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1. Definite integrals are of two kinds—finite and <nfinite.* In
finite integrals the range of integration. is finite, and the subject of
integration finite throughout it. A finite integral, simple or multiple,
is defined as a single limit ; thus, for instance, the simple integral

4
[(r@a M
is the limit when % tends to infinity of a certain finite sum
2! f (gr-l, r) (-’U,‘ _mr-—l) »

a=a,< < ... <a,,<a =4, :r,._lé ,._,,,.;n:,..

Wlhen a or 4 is infinite, or f(x) has infinities lying within (a, 4),
the integral (1) can be defined, if at all, only as a double limit.
Thns, if, to take the simplest case, f(t) has a single infinity £ in
(a, 4), it must be defined as the limit of

( [E—E + {:ﬂ,) f (@) d,

Ja

wlen the positive quantities ¢, ¢ tend, independently or otherwise, to
zero ; that is to say, as the limit of the sum of two single limits,
t.e., o donble limit. The only case which is considered in any detail
in the books is that in which this limit is determinate when e, €’ tend
independently to zero ; that is, when it is the same for all possible
ways in which they can do so. 'We shall sy then that the integral
(1) is wnconditionally convergent. Unconditional convergence may
be of two kinds—absolute or relative; but this is a distinction with
which we need not concern onrselves at present.

* There are, so far as I know, no English words of general use in this con-
nexion eqnivalent to the German eigentlich, uneigentlich. ** Finite >’ and *‘infinite”’
do, I think, really express the distinction in a way the German words do not. It
has indeed been suggested to me as a possible objection that ‘¢ infinite integral *
ought to mean ‘¢ integral whose value is infinite, divergent integral.”” But nobody
supposes that an ¢ infinite series’’ is necessarily divergent, and I hardly see why
confusion should be more likely to arise in one case than in the other.
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Conditionally Convergent Integrals.

2. We shall now suppose that this is not the case. We have then
to consider the possibility that a definite limit may result if the
quantities ¢, ¢, while they tend to zero, continue to satisfy one or
more relations. If such relations can be found, we shall say that the
function under the integral sign is conditionally integrable ; that the
integral is conditionaily convergent ; and that the hmit which corre-
sponds to any such particular set of relations is a particular value of
the integral.

These definitions can only be useful when the subject of in-
tegration changes its sign within the range; the integral of a
function of constant sign is either nnconditionally (and absolutely)
convergent or determinately divergent. And when a function is
only conditionally integrable different sets of relations will generally
lead to different results.

3. Consider, for example, the simple case of a function f (z) which
is finite and integrable throughout the rang'e (a, A) except at one
point X; and is positive thronghout a finite interval (X —¢, X),
negative throughout a finite interval (X, X+¢). Suppose, more-
over, that

X—¢ A
lim =+, lim =—c.
€av Jg €=l J X+4¢

Then any quantity m whatever vs a particular value of
4
j f de.
a -

For let 7, ny, ... and 7, 75, ... be any two sequences of descending
positive quantities whose limits arve zero. Let

(E-n . 4
\ = I, j = —H,
“a .\’+n:-

Let m,, m,, ... be any sequence of quantitics whose limit is m. We
can detérmine M, M| so that M, >H,, M{>H, and M, —M = m,.
Then we can determine AM,> A, M,> M| so that M,>H, A>H,,
and M,— M, = m,; and so on. .

We can then determine g, €; by the equations

X-¢; cA ,

j = I, =—M;
« B X+(’.~
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X—¢ 4
80 that " + [ = m,.
‘a X+e:-

Also ;<m;, € <n;; sothat lim ¢; = 0, lim ¢;=0. Hence, if ¢ tend to 0
through the sequence of values €, €, ...; and € through the sequence

’ ’,
€1y €2 eoey X-e A
lim (!. + [ ) =m.
¢ e=0\)a JX+e

~ 4
Thus m is a particular value of [ . For instance
a

. X-e f4 1y | A=X
tm, )JaTe =L (+x)
ssxead L +JX+.' a—x_ 8 (KX—-a
which may be made equal to any gquantity we please by choice of «.

4. There is only one form of ‘‘particular value™ with which we
shall be concerned in the following pages.

The Principal Value of an Integral.

Suppose that f (2) possesses a convergent integral over any part
of (e, 4) which does not include. any of a finite number » of points
X, distinct from a or 4, and that

<j’xl—q+ ]Xg—cg + fA p
a X1+¢|‘” X"+e")f(al) v

tends to a finite limit when the quantities e, ..., ¢, tend independ-
ently to 0. Then this limit will be called the principal value of the

y A
integral j , and will be denoted by

t

P[:f(m) da.

5. Historical and Critical Note.—The set of relalions which serves to define the
principal value is, in fact, o
€ = € (L = |, '_), ceey 11)-

The priucipal value was first defined by Cauchy. But Cauchy’s ideas on the sub-
ject of infinite intcgrals had not the degree of precision required by modern
analysts. So far as I am aware, he does not recognize the distinction between un-
conditionally and conditionally convergent infinite integrals at all. In some of his
earlier memoirs, indeed, he does not distinguish principal values from ordinary
finite integrals. And he does not seem to have observed that, if the subject of
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integration becomes infinite like (z— X)*, the only case in which the definition of
the principal value is useful is that of u = 1.

There is so much that scems arbitrary, at any rate from the point of view of the
theory of functions of a real variable, about the conditions

’
€ =€

by which the principal value is defined, that its theory has been practically
neglected. Thus Riemann, who was the first to give a precise form to the defini-
tion of the infinite integral, expressly excludes it fromn consideration. And in the
best theoretical treatises (as, e.g., Stolz, Jordan, Harnack) it is generally dismissed
with a remark; sometimes its very legitimacy appears to be called in question.
For instance : ’

¢« Cauchy hat . . . Hauptwerthe (¢alcurs principalesy in Betracht gezogen, auch
wenn . . . keinen Sinn hat. Es ist jedoch uns unseven Ueberlegungen klar, dass man
besser thut, dieser Einfuhrung nickt cu folgen’’ (Kronecker, Vorlesungen, p. 211).

¢ Dass der Begriff der valeur principale einen Integrales, den Cauchy aufstellt,
nicht statthaft sei, braucht nicht erirtert zu werden” (Schlifli, dcta Math.,
Vol. vir., p. 187).

It is, at any rate, quite clear that the principal value is not what the last writer
asserts it to be: ‘was er [Cauchy] so nennt, ist eine Swmme von Integralen, dic
cinander nichts angehn.”’ For instance, if ' (2) be a function of the complex variable,
analytic near the origin,

1 F(z 1 [-e
PJ &) 4r — tim ([ +j )
-1 % €ag € -1
1 _
is determinate. But the principal value is neither the sum of J , J * por the sum
1 ) € -1
of j, J , which are not convergent.
o Ja

Again, in the Encye. d. Math. Wiss. (1. ii. 1, p. 38) itis asserted that the ordinary
formula of trunsformation cannot be applied to principal values. We shall sec
later that in such cases as ordinarily occur this statement is untrue. The fact is
that the interest of the principal value depends upon its frequent occurrence in
connexion with the ordinary, elementary functions of analysis, such as

1
e log #, cosecz.

These are of course extremely special functions. But we must distinguish, with
Borel (‘“ Mémoire sur les Séries divergentes,” Ann. de PE. N., xv1.), between the
theovetically gencral and the practicelly gencral.  The simplest special kind of infinity
of a function across which its integral is only conditionally convergent is a simple pole ;
and in general analysis this is, of course, the most important kind of all. Indeed,
when we look at the matter from the standpoint of the theory of functions of a
complex variable, and consider the methods used in contour integration, in which
poles are often excluded from the range of integration by semicircles having the
poles as centres, the particular significance of the at first sight arbitrary conditions
¢; = ¢; becomes quite plain.

It is worth remarking that formule involving i)rincipal values are very often

c2
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simpler than the corresponding formulre which involve ordinary integrals. Thus,
for instance,
0
\.m dz =T -PJ . lh’; =0
0

¥ B
a?4+a? 20

* __da _. T . dr _

jo cosha—cosz vinha' jn COSa—cos®
"The consequence of this is that the easiest way of evaluating an ordinary integral
is often by means of its conmexion with a principal value. And by the use of
principal values the range of some of the fundamental double limit problems of the
integral calenlus can be considerably extended. I hope to illustrate these points

systematically in a serics of further papers. For the present I may refer to a paper
in the Quart. Jour. of Math. (June and September, 1900).

Llementary Properties.

A «
6. (1) P L f@)de=—P Lf (=) dz.
rA4 n » A
(it.) r L %f! (&) de = '.::1’ L fi (@) da.

(iii.) P JA of (2) dw = xP [ 4 (@) de.

Ja

A
Gv.) If P [ f (®) da is determinate, so is Pr f(=)da (a<c< d),

except possibly for a finite number of values of ¢, and

¢ i A
PJ' +1>' =1>I .
a . C

e

o4
(v.) PJ f () da ds a continuous function of < for all values of A for
a

which it is defined. It has a derivate equal to f (2l) for all values of A
jor ahich f (A) is continnous.

We need not delay to prove the above almost obvious theorems,
which result immediately from the definition and the covresponding
properties of ordinary integrals. We will only remark that they are

cqually true of any particular value of an integral { , when the
a

range only includes a finite number of points across which the in-
tegral is not unconditionally convergent.
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(vi) If f (2) be continuous in general in (a,A), and F(z) be continuons
except at a finite number of pornts X;, distinct from o or A, and there
become 1ufinite or discontinuous tn such a way that

lim {f (Xi—e)—f (Xi+e)} =0,

and if F (a) have a derivate equal to f (x) at all points at which tive lalten
us continuous, then, for all values of 2 in (a, A) other than X

F(x)—F(a) = P [ f (x) da.

For, if, e.g.,, X; <2 < X;,,,

r f (@) do = F(z)—F (Xi+e),
Xite;

,[i‘_!‘ fx)de=F(X;—e)—F (Xi.1+€.y),

i-1te g

and on adding and proceeding to the limit the theorem follows.

7. Suppose, in particular, that ¢ (x) ¢ (z) is a product of two
funetions which satisfies the conditions imposed upon F'(z), while
(=) ¢ (), ¥ (=) ¢ () satisly those imposed upon f(x). Then

4 4
P L@@+ @@l =[s@3@ ]
the formula for integration by parts.
. . 2
Let,eg., a=0, A=w, y(a) =z, «p(m):log(l—-%),

where p >0. Then
0 9 » )
[ log (1— ]7_) de = 4»1’[ -Bi"‘—.,= 0.
0 @& op—x
A
Weonly defined P j when 4 was finite. But, if there be only a finite
@ .

o

» H
number of points X, all < H, Pf is simply P[ +§ , if this be
a Ja H

determinate.
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Convergence® of the Principal Value over an Isolated Infinity.

A
7. The principal valne I’J has so far only been defined in the

«

case in which (a, 4) includes but « finite number of points X; across
which the integral is not unconditionally convergent. Wider defini-
tions will be given shortly. But tirst we must consider more in
detail the possible characters of these points X;. There is only one
case with which we need seriously concern onrselves. As we have
already pointed out, the principal value is a special notion which
derives its interest from its frequent occurrence in connexion with
certain familiar functions. It wonld therefore be futile to attempt to
state theovems connected with 1t with the utmost generality of which
they ore capable. That would be to try to gencralize what is
essentially a special case. Our object will be rather to prove a few
theorems geuernl enough to give an account of such cases as we shall
meet.

Infinities X'
8. We detine the functions
L:,, P, ...
by the equations Iy =log'a|, Pe=l, ...

We shall sny that a function f (¢) has an infinity X" at a point & = X,
if a finite interval (XN—¢, X +¢) can be found within which f (=) can
be expressed in the form

¥, (@—X) © (),

where (i.) © (&) is o function which possesses a continuous derivate
throughout (X—¢, X+4¢), and

GL) ¢, () =jw|" | Bl | V™

* It is, no doubt, verbally inaccurate to say that ¢‘the principal value ir con-
vergent’’ ; the principal value is o limit to which something else converges. How-’
ever the expression saves n good many rather awkward periphrases. And it is
quite usual to say that an ordinary infinite integral converges, although this is open
10 the sume criticism. Strictly speaking, to say that

® .*

8ln 7

—dz
0 &

is convergent is only a short way of saying that it is a limit to which something
else converges.
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It is to be understood that some or all of the symbols of the absolute
value on the right may be omitted, provided no difficulty as to reality
arises. Thus y, (u) might be

W, |wlt, |l

It is also to be observed that, if <0, or if r=r ... =r_,=0,
r;< 0, the point is really not an infinity, but a zero. But no con-
fusion will arise from this.

9. Tv avoid misunderstanding later we add the following remarks on the subject
of these logarithmic factors.” All of

u, Pu, Bu, ...
become infinite for « = 0, . Butalso
[Pu| =0, u==%1 }
=0, #w=2e¢ Lec-! ’
|[B| =00, w=2x1, e ke? }
=0, wu=d4c, c~° zet” peme!
and 8o on. We are, however, interested in these logarithmic products only in
connexion with the behaviour of a function in the immediate neighbourkood of u = 0.
So we shall suppose all these other possible infinities excluded from consideration,

either by a sufficient restriction of the range of integration, or by a suitable choice
of exponents r, ry, ..., 7,.

Since, if ¢ (1) be real,

el oW _ o)
——loglfp(u)l--"() (¢ v»(u)
1

a Py = —
dn el .. "ty
. 1
t LB} .
Jush as du 0§t = log » logn ... logv-1u
As soon as « is small enough P =log" u;

but, by using the functions *, a good deal of possible ambiguity as to sign and
reality is avoided.

It is well known that the integral [ f () dz is absolutely convergent
across X, ief r<orifr=l,n<—=orifr=1, =1 ...ri,=—1,
< —1. When » = 1, we shall write Q, for y,; so that

Q, (u) = -11‘—1:1 | U |7

Some of the symbols of the absolute value may possibly be omitted.
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In what follows we shall suppose, for simplicity, as we evidently
may, that the range is so restricted that all of the functions l'u,
i =1, ..., v are positive.

THEOREM.— If f@@®) =9, (&—X)06 (),

where © (x) vs a function which has a continuous derivate near a = X,
and

Q, (u) = —};—Ifl Jlul™;

and £ be a sufficiently small finite quantity, then

Pr”f(m)dw
X-¢

will be convergent.

For (!X+E+ r";) F(z) do

X+e X-

e
= [ (F (X+u)+f (X—u)} du

¢
= J Q, (u) {6 (X+u)—0(X—u)} du

[
= 2]’ IO {l'u}"0 (X+0u)du, (—1<6<1);
el = =
and the limit of this for ¢ = 0 1s plainly finite and determinate, since

lim »Y I {l‘u } Ti'=(,

nat 1

for any positive value of y. Hence the theorem follows.

It should be observed (i.) that, if the exponents #; satisfy certain

. X+t X+¢ .
conditions, not only P.{ , but ‘( also, is convergent; (ii.) that
X-t X~

[(@—X) f (2) dv is evidently convergent across z=X; and (iii.)
xr
that ( f(z)da becomes at most logarithmically infinite for 2 = X, in

the cases in which it does not converge up to z = X.

"That is to say, as ¢ (z) = r S (2) dz becomes infinite, its modulus remains less

than the value of a certain logarithmic product. This may be proved as follows : —
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In the first place
¢(X—¢) = j F(X—=u)du

=_J' L {in}rio(X ) dn.
et 1 .

We may suppose the upper limit (say ¢) so small that ® is of constant sign
(say > 0), and Pus1,i=1, o v (0 <u=E) (a)
Also we may suppose 1y, 73, ..., 7, all >0, and #+1>29+9;...+r,. For, if
these conditions are not satisfied by the indices »;, we can substitute for f a
function £’ whose indices P satisfy the conditions

! ’ ’ ’ ’ ’ ’ ’
T2y Ty vy 7y, >0, 9y Ty, 1141 > 2403047,

and then, if we can prove our conclusion for f”, it will follow a fortiori for f, in
virtue of (a). Then

- =__..1._. !d. el E i e (X —
¢(X—¢) "1+1Je g L} {He} T @ (X

=_-’ +1 [{Iu}'.oln{l u} 9]( T J {llt}""‘n{l'u} 0 du

+s 1 'z ,,j —{m}" n {l‘u} T {I‘u}""edu
1+ 2 l
1

= ¢(e)+ zf Vi (¢), say.

Here & (¢) is the sum of

; ~+1 {te}n ’ll'I {lie} ‘0 (X—¢)

and terms which remain finite as e tends to zero. And we may therefore suppose

¢ so small that
() >0, 0< eS¢t

Also y; (¢) > 0, and, since the subject of iﬁtegmtion in §; is less than that in ¢, for
every value of « in question [by (a)]

P (X—€)> Yile) (4=2,3,..,¥).

21‘.’
Hence 0 < (l— . )45()(-:) < q>(X—e)—’TA1:A1.§r.~|p.-(e) =& (e);

"+l

e, ¢(X—¢ < -N1F ‘ ~ @ (e) < [:H{ls}"‘l {fe} +K]

r+l-37r; 1,+l—21.

where H, I are some finite constants.
Thus our conclusion is established.

11.. We ghall not have oceasion to consider in any detail principal values other
than those in which the subject of integration behaves like this near each isolated
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infinity across which the integral ceases to be unconditionally convergent. An
example of another kind is

1
PJ sin-l- d—’:=lim{oosi—cosl}=0.
-1 z & €0 € €

12. We shall also find the following lemma useful in the sequel.

A Lemma analogous to the First Theorem of the Mean.

Lemma.—If O (x), ¢ (z) be functions which have continuous derivates
in (X—§ X+¢), and O (z) do not change its sign, and

, f@=02@-X)0 @),
then will

(X+¢
Pl  f(=)¢(z)dz
X-¢

i X+t X+t ‘
=0 P[ "r@ats (4w @-0f @
X-¢ X-¢
where -¢ é Iz é £

That each of these three terms is determinate follows immediately
from what precedes. Also

X—e X+¢
('jx—e+ !',\’-4-:) fédo
¢
= f {f (X4u) ¢ (X+u)+f(X—u) ¢ (X—u)} du
¢

=¢ (X)[ {f(X+u)+f(X—u)} du
+.[ff(X+u) {'gb (X+u)—¢ (X)}du
—Iff(x—7‘) {¢ (X)—¢(X—-u)} du.

When ¢ tends to zero the first term on the right tends to

X+t
$ (X) P[x_ef (=) de.

The second is
'rf (X+u) [u¢'(X+9u)] du (0;0; 1)

= & (X+0) ﬁuf(X+u) s (0<A<?).
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- The first form shows that the term’ tends to a limit for e = 0. The
second factor of the second form also tends to a limit; and therefore
¢’ (X +A) tends to a limit, which must evidently be

¢ (X +x) (Oékéf)-
Thus the limit of the second term is
¢
#X4) [[of ) u=¢ X0 [ 6-X) @) da
X

Similarly the third term tends to
X
§x-0  @-Dfe

Since (x—X) f (=) is of constant sign, we may replace the sum of
these two limits by

’ X+&
¢ x| =D f ()
and the lemma is proved.

If, in particular, =1,
X4E o ot

PL 0. (m—X)¢(:t)d.v=¢(X+;4)j (4—X) 0, (1—X) da.
A= : X-¢

X+ ¢ (2) dv

Thus, eyg., P[ %
X-¢ x—

=264 (X+p) (~¢<n<8).

Infinite Lomats.

13. We shall now consider the case in which the range is infinite.
If there be but a finite number of infinities across which [f (2)dw is
not convergent, no new point arises. It may indeed happen that

lim jﬁ"vf () dx

Hew

@

is finite and determinate, although [ is not. If s0, wg call the

former a principal value. . We shall not be concerned with this,
however ; and indeed principal values of this kind are not particu-
larly interesting, and may always be reduced by simple substitutions
to those of the kind which has already been considered.
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We suppose then that f (z) has an infinity of such infinities,
X, <X,<X,... (IimX,=+w);

further, that each of them is an infinity X' (§8), and that there is
a positive constant H, such that

Xo-X>H (=12 .).
Then P @ e ¢))

is determinate for any finite value of # > a and distinct from any X;;
in particular, for values of x > a which satisfy the conditions

lm—Xl’ l >3 (7" = 1, 2! "')1 (C)
where 8 is any small fixed positive quantity.

Then, if, when 2 tends to co through any system of values which salisfy
condition (c), the principal value (1) tend, however small be §, to «
Sinite linwit <ndependent of the particular system chosen, this limit (which
must evidently be independent of 8) will be called the principal value

w

of the integral j , and denoted by

a
P[ f (@) d.
a
Similarly for an infinite lower limit.

14. We shall shortly give a still more general definition, which
may be nsed when condition (c) cannot be satisfied, or when f (z) has
infinitely many infinities X* within a finite range. But we may first
illustrate the preceding definition by some examples.

= s sinar 1
15. (i.) Let S@) =

Here X, = in. Suppose 0<3<jm. Then

Ness e N _ fivhe  (IN+ie '
PI ’=j!+sz“D -I i (1

0 0 1 {i=h)= Ne+d

P de ot P i
Also PJ =Pj (_)-ﬁ‘ma.("-.*-ur) _ (.JJ —

li-d)n ~jr sinz 6° 4 (¢ + i)
b ginex  dr
opr Sinz 84 (£ +im)?

= (-)"cos ainj

Q. ir  cosar dz
+ (=) sincir P ——
~1e 8inZ 674 2+in)



1901.] Elementary Theory of Cauchy’s Principal Values. 29
We can determine a finite constant L, such that

ls—m-"f <L, —ir<z<in;

sinz

and then the modulus of the first term is
L T
0 +{(i—%) ﬂ’}

the general term of a convergent serios. Again, the conditions of the lemma of
§ 12 are satisfied by the principal value in the second term, if we put

1 , co8 az
At A ey

Also P J’h _dL —o.

-4 sln &
Hence

i~ copaz dz -
P [ 2 _a
j —fr sin z 0”+(z+ur)‘ ¢(F)j_'51n_‘; d ( i”l’ ":‘.iﬂ)

_[__ asinau _2cosau(u u‘n):] Jre
= m - hm g S V'
T+ (utin) {6°+ (u +imp2}2
i.e., < [_7- St e 2(i+8)m
2+ {(i—4)n}? {63+[(t—k) 7}
in ubsolute value, K being some finite constant. And this again is the general

term of a convergent series.

Ne+d ’
Hence I’j ** tends to a finite limit for ¥ = «. For the lust term of (1) evi-
0

dently tends to zero. And so does r [Mr+3 <z < (N+1)7—-3]. Hence,

Neis
according to our definition,

®ginar dz
o sinw 0tz
is convergent. As a matter of fact its value, if <1, 6> 0, is

- ginh a8
26 sinh 6’

16. (ii.) We shall now establish the convergence of a general class
of principal values which iuciudes the preceding example as a
particular case. In the general case, however, we are obliged to use
an argument which is not quite so simple.

A General Convergence Theorem.

TrEOREM.—If ¢ () be a function which possesses a continuous dertvate
¥’ (x) for all positive values of @, and ¥ (), ¢ (v) tend steadily to zero
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for 2 =, then
p|[ sinaz " cos az
[y @a p[ 222y @2
will be convergent, provided a be not an integer.*

Take, for instance, the former of the two. It will be clear, after
the discussion of the preceding section, that it is sufficient for our
purpose to prove that we can choose N so large that

N ' f+d)m
3 p f

N+l ("-i)"
for all values of N'>N; o being an arbitrarily small positive

quantity. Now

G+ ~ " |
‘zpj = l(—)PJ §3‘l"—(-’+”)¢(m+w)dm

N+1 (i-3)w N+ Am s @

< o,

¥ ginaw Y
= — - + ds
j 1 HE T A l( —) cos airy (z+1i7) du

T N
+Pj SIS (— )smazm/z(v+z7r)dm 1)

—ir SINZ Nl
Now the series

S (=) cosaim ¢ (x+7m), 3 (=) sinaim § (x+1m)

are uniformly convergent for values of z in (—%w, iw), if a is not an
odd integer.

For, by a well known lemma due to Abel,

n’ -1

2 wv; = 3 (u — ;) Vit Vi,
if Vi=v,+v,4y ... +v;
Let, for instance, v; = (—)‘cos aim, u; = Y (x+om).

Then V; oscillates between finite limits as ¢ increases. And, owing
to the conditions imposed upon y (z),

= (wi—ui,y)

* If ais an odd integer, the integrals are of the ordinary kind, and are convergent
or divergent according as ©
I Y (z)dz
0

is convergent or divergent. If a is an even integer, the first of them is an ordinary
integral, und convergent ; the second is a principal value, and convergent.
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converges absolutely and wuniformly, and w; tends uniformly to zero.
Hence =u;v; converges uniformly. A similar proof applies if
v; = (=) sinasm. |
It follows at once that we can make the modulus of the first term

of (1) assignedly small by choice of N. And the second, by the
lemma of § 12, used as in the preceding section, is

- N L . s ! 5.". )
[cos az % (—)sinair ¢ (a:+ur):| -~ da,
N+ z=p J -4 S'lll T
where —3rS<ulin

The quantity in square brackets is
» »
—asinep X (=) sinair ¢ (u+ir) +cosap = (—)isinarry (n+iw).
N+l N+l
Now S (=) sinair ¢ (a+im)

is also uniformly convergent, by the same argument as before.
Hence the modulus of the second term of (1) can also be made
assignedly small by choice of N. And so the theorem follows.

A similar conclusion helds for

cos

Py gy P[22y @ <o),
0 7 ¢

(w0

P| sinax tanzy (z) du,
Jo

rw
Pl - sinaz z) da,
Jo skn (L'—Slna‘l,( )

pl _cosaz
Jo cosz—cosa

¥ (z) de (0\ a<m),

Thus ¢ (x) may be, for example,
s (O<p<l),

-~ Az 1 Z i —=AZ

Y il P ae (0>-1),

It is obviously sufficient if the conditions as to the steady decrease of
¥ (z), ¢ (x) are satistied after some finite value of .
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Principal values of these types are interesting in many ways.
Cauchy evaluated some of them, as e.g.',

P sinazx _dr - P P cosax dz
_[ sinbz 112" cosbm T+2t

but he never defined precisely the sense e in which they are convergent ;
nor, so far ag I am aware, has any later writer done so.

A more general Theorem.
17. (iii.) THEOREM.—If ¢ (%) satisfy thé conditions of the preceding
section, and ¢ (w) be a function which has a continuous derivate for all
values of u, 0 fu 21, then

Pj' cos ‘% (cos* ) ¥ (=) d, P[’ S;}‘;“ﬁ (sin*z) ¢ (2) dz
well be convergent.
Arguing as before, we obtain, instead of equation (1) of § 16,

¥ (it+d) = Am
X l'j =j sm aa’(p( sin® a,) 3 ( Y cos aim ¢ (x4in) dz

N4l (i-3) = —4m sin
A N’
+1’j 9Q§Q}¢(51n 9.) E ( )¥ sin azmp(a,+1,1r)dm

~and, as before, the first line can be made assignedly small by choice
of N, and the second is (usinrr the lemma of § 12 once more)

[cos az ¢ (sin® m) ( Yisin airy (’b-}-z'r)] J ———-da.

—jrSina

The conclusion follows as before.

It would not be difficult to generalize these theorems fnrther; but what we have
proved will be sufficient for our present purpose. We nay mention, among
formulce of other typcs, the two

® d _
o €08 T—pusin s

2l 1. de T
0 cos:c-p» sine et 2 (cosh a + pa sinh «} J

(»>0).

These follow easily from Cauchy’s theorcmn. We have .only to observe that the

POOQS of cot 22 = pr (p > 0)

are all real,
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Transformation of Principal Values.

18. We shall now consider the question of the transformation of a
‘principal value by the substitution of a new variable. We shall
~ begin by considering the case of a principal value defined as in § 4.
When we attempt to apply the same process to the case in which the
limits are infinite, and the principal value defined as in § 13, we shall
find that the definitions already given are inadequate. We shall thus
be led to a more general definition.

A
19. Let us suppose that Pj- f (x) dz is convergent, the range of

[(3
integration including one, and only one, infinity X', viz., @ =X;
and that, if £ be any positive quantity, however small,

X-¢ A
J‘ k] j ' I
. « Xa+¢

can be transformed in the ordinary way by the substitution

z=¢(y), y=¢"'@ =y (2);
finally, that ¢ and its first two derivates .are continuous in the
immediate neighbourhood of # = X, and that ¢’ (y) is not zero when
: A
z2=X. "Then P f can be transformed by the ordinary rule, that is to
say, «

4 i
P r@a=r| s ] wa.
In the proof of this theorem we shall need the following lemma.

20. Lumma—If f(u) = D(u) 6 (u),
where £, (1), O (u) are functions of the type considered vn §§8, 9, 10,
and «,  tend to zevo tn such o way that

lim %{}j: 0 (p>0);

then lim Pj“ 7 (u) du = lim P j =0;

-K

and so, if € be small enough,

([ [)=of,

VoL, XXX1V,—NO. 766. D



34 Mr, G. H, Hardy on the [March 14,

For j “ f(u) du = j Q, (v) © (u) du.

Now we may, suppose «, & 50 small that £, (z) does not change its
sign in (x, «’), and increases as » decreases, and x> x. Then this is

o\ j 0, (w)du (k<A <K)

<O (A)(«'—«x) Q, (x),

which tends to zero with «, «’.
21. Let b= ¢' (a)a B= ‘l’ (A)»
and suppose, e.g., b < B. Then

eflrimn ([ s

=1lim (Jw.(x—f)+ j:(xw)f [¢@]¢@®dy. D)

eea \Jy
Since ¢’ (y) is not-zero for 2 = X,
b<y(X—8) <y (X+8) <B.
Now flew]=a{s@m—-X}e[é ]
and ¢ (1) =X =¢ () —¢(Y), say, .
=@y-1¢'(N+3@-Y)"¢"{Y+0(y- 1)},
where 0261

Heuce 1 = 1

e=X "~ (y—Y)¢'(Y)
+ terms which remain continuous at a = X.

Also  M(e—X)=1l(y—Y)+I¢ (¥Y)+1 [1+%$—(1}; &

=ly-Y)+l¢' (Y)+(y—Y) 6,(y),
where 9, is continuous.

We shall suppose for simplicity that

Qou= 1 | b | B
"
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when there are more factors the argument is more complicated, but
in principle the same. Also we shall suppose that ¢ is the greatest
integer-in r,
n=s+c (0<s<1)
Then [l (x—X) |
. Y | (y=Y)e,|"

=|l@y=-Y)|" |14+ 2 4 ML

! Ly—=Y) l(y=Y)

. c+l )
=R@-D "+ 3 a[l@y=T) |

+ 1= " p+@G=Y) |Ly=Y) |9 (y),
where ¢ i3 a constant, and p (%), q (y) ave continuous functions.

Again,

P(e—X) =P (y—Y)+1 { 14 W (Y) | (y=Y)8, }

Te=01"tG-Dn|
=P G=D)+3 7l ly=D) "+ [LG=T) | A @)
' +@=Y) (),
where y, is a constant, and A (y), # (y) are continuous functions.

On forming the product Q, we sec that it is the sum of—

(1.) A finite number of terms each of which possesses a convergent,
integral across y =Y.. It is to be remembered that

G- L= P E (y=Y) ¢ (1)

is a term of this kind, if ¢ (y) is-continuous and p < —1; so that
these terms include, e.g.,

(y—Y)" [L(y—X) |"*A ()
and (y—Y)" 1 (g—T) "B (y—Y) p ().

(ii.) A finite number of terms of the form

AQV’ (y— Y):
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where 4 18 a constant. Hence

I
Plile@]s
is convergent. Also, if ‘
Y(X=8 =Y—n ¢(E+§=Y+r,
X—¢=¢ (Y)—np" (Y)+3n"9" (Y—0n),
X+&=0(Y) 4+ (Y)+40’s" (Y +67),
©0Z6 g1

Hence 171

,"2

remains finite as n, n’ tend to zero with £; and therefore, by equa-
tion (1) and the lemma of § 20,

PJ:‘:]’ (@)dx =D j:f [?‘ (?/)] ¢ (y) dy.

22. Thus, for instance, if # =14 and H % nu=,

Tgin ae de Y Hgin ay?
Py - = 2P S 4

— = Logl-2u (] .
o Sina o 0 siny”y dy (O<p<l)

1f H tend to oo through a series of values included in the intervals

{mr-i-S, (n+1) 7r—8} (n=12,..),

ench side of the egquation

tends to a finite limit, and it is natural
to write

0y

But the right hand cannot be defined aslin § 13, since the intervals

®sinax de “ &1 3 ;
P -:l:!.. -’( ’_'E = Q.P .S_lzl_(.l:'{ :]/1 ~2u d'/‘
o Bina ax, siny*

{/1}#, V+l)r} (=12, ..)

diminish indefinitely as = increases. This suggests that our former
definition may be extended.

23.. The following general definition includes as particular cases

those which we have been considering, and justifies eqnation (1)
of § 22.
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A General Definition.
Let f («) be a function which possesses a convergent integral over

any part of an interval (a, 4), where /4 may be o, which does not
include any one of an infinite series of isolated points X,

(a <..< X,’ < .X.u]...., lim X,- ‘T- A);

i=2

while P(f(2)dw

is convergent across any point X;. Tet the points X; be included in
a series of open* intervals

S,;' 59

no two of which have any point in common. And suppose that the
interval ¢, , depends on a parameter 8, and that as § tends to zero
each of its extremities tends steadily to X, Let the remainder of
(a, 4) be denoted by I;.

If z < A be any point of I,

ij (@) da )

i8 convergent.

Then, if, when @ tendsto A through any series of values lying entirely
in By, (1) tends, however small be 8, to a finite limit independent of the
particular series chosen, this lmit--which must evidently be inde-
pendent of 8—uwrill be called the principal wvalue of the integral

4
j , and will be denoted by
¢ 4

Further generalizations are at once suggested. It is clear, for
instance, that we may extend our definition to vmeet the case in
which the infinities X, form any enumerable set, and that similar
definitions are possible for ‘conditionally convergent” integrals
other than principal values. But, for the reasons stated in §7, [
shall not enter into this.

24. I shall conclude - this paper with ‘an illustration of the
theorem of §§19-21, and the definition of § 23. I shall determine

* An open interval is an interval which does not include its extremities.
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whether " 1 i

PJ‘O . by @
sin (n:r-}- 1,)

b

where a,b>0, ab< i
is determinate or not.
The infinities of the subject of integration are
e=0, ar=}urt/{(Fur)—ab} (n=1,2,..);

and, except for 0, ave infinities X'. As u increases

inr+ o/ {(Fum)'—ab}
. tends to gnr— o/ {(3nr)*—ab}
to zero.

Consider the transformation

1

5oty * v (y'—4ab) }.

b
y—aa,-}-;c—, =

As 7 increases from 2,/(ab) to « the upper value of z increases

steadily from \/ (%) to w0, and the lower value decreases stendily

from \/ (-(-l:—) to 0. Also

’“’=91;;{1*7<7?imb—)}*

” 20
W= F
(i —4ad)?

and these are continaous for all values of y > 2,/(ab). Finally,

1 dx 1 .

= M= 2./ (ab).

v dy  /(y*—4ab) y> 2/ (ab)
Hence, so long as 4 is distinct from any of the infinities,

Pj.A - ] ——— (EJE:P

J(Vja) +¢ gin (aa'.+ b) x J2y(0b) +9
@

CA+bA ] dy
siny v/(y*—4ab)’

however large be ., and however small be e >0. Here 5 is > 0, and
tends to zero with e
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Let & be an m"bitra.rily small positive quantity, We can make 4
tend to oo in such a way that c4+ —f—l— tends to o through a series
of valnes entirely included in the inteivals
{nrr+8, (n+1) 11-—8} (=12 ..),
and then the limit of the right hand is

Pr _— -y ;
2//(ad) +n BNy A/ (y'—4ab)

00

and it is easy to see that the left becomes P] according to the
) J(bja) +e
definition of § 18. '

The limit of the right hand for e = 0 is determinate, and so

P 4 _____.1.-_._ ‘E = ij _1__ ___d_"i__.
V() si ( b) w7 oy siny V/(yP—4ab)
o) sin | ax 4 —
x
Similarly
P j vem 1 de_p J“’ 1 dy
0 - sin (a:v+ _Z_) @ 2 SN Y (y'—4ab)
Finally,
* 1 dx «© 1 dy
PJ —_— = QPJ 7 ————,
0 sin (aw+ 'f) @ 2y(ab) SINY v (y*—4ab)

This is easily verified by the help of Cauchy’s theorem. In fact

each integral = .———:. And more generally, if

m™
7 (ab)
(n+1) 7> u = 2,/(abd) > nm,
. " 1 ’
each of the integrals = w_E" JTo— Gl
Similarly, if a, b >0, ’
® 1 da i 1 d.,/
B N Y Y T
L sin (aa:——b-) v - siny /(y'+4ab)

T
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We may perhaps mention the following formule of the same kind :~—-

msin(am-{-%) P
Pl — 2l 8 050, [cl>lal, 1d]>b])
0 sin (c.'c+-—) @
@

o th (a0 —z ) :
2 sinh (cﬂ %) (¢2<9

_ 1 sinh (aﬂ—-%-) N msinh (a,\/—;i —-b \/—; )
26 sinh ((:0 3 ) d—cb”

noSin(th*'%)_ P R ,
Pj j S [a>»o, fe|>[al, [d]>[b],
0 sm( x4 - ) =
&

sin ( of + g ) # 01

=0 (ed<0) )
# sinh (a\/'f~—b ' _;) o
= __'rl:—(ce" \/ (0<6d< %) @

These and many other similar formulw, which may all be proved by

means of Cauchy’s theorem, afford more examples of the use of the
definitions of this paper.





