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a, B, v, 9, ¢, p, @ connected by five equations. The equivalence of the
two sets of formule may be shown withput difficulty.

To the Table 2 of the Quintic Equations, given in the paper, may
be added the following result from Legendre’s “ Théorie des Nom-
bres,” Ed. 8, t. ii., p. 213,

I A L 1

641 | 1-4+1 —256 —564 +52388 —5120 | =0,

calcalated by him for the isolated case p = 641.

On the Theory of Matrices. By Mr. A. Bucsem, M.A.

[Read Nov. 13th, 1884.]

InTRODUCTION.

The methods used in the following paper are essentially, though
not historically, an extension of Hamilton's theory of the linear func-
tion of a vector, and the simplest way to connect Grassmann’s methods
with the theory created by Cayley and Sylvester will be to conneot
them both with Hamilton’s investigations,

It is, or ought to be, well known that the linear and vector function
of a vector is simply the matrix of the third order. This is obvious
from the definition : for, if p is any vector, ¢ = ¢p is a vector whose
congtituents are linear functions of p’s constituents ; that is, if

p=wityjtzk, o=2ai+yj+2k,
we must have the three equations
& = ax+a'y+a’z,
¥y =ba+by+dz,
2 = catcy+cs
that is, @y?)=(a a" a’ Yo, Y, 2) ceeriiiniinnnnnnnn(A)
b b’~ b’l
s ¢ ¢

That is to say, it is the same thing whether we say that o= ¢p, or



64 Mr. A. Buchheim on (Nov. 18,

that the constituents of o are obtained from those of p by operating
on them with a certain matrix; and we see that in this sense we can
identify ¢ with the matrix, and we can say that

p=(a @ @) .rinrrniivnrennnnnnnn(B).
b bl bl'

c ¢ ¢

Now, in (A), let p = ¢, that is, let (zyz) = (100); then
(az’ / ') = (abo),
that is, o = ai+bj+ck,
or say, ¢t = ai+bj+ck =a.
In the same way, we get
4= ditbi+dh=d,
¢k = a"i+b"j+c"k = a”.
And then ¢p=¢ (zit+yj+zk) = (az+a'y+a"s)s
+(bz+by+b"2) j
+(ca+cy+c"a) k
= o(at + b + ck)
+y(a + bj+ck)
+2 (a"t+b"j+c"k)
= 2a +ya'+za”.
And we can say that (the linear function or matrix) ¢ changes ¢, ;7', k
into three given vectors a o, a”, and chu.nrres any other vector
@i+ yj +2k into zu+ ya '+ za”

Now, on looking at what precedes, it will at once be obvious that we
have nsed none of the special properties of ¢, j, k: 8o far as our work
is concerned, they might have been any three vectors, provided only
that every vector could be expressed in terms of them ; and if we call
three such vectors asyzygetic, and change the notation, we can say
that a linear fonction, or matrix, changes three given asyzygetic
vectors a, 3, v into three given vectors «’, 8, ¥, and changes any vector
za+yP +2y into za’+y3' +2y. As regards the word *asyzygetic,”
I remark that any vector can be expressed in terms of afy, provided

Safly does not vanish ; and we know that SufSy = 0 is the necessary
and safficient condition that we may have a relation Aa+pf+vy = 0,
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where A, g, v are scalars : it is better to use this as a definition of
asyzygetio vectors ; viz., three vectors are asyzygetic if they are not
connected by a linear relation with scalar coefficients.
If we use the notation of the paper, we can write
= o, B, 7" )
a, B, v
¢ (a+yB+2oy) =2d +yB +27

It @BY)=(a b o Fahy),

a b

al’ b” ol’

¢=(a o a)

b v b

’, »”

c ¢ ¢

Before passing on to matrices of any order, I shall give a simple
application of the method as an example. I choose the proof of the
identical equation (Hamilton’s Symbolic Cubic).

It is known (¢f. Hamilton’s Elements, § 358, seg.) that for any
matrix ¢ there are in general three scalars A, g, », and three vectors
a, 3, v, respectively, such that.

ga=la or (p—N)a=0
gB=pB or (p—nu)B= TR (C)
py=vy or (p—»)y=0

and that the three vectors a, 8, y are asyzygetic. Let p = za+y3+2y
be any vector; then ’

@=Np=2 (=N a+y (9=N)B+z (9=N) 7
"=y(p—7) B+s(p—N) v, by (C),
(=) @—N)p =y (p—p) (#—N) B+s(p—n) (p—A) ¥

=Y @=N)(0—p) Bt (p-N) (p-n) Y

=z(¢p—A)(p—p) 7 by (C),
(@=7)(p—=p) =N p=2(—N)(¢—p)(p—7)7
=0, by (0).
That is, (p—A) (p—p) (p—») p always vanishes; that is,
(9=N) (p—p) (p—») = 0.9
* This result might, of course, have been obtained in one step, and the general

‘theorem is so obtained in the paper. I have preferred the lcnger formn of the proof
because it seemed to show the principle involved more clearly.

VOL. XVI.—~NO, 237, 3




66 Mr. A. Buchheim on [Nov. 13,

We have now to extend this theory to matrices of higher orders. It
is fairly obvious that, in the case of matrices of the third order, the
success of the method depends on the fact that for three variables
(», y, 2) we are able to substitute a single vector (va+yB+2y); and
the only property of the vector that we have used is the following :
If sa+yd+2y = 2'a+yB+2y (a, B, v being asyzygetic), then
e=a, y=y, s=4.
Now, to extend this to sets of more than three letters, take n units

€y, €y, €y, ... 6, (We are not at present concerned with their meaning) i
and in place of the set of n letters #;, @;, ... @, consider the point

@ =la:,el+m,e,+w,e,_-l- vee 2,65,
and stipulate as before that
Yot ae a6t +2,6, = Y16ty + Y8+ .+ Yl
say  a= Y
shall mean Z=Y), =Yy e B =Y
Then we have, for instance,
Az+py = (A2, + 1) e+ 0o + (AB. +1Yn) 60y

where A, p are scalars.

We now require the theorem,—Every point can be linearly ex-
pressed in terms of any n asyzygetic points. Passing over the word
asyzygetic for the present, it is easy to see the meaning of the theorem,
and to convince oneself of its truth. Let # be any point, and let
" a, B3, v... be n given points; then we are to have

:u=‘7\a+pB+v'y+... URTORUPRRRRRRPRN (- ) 8
A, @, v... being scalars, that is

zie+26+ ...+ 2.6, = A(a,6taye+ ... +an6,)
+u (Biey+B,6+ +B.6.)
+v (net+vsest...+va6)
+ '.'. see e

Y] ceve ver aee XY} see

= ¢ Ay +pBi+n+...)
+eg(Aag+pBy+rys+...)
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That is, we are to have

2, = Aay+pB vy +...
g B ¢ 1) B

g = Aag+pBy+vys+ ...
Now weknow that these equations determine A, p, v..., if, and only if,

A=la By Yieewor
ag..ﬁﬁ ‘»73 e

.
.

an Bn Yneeeon

does not vanish. And therefore, if we say that the points a, 8, v ...
are asyzygetic if AZ 0, the theorem is proved, and we have also a

definition of asyzygetic points. But we can get a better definition :
for we know that A = 0 is the necessary and sufficient condition that
- we may be able to solve (D) after putting #,=2,... =2,=0; and
therefore, if we go back to the equation (d) from which (D) was
derived, and write, as we obviously may,

0 = 0e¢, 4 0¢;+ ... Os,,

we see that » points @, 3, v ... are not asyzygetic if it is possible to
satisfy a relation of the form

0=Xa+pB+vy+..,

or, say, if they are connected by a linear relation with scalar co-
efficients ; or, in other words, # points are asyzygetic if they are not
connected by & linear relation with scalar coefficients. This is the
gense in which the word is used in the paper.

Now, suppose we have taken n asyzygetic points e, &, ... ¢, and
have expressed everything in terms of them, and consider the trans-
.formation - ‘ :
Wi Yo oo Yn) = (O Gy oo Qi T2y Ty o @),

Qg . (g vvo Gon

Apy = Az ove Gy

‘write ¢ to denote the matrix || @i ||, and denote the transformation

by y = ¢z.
Now, take z =¢,, that is, take

(e, 2y .2 ) =(1,0,...0);
F 2
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then we get

or

similarly

Moreover,

Mr. A, Buchheim on

(yn Yg o0e ?/n) = (a‘m Qg .e. Apy),

Y= ¢e, = a,6+056+...+0ug = a,*

¢z = ) (e, + a1y + ... + A1n2,)
+; (a3 + Oyt ... +mn)
Foe e e e e e
+6, (Gud + Gy + ... +6ana)
= (a'nletf"aslen'*‘---'*'“nlen)

+w,(aue;+a,,e,+...+a,,,e,,)

+2, (a'l"e,+ag,.6,+'.-- +a1men)
= ey, +2a+ ... +2,a,.

[Nov. 18,

And we see that we can say that the matrix ¢ changes the points of
reference, 6, € ... ¢, into n given points ay, a, ... a,, and then changes
any other point (z,e,+we,+...+2,6,) into @4 +2a,+...4x,a,
This is the definition of the matrix used in the paper; the relation
between a,, &c. on the one hand, and the matrix on the other, will be
made clear by the following set of equations:

hys . Yn) =(ay ay ...... Qi [ Ty 2y ... By),

(@ ay.nan) = (o Oy veers G J &y 0. 60),

Gy Gy veoeer Ogp

Qpy Byg cseeee Qpy

y = ¢z,

a; = ¢e,,

Gy Ogg cooeee [ 0%

(XY} Y ave

Q. Gon ovvone @y

® In strict analogy with the rest of the notation, a, should of course denote
Gpep+0igeg+ ...+ aGyn ey ; but this inconsistency is unavoidable if we are to keep to
the ordinary conventions for matrices. I do not think it need cause any confusion ;
I have tried to guard against it by using a, instead of a,.
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¢ =20, + 2,04+ ... +2,a,

p=Sulr e O
&y 65 ... 6,

It remains to add a few words on the multiplication of points. The
laws of the multiplication of all points depend on the laws assumed
for the units; the law assumed by Grassmann is that known as polar
multiplication; viz., we have ab = —ba, a® =0, for the original units of
reference, and then this law holds for all points.* From this, and the
associative law, it follows that any product of points vanishes if a
point is repeated. We can use this theorem to interpret the products
of points. In all that follows, I use geometrical language. The point
@ is supposed to be the point in a space of (n—1) dimensions, having
a8 its homogeneous (multiplanar) coordinates (=, #; ... 2,) ; and then we
can use the following definitions : let a, 8 be two points, then, if A is
a variable scalar, the point a+AB moves on the straight line af; if
A, p are two variable scalars, the point a+AB+ uy moves in the plane
afly ; if A, p, v are scalavs, the point a+AS+py +»8 moves in the linear
space (three-point) aByd; and generally, if A, A ... A,_, arescalars, the
point A=at+Na,+M\ag+ ...+ A0

moves in the 7-point (a, a, ... a,,); since A can have a o' series
of positions, depending linearly on (r—1) parameters, it is obvious
that an r-point is the same as what Clifford calls an (»—1)-flat.

1 shall follow Grassmann in enclosing all polar products in square
brackets. We have to interpret the product [a8] : we have

[(@+28) (e +XB)] = [aa]+X"[af] +A [Ba]+AN [BF]
= (N'—1) [«f].
For [aa] = [BB] =0, and [Ba] = —[afB].
Therefore the product is unaltered, to a factor prés, if for a, 3 we
substitute any two points of the straight line a3; and it will be
altered if we substitute any point not on the straight line (this can
easily be verified) ; thus we see that the product appertains to the

straight line, and defines it ; we may therefore say that [a] is the
straight line 8.+ Moreover, we see that

[aB (a+2B)] = [aBa]+A [aB8]
=0.

* This law and the commutative (a5 =25a) law are the only laws for which this is
true ; this is proved by Grassmann in his Ausdehnungslchre.
1 Cf. Proc. Lond. Math. Soc., Vol. x1v., p. 84.
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Therefore, the product of two points is the line joining them, and the
product of three collinear points vanishes.

In precisely the same way, we can show that the product of three
points is the plane containing them, and that the product of four com-
planar points vanishes ; and, generally, the product of » points is the
r-pu'int determined by them, and the prodact of (r+1) points contained
in the same 7-point vanishes.

This last theorem can be put in another form. Suppose the (+1)
points a,, a4 ... a,,, to be in the same »-point ; then, since a,,, is in the
r-point (ay, ay ... a,), We have, by definition,

Ay = A1‘11'|‘xg‘-'ls e +hra;-

That is, the (+1) points a are connected by a linear relation, that is,
they are not asyzygetic, and, writing » for r-+1, we can say that the
product of » asyzygetic points is the r-point determined by them: if
the points are not asyzygetic, the product vanishes. Moreover, it can
be proved that, if » points are not asyzygetic, their product will not
vanish, and we have, therefore, the important theorem : the necessary
and sufficient condition for the existence of a linear relation

Z'A‘a =0,
1 .

connecting r points, is [ayay . 1=0.
Lastly, I have to remark that the product of # points ), #; ... #, is
Det | za | [en €5...€n];

and that [e, ¢ ... ,] can always be supposed equal to unity.

On p. 241 of the Ausdehnungslehre of 1862, Grassmann defines a
certain operator, which he calls a quotient : this operator transforms
n givert points of a space of (n—1) dimensions into » other given
points, and then transforms any (2+1)" point into a determinate
point. This operator is, in fact, the general matrix.of the ™ order;
the object of the present paper is to treat the theory of matrices from
Grassmann’s point of view.* It will be seen that some important
parts of the theory are considerably simplified by this treatment. It
is hardly necessary to point out that there is not & new theorem in
the paper, and that its existence can only be justified, if at all, by the

* ¢f. Clifford: * A Fragment on Matrices,” Matk. Papers, 3317,



1884.] the Theory of Matrices. 71

methods employed. The language and notations of the papér have
been explained in the introduction.

1. Take n asyzygetic points, e, ¢; ... e,, and n pdints corresponding
to them, a;, a; ... @, ; then a matrix ¢ of the n'® order is defined as an

operator, such that ¢ = a,,

and that 9306, = Scipe; = ey,

the ¢ being scalars; this matrix can be conveniently written as a

fraction ¢p=09% 0 O
" 61y 65 .. By
. a
or, more simply, o=t

We may, if we please, make this notation more definite by adopting
a notation of Prof. Cayley’s,* and writing

)

e

Another form is also convement and is, in fact, the usual form; let
a; = Zaye, then we write

= (“u Ty’ gy e ):
ag an Oy
Ay gy gy ooe

YY) ses | eee -

viz., we have

(o) a5, @, '") = (.‘7'11 Gp oy I,_eis 63 €5 o00)s
Oy Qg Oy .
“u a'sa “as
and.then ' o=
€
has the form just given,

2. Two matrices, ¢, ¢, are said to be equal if ¢z = ¢'z, whatever o

d |%Jb=-a, b|b_a|=a'
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may be; if ¢ is any set of n asyzygetic points, ¢ = ¢ if ¢ej = ¢'e(;
for we can express @ in the form Zz;¢;, and then we have

4@ = 3ai¢e;
= Zaj¢'e]
= ¢'w.
Hence we can prove that, if ¢ = Z¢e, is any asyzygetic set,
= % 206‘ ’
for g6 = Zcype; = ey ay

Lastly, if ¢'e, = Age,, where A isé. scalar, we obviously have generally
9’2 = Agz, or ¢’ = A¢, and, if gg; = e, ¢ = A,

5. If we have =8

that is, Xp = —I -—-J

This product need obviously not be commutatwe. I proceed to show
that it is associative. Let

’ ”
Y TR
p="2 ¢=2 =2

” ’ ” ”

Then '(¢”¢')¢=(a'—‘,.ﬂ)ﬂ=‘i. LI

a; €; ay 8 €

¢ (¢9) = (“‘ 2_«) =% & _ A

a e/l a: ’ € €

and therefore the product is associative.

The following formaula is important, but no use is made of it in
this paper. + .

Lot - p=2%y o= 2he

® Set means et of n points.
+ It is, in fact, the ordinary formula for the mult.xphcahon of two matrices.
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EBJ (2 [« 7Y bﬂ)
e 7

Th ‘D =
en ¢ ? o
3buey
‘We have ¢ = L;._
. .
2 Qix 3 b,.| 7}
-4 4 "
? Qi €4
26] Sa“ bf‘
=i

~ (k=1..m2).

26} (Ea,, bj‘)
Therefore pp=~Lb—~t — (k=1..m).
: P
6. We have now to consider the following problem: Given a
matrix ¢, to find a scalar A; and a point @, sach that

¢33 = Az
or @=Nz=0
Let 3= 35‘8‘

be the required point, then we have
0 = (¢—A) = 22‘ (¢-A) €fecenervannnnnns ln---(A)-

That is, the  points (p—A) e are asyzygetic; and their product
therefore vanishes, that is, A must satisfy the equation

1 TCE NN L — )}

If this equation be multiplied out, we get an expression fA[e, ... e,],
and, as the second factor does not vanish,A must be a root of fA =0;
and then the z; are obtained (by solving & set of linear equations) as
the coefficients of the syzygy (A). If there are s unequal roots of
the equation fA = 0, we obviously get s points @, one such point apper-
taining to each root : in particular, if the » roots are all unequal, we
get » points. It is possible, however, in every case to get n points
appertaining in groups to the different roots of fA==0. This I proceed
to show.*

s If g=[aul, (p—~2) e,n(a“-A) o+ lo,+ . and if we write down the corres-

-ponding expressions for (¢—A)e¢,, &o., and use the theorem given at the end of the
. mtroduction, we shall get (B) in the form JA[e1—¢,), and it will be seen that fa =0,
the well-known determinant equation giving the latent roots.
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The whole investigation depends on the fact that, since we might
have expressed » in terms of any n asyzygetic points, we can substi-
tute any n asyzygetic points for the ¢, in (B).

Let A, be any root of (B), let (¢~A,) & = €; ; then we have, by (B),

[e[¢] ... 6] =0.

It follows, from this, that we have at least one linear relation connect-
ing the ¢;; but there may be more. Let there be » relations,

§Aue;=o (E=12..7) ... BN ()X

where e = (p=A) 6.
Lﬂt EA“ 6 =

‘Since the r relations (c) are asyzygetic, by hypothesis, it follows that
the » points o are asyzygetic, for, if they were not, and we had
3p.a; = 0, we should, by operating with ¢ —A,, get a relation connect-
ing the equations (C).

It follows that we can substitute the points a for r of the e: suppose
we substitute them for g, ... ¢,; then (B) becomes

(0.3 ... 6,61 . 8] = 0,

if a = (p—2) a:
But (C) gives (p—=A) &= 0,

or ' ¢a; = \a;,

and therefore (¢—=2) ;= (A, =N) a,,

and (B) becomes Ar=N) (3183 .o By 601 v 6] = Ouvrrrerrserans (B).

Therefore, if there are asyzygetic relations (C), there are r points a,
such that (p—A;)a; =0, and A, is an r-tuple root, at least, of (B).
But the multiplicity of A, may be greater than r; if it is, we must

have . [aa,... a6, ... 6] =0,
&= (p=A)e.

Supposé, as before, that there are s asyzygetic relations

_ %Bqa,—-'%Bue,’ =0 (E=1.08) verrrrrrennn(O).
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Then all the coefficients Bj.y, ... Bin cannot vanish, since the a are
agyzygetic, and we can take ‘

b=3B,4 (=1..0)

and substitute the s points bin place of, say, €t or+ €40 Wehave now
to see what (B) becomes. In the first place, we get

=N [ay ... @by e 0,6 ygiy o €0] = 0ennnnnn o (BY),

if b= (¢—N)b.

Now (C') gives - 3B;a,—(¢p—=A\) =0,

for 3 By g=(p=M)b.
Therefore ¢b =N b+32 By q,
Therefore (=N b = (A=) b+ 3 Bya,.

_ - dms
Therefore [a; ... a3, ... 5] = [a, ... q,]‘lI1 [(A\\—A) b;+3 By a;]
= [al .ee a,,.} H(A,—R) b‘.
' = A=A [a, ... a. b, ... b],

and (B’) becomes : .

_ A=A (@ 0e @ by oo b6 001 o 8] = O.iveine o (BY).
It is obvious how we might go on if the multiplicity of A\, were
greater than 7+ s; we should get ¢ points ¢, such that

(¢—N) o= Zoya;+3cyb,
and then (B”) would become
(Al—k)'"“ [al ees By bl oo bu 61 tee ca-érnoul sve En] =‘0-----~(Bm)o
We can now enunciate the following theorem :—~The equation
I (p—N)e =0

[the left-hand side of which is called the latent function of ¢] has =
roots [called the latent roots of ¢]; to a latent root (A\) of multiplicity
a appertain a points; these points group. themselves into sets, such

that, if we call the points of the first set a;, those of the second set
b;, and s0 on, we have :

¢ = Xa;, Ab,+ A‘, AG(+A:+B¢ )
@4y bi, Ci ’

where 4,, B, &o. denote syzygies of the ay, b, &c.
® Vids p. 69, 1. 8.
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.- Now it is obvious that the 4, &c. are asyzygetic: this follows from
the way in which they were determined. It follows that their number
cannot be greater than that of the a; and obviously ¢4; = A4, We
can, therefore, substitute - the 4, for an equal number of the g, and
then we get

Aa;, Abi+ay XG«'I'AH'B«

a;, b‘, [

$=

where obviously 4, is not the same .a.s before. But now we can sub-
stitute 4,+ B; for an equal number of the b, Let B; = ZByb,; then

¢ (4i+B;) = A (4;+B))+2Bya;
Therefore we must substitute £Bja; for a,, and then we get

)\a;, )\b. + a;, M.' + b‘

$= Qjy by, i

and it is obvious how we may proceed.*

The points a;, b;, &o. are called the latent points of ¢ appertaining to
the latent root A.

The number of groups a;, b, ¢; that we get for any latent root
depends on the coefficients of the latent function. There are two cases
in which the theory of the latent points is particularly simple : — (1) the
case in which no latent root is repeated, so that, for a latent point
a; appertaining to a root A,, we have

¢a; = \ay;

and (2) the case in which a latent root is repeated, but all its latent
points are a's, so that, again, for all latent points ay appertaining toA;,

A pa; = Nay
7. We have . (p—N)a; =0,
(p—2) by = ay,
and therefore . (p—=N'bi=(p—N) ;= 0;
similarly (p—A)'a; =0,

if 2, is a latent point in the &* group.
Therefore, if there are s groups of latent points appertaining to A,
(p—A)'e; =0,
whore ¢ is any latent point appertaining to A.

* Jordan, * Traité des Substitutions,” 126.
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Therefore, if the latent roots are A, A, ... A, and if there are s, ... s,
groups. of latent points appertaining to them, then, for any latent
point ¢, .
(3= (—A5) ... (p—N\) e, = 0.

But the # points ¢; are asyzygetio; therefore, for all points =,
(P—=2)"(p—29)™ ... (3=A) "z =0,

that is, (=N (p=A)Y ... (p—A)* =0,

This is the identical equation.

If the roots are all unequal, r = n, 8, =8 = ... =3, =1, and the
equation is
=N M) e p=N) =0
8. We have $a; = Aai,
and therefore o"a; = \"a,

and generally, if f is any function, not involving matrices other than ¢,

@ a=fa
We have ¢b; = Abi+a,
$'b; = Apbi+9a
= \ (Ab;+a,) +Aa;
= M b; 4 2Aa;,
and generally F(@)bi=fA) b+ (A) a.

In the same way, if @; is in the s group,
f@u=fAQ)at+..+f Q) a
9. Now let s, = g, = ... = s, =1: then we hav?, if
A=X) A=A o (A=A = A,

=3 X0) P (A),
O =) XM : (4)
f being any function not involving any matrix other than ¢.
The function x(9)
| =N
simply means

@=N) (P—=2g) oo (P=Nich) (@A) ooe (P—1,).
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To prove (A), I denote .the right-hand side of it by F(¢), and I
show that f(¢) ¢ = F (¢)e¢;, ¢ being any latent point. We have,
if ¢ appertains to A,

x(@) , XN
@Y =N
=0 if {2}
=x\ if i=j.
Therefore F@)eg=f(\)e¢

=f(¢) s
and, therefore, generally  f(¢) = F(p)*.

If the s are not all equal to unity, the formula is much more com-
plicated.

10. If we have r asyzygetic points ¢;, and_no more, such that ge;=0,
¢ is said to be of nullity ». It follows, from what was proved in (6),
that in this case (since ¢¢; = 0.¢,) r, at least, of the latent-roots must
vanish, But more than r may vanish ; and, accordingly, if s latent
roots vanish, ¢ is said to be of vacuity s. We see that the nullity of a
matrix cannot be greater than its vacuity, but may be less. A point
2, such that ¢z = 0, is called a null-point of ¢: the r-po'int determined
by the r asyzygetic null-points of a matrix of nullity r is called the
null-space of the matrix.

Ife ...o.arer a.syzygetm nnll-pomts of & matrix of nullity , it is
obvious that SA;e; is also a null-point ; that is, every pointin the null-
space of a matrix is a null-point. Moreover, it is easy to see that every
null-point must be in the null-space; for, if there were a null-point
e« not in [e ¢ ... 6,], we should have (r+1) asyzygetic null-points,
and the nullity of the matrix would be »+1.

Applying what was proved in (6) a.bove, to the case A = 0 we see

0 a; b‘
that we get - o= _——a‘ B o |
We see that, if there are s groups g, b,c... and a, 3, y ... points,

@ bi ..., the nulhty of ¢ is a, and its vacuity a+ﬁ+-y ; the
nullity of :p is u+p (since ¢*6=0, p'a=0), and its vacuity a+ﬁ+ Vour}
the nullity of ¢* is (a+3+7v...), and its vacuity a+8+v... There-
fore the nullity of ¢! is equal to its vacuity: and, if we apply this to

¢ (A) is Professor Sylvester’s ““interpolation formula,’’ giving the standard form
to which all functions of a matrix can be reduced: it appears above in what is, I
think, a more general form than Professor Sylvester's.
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the matrix ¢ —)\;, where A, is a latent root of ¢ having s; groups, we sece
that s; can be defined as the order of the lowest power of (¢—A;) of
which the nullity is equal to its vacuity.’

Consider the equation y = ¢z. Given =, this determines y uniquely;
given y, z is not determinate unless the nullity of ¢ is zero: for, if
we have y = ¢» = ¢/, we have

¢ (z—2") =0.
Therefore (z—2') must be & null-point of ¢ ; and, if ¢ is of nullity «, the

solution of the equation y = ¢@ contains r arbitrary constants : if »
is any solution, the general solution is '

$+§A‘3‘,

the e being r asyzygetic null-points, and the A arbitrary scalars.

11. Now, take as points of reference r asyzygetic null-points, ¢, ...q,,
and #—7r points not in the null-space of ¢ ; then, if

n
x = 26,
1

¢ = 2‘w¢¢e¢+ zf"’”""

n
= 25‘¢8‘,
rel

since ¢e, = ¢e, = ... = ¢, = 0 : therefore the point ¢= is in a certain
(n—r) point; viz., the (n—7) point

- II= [¢9,,| .¢8'.’ e ¢e”].
This product does not vanish ; for, if it did, there would be a relation

ilc.' ¢9‘ = O,

that is, - ¢3c,6,=0.

Therefore there would bie a null-point of ¢ in [e,,, ... 6,], which is con-
trary to the hypothesis.

The (n—r) point I is called the lutent space of ¢ : it is obvious that
it contains all the latent points for which A does not vanish.

If the vacuity of ¢ is greater than r, it follows, from what was
proved above, that the latent space of ¢ will contain some or all of its
null-points.

- 12, Let ¢, x be two matrices of nullities », s respectively: it is
required to find the nullity of ¢x. I shall show that, if the null-space



80 Mr. A. Buchheim on . [Nov. 18,

of ¢ intersects the latent space of x in a t-point, the nullity of ¢x
18 s+1.%

I take as points of reference, ¢, ... 6,.,, being (2 — ) asyzygetic points,
not situatein.the null-space of x, and ¢,_,4; ... €, asyzygetic null-points
of x; let the null-space of ¢ cut the latent space of x in the ¢-point

[E, ... E,], where the E are, of course, supposed to be asyzygetic;
la.stly, let xe; = ¢;.  Let A = 34;¢, be any point: then

x4 = %A‘xe‘

= §A‘e.‘,
8ince 6,41 = ... = ¢, = 0 ; therefore
oxd Z="%‘A;¢ei.
But we can select from ¢; ... ¢;,_,, n—s—t points, asyzygetic with the E,

and then we have
1 n-g .
E_ﬂdEr*‘;%?lae,{(i =1..8) rvrerriiiineen (X).

Therefore, since ¢.B, = 0 (since the E are in the null-space of ¢),
pei = 2 ay0¢j,
n-s ¢

and oxd =13‘.'?e; (4; +E:1‘,~A.-).

Therefore all points ¢, x, 4 are in the (r—s—?) point [¢e;,, ... pe,.,] ;
and, to show that this is actually the latent space of py, we have only
to show that these (n—s—1%) points are asyzygetic : but if they were
nob asyzygetic, and we had

n-s-¢

0 = lz c‘¢et’06
=¢Zcieii
we must have Bcief, = ENE,
which is contrary to the supposition on which e;,,, &c. were selected.
Therefore the latent space of ¢px is an (n—s—t) point, and therefore
its nullity is (s+¢); and it can be shown without difficulty that its

null space is the (s+¢) point joining the null space of x to the ¢-point -
in its latent space, which y transforms into [E .E].

13. In all that follows, I shall assome that in the notation of
(N8, =8=8¢=11%

® Cf. Phil. Muag., Nov. 1884,
+ That is, that all latent points are a’s: Case (2) of (6).
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Now let it be proposed to find a non-vacuons* matrix Y such that

Y¢ = ¢y, ¢ being a given matrix.
Let g, ... e, be the latent points of ¢. Let e, appertain to A,; suppose
A=Ay = ... =Aq; = ], &o.; lastly, let

¢9‘ = Ea"- ;.

Then P = Sa e
= Sagh;e;.
But Yo = YAig
= NZaye;.

Therefore, since Y¢ = ¢y, and ¢ is supposed non-vacuous, we have
a‘jk, = auk‘.

Therefore, unless A\; = A\, a; = 0; and it follows that y transforms all
latent poiuts appertaining. to the same latent root A, into. points of
the same a;-point, if a; is the multiplicity of A;; we therefore have

‘1’ = 24’4’
where 44 is & matrix of nallity » —a;, having [, ... eq] as itslatentspace,

and therefore transforming every latent point appertaining to A, into
another latent point appertaining to A,. -

Ifa,=a,=... ‘=a, =1, wecan go further than this, and can assign
the form of y; for in this case it is obvious that ¢ must transform every
latent point into itself ; that is,

=gy

="

But A‘e‘ }.‘.m
Gl ? A‘ xk

using the same notation as in (9). This can be proved by the method
there employed. Therefore we can say that, if ¢y = Y, and if ¢ is
non-vacuous, and the latent roots of ¢ are all different,  is a function
of ¢, of order (n—1), and with scalar coefficients ; viz., we have

p=3Xx(@ A
—7\: x (%)

# A matrix is vacuous if its vacuity S 1.
VOL XV1.—No. 238. G
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where the A are scalars, and xA is the latent function of ¢, viz.,

XA = A=N,) ... A=A,).*

We can apply & similar method to the equation ¢y = k¢, k a scalar.
We shall find that & is an »* root of unity, and that, if itis a primitive
m® root of unity, ¢ is equivalent to & substitution operating on the
n latent points of ¢; viz., if n = mm’, ¥ is the product of m’ cyclio
substitutions, each cycle being of order m.

14. As a last example of the methods of this paper, I take the
solution of the general unilateral equation.

Let the given equation be
0=F(z) =42+ 42" +... + 4,

where the 4 are known matrices of order s, and # is an unknown
matrix of the same order.

Let A, ... A, be the latent roots of ; e, ... e, its latent points. Since
F (2) = 0, we have
0=F(z)e

=F(\) 6.

Therefore ¢; must be a null-point of F (A); F (A;) must be vacuous,
aud therefore, if we take »# points of reference a;, we must have

B[FO)a]=0t @G=1..m,

that is, the latent roots of » must be roots of this equation of order
mn, and, if we take any set of » roots, the latent point of # appertain-
ing to a root A; is a null-point of FA,, and o is thus completely
determined.

. Qf Clifford’s Math. -Pa%ers, 339,
+ This equation is simply Dot (FA,) = 0.



