y-ab} (n = 1, 2, . . .);

and, except for 0, are infinities Xx. As n increases

tends to co , ^ur— ^/[(^iTr)3—a&]

to zero.

Consider the transformation

y = ax+ — , a? = — {y ± ^/(y'

As t) increases from 2x/(ab) to oo the upper value of x increases

steadily from ^ / f—j to oo, and the lower value decreases steadily

from +/(—) toO. AlsoVtr)
2a I v/(?y

3-4a6) 5 '

and these are continuous for all values of y > 2^/(a6). Finally,

1 dx 1
~ T = -7rT I n ' V

Hence, so long as A is distinct from any of the infinities,

[A 1 ^r
p

Jvw) sin

however large be A, and however small be e > 0. Here 17 is > 0, and
tends to zero with c.
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Let 8 be an arbitrarily small positive quantity. We can make A

tend to oo in such a way that a A -\ tends to oo through a series

of values entirely included in the intervals

{wr+8, (,l + l ) 7 r -8} (n-1, 2, ...),

and then the limit of the right hand is

_JL ' dy .
j

»°0

and it is easy to see that the left becomes P \ according to the
JV(b/tt)+e

definition of § 18.

The limit of the right hand for € = 0 is determinate, and so

_1 dy

J Am . / . b \ x
sin [ax-\ I

\ xl
Similarly

p i - —: — u i - _?/.I I

Jo • sin (ax

Finally,

r I dx _ op r I

Jo Sin (a»+ -b) x ~ hw)siny

This is easily vei'ified hy the help of Cauchy's theorem. In fact

each integral = ~—7—ri • And more generally, if
2 v'(no)

(n +1) ir > n = 2 y(aft) > wir,

" 1
each of the integrals = TT 2 ., „—;-.—rsr•& -.. v/{?ts-(i7r)2}

Similarly, if a, b > 0,

^ r 1 ^ = 0
o sin ( a * - A
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We may perhaps mention the following formulas of the same kind:—

in (ax-\r sin

-
r si

- 8

(c(Z<0)
sinh(c*-j)

* a'mh(ad-j) *sinh{a

26 > i n w_

7-)- (1)

£
sin (ax -\ )

\ x)

sin [cx-jr • -

= 0 («2 < 0)

wsinh ( a . / ' -— b x I--
^ ) . (2)

These and many other similar formula?, which may all be proved by
means of Cauchy's theorem, afford more examples of the use of the
definitions af this paper.




