$a, \beta, \gamma, \delta, e, \rho, \sigma$ connected by five equations. The equivalence of the two sets of formule may be shown withput difficulty.

To the Table 2 of the Quintic Equations, given in the paper, may be added the following result from Legendre's "Théorie des Nombres," Ed. 8, t. ii., p. 213,

calculated by him for the isolated case $p=641$.

On the Theory of Matrices. By Mr. A. Boceneim, M.A.
[Read Nov. 13th, 1884.]

Introduction.

The methods used in the following paper are essentially, though not historically, an extension of Hamilton's theory of the linear function of a vector, and the simplest way to connect Grassmann's methods with the theory created by Cayley and Sylvester will be to connect them both with Hamilton's investigations.

It is, or ought to be, well known that the linear and vector function of a vector is simply the matrix of the third order. This is obvious from the definition : for, if ρ is any vector, $\sigma=\phi \rho$ is a vector whose constituents are linear functions of ρ 's constituents; that is, if

$$
\rho=x i+y j+z k, \quad \sigma=x^{\prime} i+y^{\prime} j+z^{\prime} k
$$

we must have the three equations

$$
\begin{aligned}
& x^{\prime}=a x+a^{\prime} y+a^{\prime \prime} z \\
& y^{\prime}=b x+b^{\prime} y+b^{\prime \prime} z \\
& z^{\prime}=c x+c^{\prime} y+c^{\prime \prime} z
\end{aligned}
$$

that is,

$$
\left(x^{\prime} y^{\prime} z^{\prime}\right)=\left(\left.\begin{array}{lll}
a & a^{\prime} \cdot & a^{\prime \prime} \tag{A}\\
b & b^{\prime} & b^{\prime \prime} \\
c & c^{\prime} & c^{\prime \prime}
\end{array} \right\rvert\,\right.
$$

That is to say, it is the same thing whether we say that $\sigma=\phi p$, or
that the constituents of σ are obtained from those of ρ by operating on them with a certain matrix; and we see that in this sense we can identify ϕ with the matrix, and we can say that

$$
\begin{align*}
& \phi=\left(\left.\begin{array}{lll}
a & a^{\prime} & a^{\prime \prime} \\
b & b^{\prime} & b^{\prime \prime} \\
0 & c^{\prime} & c^{\prime \prime}
\end{array} \right\rvert\,\right. \tag{B}
\end{align*}
$$

Now, in (A), let $\rho=i$, that is, let $(x y z)=(100)$; then

$$
\begin{aligned}
& \left(x^{\prime} y^{\prime} z^{\prime}\right)=(a b c), \\
& \sigma=a i+b j+c k,
\end{aligned}
$$

that is,
or say,

$$
\phi i=a i+b j+c k=\alpha .
$$

In the same way, we get

$$
\begin{aligned}
\phi j & =a^{\prime} i+b^{\prime} j+c^{\prime} k=a^{\prime}, \\
\phi k & =a^{\prime \prime} i+b^{\prime \prime \prime} j+c^{\prime \prime} k=a^{\prime \prime} .
\end{aligned}
$$

And then

$$
\begin{aligned}
\phi \rho=\phi(x i+y j+z k)= & \left(a x+a^{\prime} y+a^{\prime \prime} z\right) i \\
& +\left(b x+b^{\prime} y+b^{\prime \prime} z\right) j \\
& +\left(c x+c^{\prime} y+c^{\prime \prime} z\right) k \\
= & x(a i+b j+c k) \\
& +y\left(a^{\prime} i+b^{\prime} j+c^{\prime} k\right) \\
& +z\left(a^{\prime \prime} i+b^{\prime \prime} j+c^{\prime \prime} k\right) \\
= & x a+y a^{\prime}+z a^{\prime \prime} .
\end{aligned}
$$

And we can say that (the linear function or matrix) ϕ changes i, j, k into three given vectors $a, a^{\prime}, a^{\prime \prime}$, and changes any other vector $x i+y j+z k$ into $x a+y a^{\prime}+z a^{\prime \prime}$.

Now, on looking at what precedes, it will at once be obvious that we have ased none of the special properties of i, j, k : so far as our work is concerned, they might have been any three vectors, provided only that every vector could be expressed in terms of them; and if we call three such vectors asyzygetic, and change the notation, we can say that a linear function, or matrix, changes three given asyzygetic vectors a, β, γ into three given vectors $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$, and changes any vector $x a+y \beta+z \gamma$ into $x a^{\prime}+y \beta^{\prime}+z \gamma^{\prime}$. As regards the word "asyzygetic," I remark that any vector can be expressed in terms of a $a \beta \gamma$, provided $S a \beta \gamma$ does not vanish; and we know that $S a \beta \gamma=0$ is the necessary and anfficient condition that we may have a relation $\lambda \alpha+\mu \beta+\nu \gamma=0$,
where λ, μ, ν are scalars: it is better to use this as a definition of asyzygetic vectors; viz., three vectors are asyzygetic if they are not connected by a linear relation with scalar coefficients.

If we use the notation of the paper, we can write

$$
\begin{gathered}
\phi=\frac{a^{\prime}, \beta^{\prime}, \gamma^{\prime}}{a, \beta, \gamma} \\
\phi(z \alpha+y \beta+z \gamma)=z \alpha^{\prime}+y \beta^{\prime}+z \gamma^{\prime} .
\end{gathered}
$$

If

$$
\begin{aligned}
&\left(a^{\prime} \beta^{\prime} \gamma^{\prime}\right)=\left(\left.\begin{array}{lll}
a & b & 0 \\
a^{\prime} & b^{\prime} & c^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}
\end{array} \right\rvert\,\right. \\
& \phi=\left(\begin{array}{lll}
a & a^{\prime} \cdot & a^{\prime \prime \prime}
\end{array}\right) . \\
&\left|\begin{array}{lll}
b & b^{\prime} & b^{\prime \prime \prime} \\
c & c^{\prime} & c^{\prime \prime}
\end{array}\right|
\end{aligned}
$$

Before passing on to matrices of any order, I shall give a simple application of the method as an example. I choose the proof of the identical equation (Hamilton's Symbolic Cubic).

It is known (cf. Hamilton's Elements, § 353, seq.) that for any matrix ϕ there are in general three scalars λ, μ, ν, and three vectors a, β, γ, respectively, such that

$$
\left.\begin{array}{lll}
\phi \alpha=\lambda a & \text { or } & (\phi-\lambda) a=0 \tag{C}\\
\phi \beta=\mu \beta & \text { or } & (\phi-\mu) \beta= \\
\phi \gamma=\nu \gamma & \text { or } & (\phi-\nu) \gamma=0
\end{array}\right\}
$$

and that the three vectors a, β, γ are asyzygetic. Let $\rho=x a+y \beta+z \gamma$ be any vector; then

$$
\begin{aligned}
(\phi-\lambda) \rho & =x(\phi-\lambda) a+y(\phi-\lambda) \beta+z(\phi-\lambda) \gamma \\
& =y(\phi-\lambda) \beta+z(\phi-\lambda) \gamma, \text { by }(\mathrm{C}), \\
(\phi-\mu)(\phi-\lambda) \rho & =y(\phi-\mu)(\phi-\lambda) \beta+z(\phi-\mu)(\phi-\lambda) \gamma \\
& =y(\phi-\lambda)(\phi-\mu) \beta+z(\phi-\lambda)(\phi-\mu) \gamma \\
& =z(\phi-\lambda)(\phi-\mu) \gamma, \text { by }(\mathrm{C}), \\
(\phi-\nu)(\phi-\mu)(\phi-\lambda) \rho & =z(\phi-\lambda)(\phi-\mu)(\phi-\nu) \gamma \\
& =0, \text { by (C). }
\end{aligned}
$$

That is, $(\phi-\lambda)(\phi-\mu)(\phi-\nu) \rho$ always vanishes; that is,

$$
(\varphi-\lambda)(\phi-\mu)(\phi-\nu)=0 . *
$$

[^0]VOL. XVI.-NO. 237.

We have now to extend this theory to matrices of higher orders. It is fairly obvious that, in the case of matrices of the third order, the success of the method depends on the fact that for three variables (x, y, z) we are able to substitute a single vector $(x a+y \beta+z \gamma)$; and the only property of the vector that we have used is the following: '

If $x a+y \beta^{3}+z \gamma=x^{\prime} \alpha+y^{\prime} \beta+z^{\prime} \gamma(a, \beta, \gamma$ being asyzygetic), then

$$
x=x^{\prime}, \quad y=y^{\prime}, \quad z=z^{\prime} .
$$

Now, to extend this to sets of more than three letters, take n units $e_{1}, e_{y}, e_{3}, \ldots e_{n}$ (we are not at present concerned with their meaning); and in place of the set of n letters $x_{1}, x_{9}, \ldots x_{n}$ consider the point

$$
x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+\ldots+x_{n} e_{n}
$$

and stipulate as before that
say

$$
x_{1} e_{1}+x_{9} e_{2}+x_{3} e_{3}+\ldots+x_{n} e_{n}=y_{1} e_{1}+y_{9} e_{2}+y_{8} e_{3}+\ldots+y_{n} e_{n}
$$

$$
x=y
$$

shall mean

$$
x_{1}=y_{1}, x_{9}=y_{2} \ldots x_{n}=y_{n} .
$$

Then we have, for instance,

$$
\lambda x+\mu y=\left(\lambda x_{1}+\mu y_{1}\right) e_{1}+\ldots+\left(\lambda x_{n}+\mu y_{n}\right) e_{n},
$$

where λ, μ are scalars.
We now require the theorem,-Every point can be linearly expressed in terms of any n asyzygetic points. Passing over the word asyzygetic for the present, it is easy to see the meaning of the theorem, and to convince oneself of its trath. Let x be any point, and let $a, \beta, \gamma \ldots$ be n given points; then we are to have

$$
\begin{equation*}
x=\lambda a+\mu \beta+\nu \gamma+\ldots \tag{d}
\end{equation*}
$$

$\lambda, \mu, \nu \ldots$ being scalars, that is

$$
\begin{aligned}
& x_{1} e_{1}+x_{2} e_{3}+\ldots+x_{n} e_{n}=\lambda\left(a_{1} e_{1}+\alpha_{2} e_{3}+\ldots+\alpha_{n} e_{n}\right) \\
& +\mu\left(\beta_{1} e_{1}+\beta_{2} e_{2}+\ldots+\beta_{n} e_{n}\right) \\
& +\nu\left(\gamma_{1} e_{1}+\gamma_{2} e_{9}+\ldots+\gamma_{n} e_{n}\right) \\
& \text { + }
\end{aligned}
$$

$$
\begin{aligned}
& =e_{1}\left(\lambda a_{1}+\mu \beta_{1}+\nu \gamma_{1}+\ldots\right) \\
& +e_{2}\left(\lambda a_{2}+\mu \beta_{2}+\nu \gamma_{2}+\ldots\right) \\
& +. . . \text {... }
\end{aligned}
$$

That is, we are to have

$$
\left.\begin{array}{c}
x_{1}=\lambda a_{1}+\mu \beta_{1}+\nu \gamma_{1}+\ldots \tag{D}\\
x_{2}=\lambda a_{2}+\mu \beta_{2}+\nu \gamma_{2}+\ldots \\
\ldots \quad \ldots \quad \ldots \quad \ldots
\end{array}\right\}
$$

Now we know that these equations determine $\lambda, \mu, \nu \ldots$, if, and only if,

$$
\Delta=\left|\begin{array}{cccc}
a_{1} & \beta_{1} & \gamma_{1} & \ldots \ldots \\
a_{2} . . & \beta_{2} & . . \gamma_{8} & \ldots \ldots \\
\vdots & \vdots & \vdots & \ldots \ldots \\
a_{n} & \beta_{n} & \gamma_{n} & \ldots \ldots
\end{array}\right|
$$

does not vanish. And therefore, if we say that the points $a, \beta, \gamma \ldots$ are asyzygetic if $\Delta \geq 0$, the theorem is proved, and we have also a definition of asyzygetic points. But we can get a better definition : for we know that $\Delta=0$ is the necessary and sufficient condition that we may be able to solve (D) after putting $x_{1}=x_{2} \ldots=x_{n}=0$; and therefore, if we go back to the equation (d) from which (D) was derived, and write, as we obviously may,

$$
0=0 e_{1}+0 e_{9}+\ldots 0 e_{n},
$$

we see that n points $\alpha, \beta, \gamma \ldots$ are not asyzygetic if it is possible to satisfy a relation of the form

$$
0=\lambda a+\mu \beta+\nu \gamma+\ldots,
$$

or, say, if they are connected by a linear relation with scalar coefficients; or, in other words, n points are asyzygetic if they are not connected by a linear relation with scalar coefficients. This is the sense in which the word is used in the paper.
Now, sappose we have taken n asyzygetic points $e_{1}, e_{2}, \ldots e_{n}$, and have expressed everything in terms of them, and consider the transformation

$$
\left(y_{1}, y_{2}, \ldots y_{n}\right)=\left(\left.\begin{array}{cccc}
a_{11} & a_{13} & \ldots & a_{1 n} \gamma \\
\left.\begin{array}{ccc}
21 & a_{22} & \ldots \\
a_{2 n} \\
\vdots & \ddots & \ldots \\
a_{n 1} & a_{n 2} & \ldots \\
a_{n n}
\end{array} \right\rvert\,
\end{array} \right\rvert\,\right.
$$

write ϕ to denote the matrix $\left\|a_{i k}\right\|$, and denote the transformation by $y=\phi x$.
Now, take $x=e_{1}$, that is, take

$$
\left(x_{1}, x_{2}, \ldots x\right)=(1,0, \ldots 0) ;
$$

then we get

$$
\left(y_{1}, y_{2} \ldots y_{n}\right)=\left(a_{11}, a_{21} \ldots a_{n 1}\right)
$$

or
similarly

$$
y=\phi e_{1}=a_{11} e_{1}+a_{21} e_{9}+\ldots+a_{n 1} e_{1}=a_{1}
$$

Moreover,

And we see that we can say that the matrix ϕ changes the points of reference, $e_{1}, e_{9} \ldots e_{n}$ into n given points $a_{1}, a_{9} \ldots a_{n}$, and then changes any other point ($x_{1} e_{1}+x_{9} e_{2}+\ldots+x_{n} e_{n}$) into $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{n} a_{n}$. This is the definition of the matrix used in the paper; the relation between a_{1}, \&c. on the one hand, and the matrix on the other, will be made clear by the following set of equations:

[^1]\[

$$
\begin{aligned}
& \left(y_{1} y_{2} \ldots y_{n}\right)=\left(\left.\begin{array}{llll}
a_{11} & a_{19} & \ldots & a_{1 n} \chi \\
x_{1}, x_{2} & \left.\ldots x_{n}\right), \\
a_{n 1} & a_{39} & \ldots . & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots \\
a_{n 1}
\end{array} \right\rvert\,\right. \\
& y=\phi x, \\
& \alpha_{i}=\phi e_{i}, \\
& \begin{array}{l}
\left(a_{1}, a_{2} \ldots a_{n}\right)=\left(\left.\begin{array}{cccc}
a_{11} & a_{n 1} & \ldots & \ldots \\
a_{n 1} & \chi & e_{1}, e_{1} & \ldots \\
a_{12} & a_{n 2} & \ldots & \ldots \\
\ldots & a_{n 2} \\
\ldots & \ldots & \ldots & \ldots \\
a_{1 n} & a_{2 n} & \ldots & \ldots \\
a_{n n}
\end{array} \right\rvert\,\right.
\end{array}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \phi x=a_{1}\left(a_{11} x_{1}+a_{19} x_{9}+\ldots+a_{1 n} x_{n}\right) \\
& +\theta_{9}\left(a_{91} x_{1}+a_{28} x_{2}+\ldots+a_{2 n} x_{n}\right) \\
& +. . . \quad . . \quad \text {... } \\
& +e_{n}\left(a_{n 1} x_{1}+a_{n 2} a_{2}+\ldots+a_{n n} x_{n}\right) \\
& =x_{1}\left(a_{11} e_{1}+a_{31} e_{2}+\ldots+a_{n 1} e_{n}\right) \\
& +x_{9}\left(a_{19} e_{1}+a_{2 n} e_{9}+\ldots+a_{n 2} \theta_{n}\right) \\
& +. . \\
& +x_{n}\left(a_{1 n} e_{1}+a_{2 n} e_{2}+\ldots+a_{n n} e_{n}\right) \\
& =x_{1} a_{1}+x_{9} a_{1}+\ldots+x_{n} a_{n} \text {. }
\end{aligned}
$$

$$
\begin{gathered}
\phi x=x_{1} a_{1}+x_{2} a_{3}+\ldots+x_{n} a_{n}, \\
\phi=\frac{a_{1}, a_{3} \ldots a_{n} .}{e_{1}, e_{3} \ldots e_{n}} .
\end{gathered}
$$

It remains to add a few words on the multiplication of points. The laws of the multiplication of all points depend on the laws assumed for the units; the law assumed by Grassmann is that known as polar multiplication; viz., we have $a b=-b a, a^{9}=0$, for the original units of reference, and then this law holds for all points.* From this, and the associative law, it follows that any product of points vanishes if a point is repeated. We can use this theorem to interpret the products of points. In all that follows, I use geometrical language. The point x is supposed to be the point in a space of ($n-1$) dimensions, having as its homogeneous (multiplanar) coordinates ($x_{1}, x_{2} \ldots x_{n}$); and then we can use the following definitions: let a, β be two points, then, if λ is a variable scalar, the point $a+\lambda \beta$ moves on the straight line $a \beta$; if λ, μ are two variable scalars, the point $a+\lambda \beta+\mu \gamma$ moves in the plane $a \beta \gamma$; if λ, μ, ν are scalars, the point $a+\lambda \beta+\mu \gamma+\nu \delta$ moves in the linear space (three-point) $a \beta \gamma \delta$; and generally, if $\lambda_{1}, \lambda_{9} \ldots \lambda_{r-1}$ are scalars, the point

$$
\Lambda=a+\lambda_{1} a_{1}+\lambda_{2} a_{2}+\ldots+\lambda_{r-1} a_{r-1}
$$

moves in the r-point ($a, a_{1} \ldots a_{r-1}$); since Λ can have a ∞^{r-1} series of positions, depending linearly on ($r-1$) parameters, it is obvious that an r-point is the same as what Clifford calls an ($r-1$)-flat.

I shall follow Grassmann in enclosing all polar products in square brackets. We have to interpret the product $[a \beta]$: we have

$$
\begin{aligned}
{\left[(\alpha+\lambda \beta)\left(\alpha+\lambda^{\prime} \beta\right)\right] } & =[\alpha a]+\lambda^{\prime}[\alpha \beta]+\lambda[\beta a]+\lambda \lambda^{\prime}[\beta \beta] \\
& =\left(\lambda^{\prime}-\lambda\right)[a \beta] .
\end{aligned}
$$

For

$$
[a a]=[\beta \beta]=0, \text { and }[\beta a]=-[a \beta] .
$$

Therefore the product is unaltered, to a factor près, if for a, β we substitute any two points of the straight line $a \beta$; and it will be altered if we substitute any point not on the straight line (this can easily be verified); thus we see that the product appertains to the straight line, and defines it; we may therefore say that $[a \beta]$ is the straight line aß. \dagger Moreover, we see that

$$
\begin{aligned}
{[a \beta(\alpha+\lambda \beta)] } & =[a \beta a]+\lambda[a \beta \beta] \\
& =0 .
\end{aligned}
$$

[^2]Therefore, the product of two points is the line joining them, and the product of three collinear points vanishes.

In precisely the same way, we can show that the product of three points is the plane containing them, and that the product of four complanar points vanishes; and, generally, the product of r points is the r-point determined by them, and the product of $(r+1)$ points contained in the same r-point vanishes.

This last theorem can be put in another form. Suppose the $(r+1)$ points $a_{1}, a_{9} \ldots a_{r+1}$ to be in the same r-point ; then, since a_{r+1} is in the r-point ($a_{1}, a_{2} \ldots a_{r}$), we have, by definition,

$$
a_{r+1}=\lambda_{1} a_{1}+\lambda_{2} a_{9} \ldots+\lambda_{r} a_{r}
$$

That is, the $(r+1)$ points a are connected by a linear relation, that is, they are not asyzygetic, and, writing r for $r+1$, we can say that the product of r asyzygetic points is the r-point determined by them : if the points are not asyzygetic, the product vanishes. Moreover, it can be proved that, if r points are not asyzygetic, their product will not vanish, and we have, therefore, the important theorem : the necessary and sufficient condition for the existence of a linear relation

$$
\sum_{1}^{r} \lambda_{i} a=0,
$$

connecting r points, is $\quad\left[a_{1} a_{2} \ldots a\right]=0$.
Lastly, I have to remark that the product of n points $x_{1}, x_{2} \ldots x_{n}$ is

$$
\operatorname{Det}\left|x_{i k}\right|\left[e_{i}, e_{2} \ldots e_{n}\right] ;
$$

and that $\left[e_{1}, e_{9} \ldots e_{n}\right]$ can always be supposed equal to unity.

On p. 241 of the Ausdehnungslehre of 1862, Grassmann defines a certain operator, which be calls a quotient : this operator transforms n giverf points of a space of ($n-1$) dimensions into n other given points, and then transforms any $(n+1)^{\text {th }}$ point into a determinate point. This operator is, in fact, the general matrix of the $n^{\text {th }}$ order; the object of the present paper is to treat the theory of matrices from Grassmann's point of view.* It will be seen that some important parts of the theory are considerably simplified by this treatment. It is hardly necessary to point out that there is not a new theorem in the paper, and that its existence can only be justified, if at all, by the
"Cf. Clifford: "A Fragment on Matrices," Math. Papers, 337.
methods employed. The language and notations of the paper have been explained in the introduction.

1. Take n asyzygetic points, $e_{1}, e_{2} \ldots e_{n}$, and n points corresponding to them, $a_{1}, a_{9} \ldots a_{n}$; then a matrix ϕ of the $n^{\text {th }}$ order is defined as an operator, such that

$$
\phi e_{i}=a_{i}
$$

and that $\quad \phi \Sigma 0_{i} e_{i}=\Sigma \Sigma c_{i} \phi e_{i}=\Sigma \dot{I}_{i} a_{i}$,
the c being scalars; this matrix can be conveniently written as a
fraction

$$
\phi=\frac{a_{1}, a_{2} \ldots a_{n}}{e_{1}, e_{2} \ldots e_{n}},
$$

or, more simply,

$$
\phi=\frac{a_{i}}{e_{i}}
$$

We may, if we please, make this notation more definite by adopting a notation of Prof. Cayley's," and writing

$$
\phi=\frac{a_{i} \mid}{\mid e_{i}} .
$$

Another form is also convenient, and is, in fact, the usual form; let $a_{i}=\Sigma a_{j i} e_{i}$, then we write

$$
\phi=\left(\begin{array}{cccc}
a_{11} & a_{13} & a_{13} & \ldots
\end{array}\right),
$$

viz., we have

$$
\begin{aligned}
& \left(a_{1}, a_{8}, a_{3} \ldots\right)=\left(\left.\begin{array}{ccccc}
a_{11} & a_{31} & a_{31} & \ldots & \gamma \\
\left(e_{1}, e_{3}, e_{8}\right. & \ldots), \\
a_{12} & a_{93} & a_{33} & \ldots \\
a_{13} & a_{23} & a_{33} & \ldots \\
\ldots & \ldots & \ldots
\end{array} \right\rvert\,\right.
\end{aligned}
$$

aud then

$$
\phi=\frac{a_{i}}{e_{i}}
$$

has the form just given.
2. Two matrices, ϕ, ϕ^{\prime}, are said to be equal if $\phi x=\phi^{\prime} x$, whatever x

$$
\text { - }\left|\frac{a}{\mid b}\right|_{b=a,} b \frac{a}{b \mid}=a .
$$

may be; if e_{i}^{\prime} is any set of n asyzygetic points, $\phi=\phi^{\prime}$ if $\phi e_{i}^{\prime}=\phi^{\prime} e_{i}^{\prime}$; for we can express ∞ in the form $\Sigma x_{i}^{\prime} e_{i}^{\prime}$, and then we have

$$
\begin{aligned}
\phi & =\Sigma x_{i}^{\prime} \phi \theta_{i}^{\prime} \\
& =\Sigma x_{i}^{\prime} \phi^{\prime} \theta_{i}^{\prime} \\
& =\phi^{\prime} x_{0} .
\end{aligned}
$$

Hence we can prove that, if $e_{i}^{\prime}=\Sigma c_{j} \dot{e}_{j}$ is any asyzygetic set,*

$$
\phi=\frac{a_{i}}{e_{i}}=\frac{\Sigma c_{i j} a_{j}}{\theta_{i}^{\prime}}
$$

for

$$
\phi e_{i}^{\prime}=\Sigma c_{u} \phi e_{j}=\Sigma c_{i j} a_{j .} .
$$

Lastly, if $\phi^{\prime} \theta_{i}=\lambda \phi e_{i}$, where λ is a scalar, we obviously have generally $\phi^{\prime} x=\lambda \phi x$, or $\phi^{\prime}=\lambda \phi$, and, if $\phi e_{i}=\lambda e_{i}, \phi=\lambda$.
5. If we have

$$
\begin{aligned}
& \phi=\frac{a_{i}}{e_{i}} \\
& x=\frac{b_{i}}{a_{i}}
\end{aligned}
$$

we define the product $X \phi$ by the equation

$$
\chi \phi=\frac{b_{i}}{e_{i}},
$$

that is,

$$
\chi \phi=\frac{b_{i} \mid}{\mid a_{i}} \cdot \frac{a_{i} \mid}{\mid e_{i}}=\frac{b_{i} \mid}{\left|\theta_{i}\right|} .
$$

This product need obviously not be commatative. I proceed to show that it is associative. Let

Then

$$
\begin{gathered}
\phi=\frac{a_{i}}{e_{i}}, \phi^{\prime}=\frac{a_{i}^{\prime}}{a_{i}}, \quad \phi^{\prime \prime}=\frac{a_{i}^{\prime \prime}}{a_{i}^{\prime}} . \\
\left(\phi^{\prime \prime} \phi^{\prime}\right) \phi=\left(\frac{a_{i}^{\prime \prime}}{a_{i}^{\prime}} \cdot \frac{a_{i}^{\prime}}{a_{i}}\right) \frac{a_{i}}{e_{i}}=\frac{a_{i}^{\prime \prime}}{a_{i}} \cdot \frac{a_{i}^{\prime \prime}}{e_{i}}=\frac{a_{i}^{\prime \prime}}{e_{i}}, \\
\phi^{\prime \prime}\left(\phi^{\prime} \phi\right)=\frac{a_{i}^{\prime \prime}}{a_{i}^{\prime}}\left(\frac{a_{i}^{\prime}}{a_{i}} \cdot \frac{a_{i}}{e_{i}}\right)=\frac{a_{i}^{\prime \prime}}{a_{i}^{\prime}} \cdot \frac{a_{i}^{\prime}}{e_{i}}=\frac{a_{i}^{\prime \prime}}{e_{i}} .
\end{gathered}
$$

and therefore the product is associative.
The following formala is important, bat no use is made of it in this paper. \dagger

Let

$$
\phi=\frac{\sum a_{j i} e_{j}}{e_{i}}, \quad \phi^{\prime}=\frac{\dot{\Sigma} b_{j i} e_{j}}{e_{i}}
$$

- Set means set of n points.
+ It is, in fact, the ordinary formula for the multiplication of two matrices.

Then

$$
\phi^{\prime} \phi=\frac{\sum_{i e_{j}\left(\sum_{i} a_{k k} b_{j t}\right)}^{e_{k}} . . .}{}
$$

We have

Therefore

$$
\begin{aligned}
\phi & =\frac{\sum \sum b_{j i} e_{j}}{e_{i}} \\
& =\frac{\sum_{i} a_{i k} \sum b_{j i} e_{j}}{\sum_{i} a_{i k} e_{i}} \quad(k=1 \ldots n) \\
& =\frac{\sum_{i e_{j}} \sum_{i k} a_{i k} b_{j i}}{a_{k}} \quad(k=1 \ldots n) . \\
\phi^{\prime} \phi & =\frac{\sum_{i e_{j}}\left(\sum_{i} a_{i k} b_{j k}\right)}{e_{k}} \quad(k=1 \ldots n) .
\end{aligned}
$$

6. We have now to consider the following problem: Given a matrix ϕ, to find a scalar λ; and a point x, such that
or

$$
\phi x=\lambda x,
$$

Let

$$
(\phi-\lambda) x=0 .
$$

be the required point, then we have

$$
0=(\phi-\lambda) x=\Sigma x_{i}(\phi-\lambda) e_{i} \ldots \ldots \ldots \ldots \ldots \ldots(\mathrm{~A}) .
$$

That is, the n points $(\phi-\lambda) e_{i}$ are asyzygetic; and their product therefore vanishes, that is, λ must satisfy the equation

$$
\begin{equation*}
\left[\Pi_{i}(\phi-\lambda) e_{i}\right]=0 \tag{B}
\end{equation*}
$$

If this equation be maltiplied out, we get an expression $f \lambda$ [$\left.e_{1} \ldots e_{n}\right]$, and, as the second factor does not vanish, λ must be a root of $f \lambda=0$; and then the x_{i} are obtained (by solving a set of linear equations) as the coefficients of the syzygy (A). If there are s unequal roots of the equation $f \lambda=0$, we obviously get s points x, one such point appertaining to each root : in particular, if the n roots are all unequal, we get n points. It is possible, however, in every case to get n points appertaining in groups to the different roots of $f \lambda=0$. This I proceed to show."

[^3]The whole investigation depends on the fact that, since we might have expressed x in terms of any n asyzygetic points, we can sabstitute any n asyzygetic points for the e_{i}, in (B).

Let λ_{1} be any root of (B), let $\left(\phi-\lambda_{1}\right) e_{i}=e_{i}^{\prime}$; then we have, by (B),

$$
\left[e_{1}^{\prime} e_{2}^{\prime} \ldots e_{n}^{\prime}\right]=0
$$

It follows, from this, that we have at least one linear relation connecting the e_{i}^{\prime}; but there may be more. Let there be r relations,

$$
\sum_{j} A_{U} e_{j}^{\prime}=0 \quad(i=1,2 \ldots r) \ldots \ldots \ldots \ldots(\mathrm{C})
$$

where

$$
e_{j}^{\prime}=\left(\phi-\lambda_{1}\right) e_{j} .
$$

Let

$$
\Sigma A_{i} e_{j}=a_{i}
$$

Since the r relations (c) are asyzygetic, by hypothesis, it follows that the r points a are asyzygetic, for, if they were not, and we had $\Sigma \mu_{i} a_{i}=0$, we should, by operating with $\phi-\lambda_{1}$, get a relation connecting the equations (C).

It follows that we can substitute the points a for r of the e : suppose we substitate them for $e_{1} \ldots e_{r}$; then (B) becomes
if

$$
\begin{gathered}
{\left[\bar{a}_{1} \bar{a}_{3} \ldots \bar{a}_{r} \bar{e}_{r+1} \ldots \bar{e}_{n}\right]=0} \\
\bar{a}_{i}=(\phi-\lambda) a_{i}
\end{gathered}
$$

Bat (C) gives

$$
\left(\phi-\lambda_{1}\right) a_{i}=0,
$$

or

$$
\phi a_{i}=\lambda_{1} a_{i},
$$

and therefore

$$
\begin{equation*}
(\phi-\lambda) a_{i}=\left(\lambda_{1}-\lambda\right) a_{i}, \tag{B}
\end{equation*}
$$

and (B) becomes $\left(\lambda_{1}-\lambda\right)^{r}\left[\dot{a}_{1} a_{3} \ldots a_{r} \bar{e}_{r+1} \ldots \bar{e}_{n}\right]=0$
Therefore, if there are asyzygetic relations (C), there are r points a, such that ($\phi-\lambda_{1}$) $a_{i}=0$, and λ_{1} is an r-taple root, at least, of (B). But the multiplicity of λ_{1} may be greater than r; if it is, we must
have

$$
\begin{gathered}
{\left[a_{1} a_{2} \ldots a_{r} b_{r+1}^{\prime} \ldots e_{n}^{\prime}\right]=0,} \\
e_{i}^{\prime}=\left(\varphi-\lambda_{1}\right) e_{i} .
\end{gathered}
$$

Suppose, as before, that there are s asyzygetic relations

$$
\sum_{1}^{r} B_{u} a_{j}-\sum_{r+1}^{n} B_{u} e_{j}^{\prime}=0 \quad(i=1 \ldots 8)
$$

Then all the coefficients $B_{i(r+1)} \ldots B_{i n}$ cannot vanish, since the a are asyzygetic, and we can take

$$
b_{i}=\sum_{r+1}^{n} B_{i} e_{j} \quad(i=1 \ldots s),
$$

and substitute the s points b in place of, say, $e_{r+1} \ldots e_{r+c}$. We have now to see what (B) becomes. In the first place, we get

$$
\left(\lambda_{1}-\lambda\right)^{r}\left[a_{1} \ldots a_{r} \bar{b}_{1} \ldots \bar{b}_{1} \bar{e}_{r+++1} \ldots \bar{e}_{n}\right]=0 .
$$

if

$$
\bar{b}_{i}=(\phi-\lambda) b_{i} .
$$

Now (\mathbf{C}^{\prime}) gives

$$
\Sigma B_{i j} a_{j}-\left(\phi-\lambda_{1}\right) b_{i}=0,
$$

for
$\Sigma B_{v} \varepsilon_{j}^{\prime}=\left(\phi-\lambda_{1}\right) b_{i}$.
Therefore

$$
\phi b_{i}=\lambda_{1} b_{i}+\sum B_{i j} a_{j} .
$$

Therefore

$$
(\phi-\lambda) b_{i}=\left(\lambda_{1}-\lambda\right) b_{i}+\Sigma B_{i j} a_{j} .
$$

Therefore $\left[a_{1} \ldots a_{r} \bar{b}_{1} \ldots \bar{b}_{i}\right]=\left[a_{1} \ldots a_{r}\right] \prod_{i=1}^{i=i}\left[\left(\lambda_{1}-\lambda\right) b_{i}+\Sigma B_{i j} a_{j}\right]$
$=\left[a_{1} \ldots a_{r}\right] \Pi\left(\lambda_{1}-\lambda\right) b_{i}^{*}$
$=\left(\lambda_{1}-\lambda\right)^{\cdot}\left[\begin{array}{lllll}a_{1} & \ldots & a_{r} b_{1} & \ldots & b_{1}\end{array}\right]$,
and (B^{\prime}) becomes

$$
\left(\lambda_{1}-\lambda\right)^{r+c}\left[\begin{array}{lllllll}
a_{1} & \ldots & a_{r} & b_{1} & \ldots & b_{1}, \bar{e}_{r+c+1} & \ldots \\
\bar{e}_{n}
\end{array}\right]=0 .
$$

It is obvious how we might go on if the multiplicity of λ_{1} were greater than $r+s$; we should get t points c, such that

$$
\left(\phi-\lambda_{1}\right) c_{i}=\Sigma c_{i j} a_{j}+\Sigma c_{i j}^{\prime} b_{j}
$$

and then ($\mathrm{B}^{\prime \prime}$) would become

We can now enunciate the following theorem :-The equation

$$
\Pi(\phi-\lambda) e_{i}=0
$$

[the left-hand side of which is called the latent function of ϕ] has n roots [called the latent roots of φ]; to a latent root (λ) of multiplicity a appertain a points; these points group themselves into sets, such that, if we call the points of the first set a_{i}, those of the second set b_{i}, and so on, we have

$$
\phi=\frac{\lambda a_{i}, \lambda b_{i}+A_{i}, \lambda c_{i}+A_{i}^{\prime}+B_{i} \ldots}{a_{i},} b_{i}, \quad c_{i},
$$

where A_{i}, B_{i}, \&c. denote syzygies of the a_{i}, b_{i}, \&c.

Now it is obvions that the A, \&c. are asyzygetic: this follows from the way in which they were determined. It follows that their number cannot be greater than that of the a; and obviously $\phi A_{i}=\lambda A_{i}$. We can, therefore, substitute the A_{i} for an equal number of the a, and then we get

$$
\phi=\frac{\lambda a_{i}, \lambda b_{i}+a_{i}, \lambda c_{i}+A_{i}+B_{i}}{a_{i}, \quad b_{i},}
$$

where obviously A_{i} is not the same as before. But now we can substitate $A_{i}+B_{i}$ for an equal number of the b. Let $B_{i}=\Sigma B_{i v} b_{j}$; then

$$
\phi\left(A_{i}+B_{i}\right)=\lambda\left(A_{i}+B_{i}\right)+\sum B_{i j} a_{j}
$$

Therefore we must substitute $\Sigma B_{i j} a_{j}$ for a_{i}, and then we get

$$
\phi=\frac{\lambda a_{i,}, \lambda b_{i}+a_{i,} \lambda c_{i}+b_{i}}{a_{i}, \quad b_{i}, \quad c_{i}}
$$

and it is obvious how we may proceed.*
The points a_{i}, b_{i}, \&o. are called the latent points of ϕ appertaining to the latent root λ.

The number of groups a_{i}, b_{i}, c_{i} that we get for any latent root depends on the coefficients of the latent function. There are two cases in which the theory of the latent points is particularly simple:-(1) the case in which no latent root is repeated, so that, for a latent point a_{i} appertaining to a root λ_{i}, we have

$$
\phi a_{i}=\lambda_{i} a_{i}
$$

and (2) the case in which a latent root is repeated, but all its latent points are a 's, so that, again, for all latent points $a_{i j}$ appertaining to λ_{i},

$$
\phi a_{i j}=\lambda_{i} a_{i j}
$$

7. We have

$$
\begin{aligned}
& (\phi-\lambda) a_{i}=0 \\
& (\phi-\lambda) b_{i}=a_{i}
\end{aligned}
$$

and therefore

$$
(\varphi-\lambda)^{9} b_{i}=(\varphi-\lambda) a_{i}=0 ;
$$

similarly

$$
(\varphi-\lambda)^{\prime} x_{i}=0
$$

if x_{i} is a latent point in the $s^{\text {th }}$ group.
Therefore, if there are s groups of latent points appertaining to λ,

$$
(\phi-\lambda)^{\prime} e_{i}=0,
$$

whore e_{i} is any latent point appertaining to λ.

[^4]Therefore, if the latent roots are $\lambda_{1}, \lambda_{2} \ldots \lambda_{n}$ and if there are $s_{1} \ldots s_{r}$ groups of latent points appertaining to them, then, for any latent point e_{i},

$$
\left(\phi-\lambda_{1}\right)^{\theta_{1}}\left(\phi-\lambda_{9}\right)^{\varepsilon_{2}} \ldots\left(\phi-\lambda_{r}\right)^{\varepsilon_{r}} e_{i}=0 .
$$

But the n points e_{i} are asyzygetic ; therefore, for all points x,

$$
\left(\phi-\lambda_{1}\right)^{s_{1}}\left(\phi-\lambda_{9}\right)^{g_{3}} \ldots\left(\phi-\lambda_{r}\right)^{g_{r}} x=0,
$$

that is,

$$
\left(\phi-\lambda_{1}\right)^{\varepsilon_{1}}\left(\phi-\lambda_{9}\right)^{\varepsilon_{9}} \ldots\left(\phi-\lambda_{r}\right)^{\theta_{r}}=0 .
$$

This is the identical equation.
If the roots are all unequal, $r=n, s_{2}=s_{2}=\ldots=s_{n}=1$, and the equation is

$$
\left(\phi-\lambda_{1}\right)\left(\phi-\lambda_{9}\right) \ldots\left(\phi-\lambda_{n}\right)=0 .
$$

8. We have

$$
\phi a_{i}=\lambda a_{i},
$$

and therefore

$$
\phi^{m} a_{i}=\lambda^{m} a_{i}
$$

and generally, if f is any function, not involving matrices other than ϕ,

$$
f(\phi) a_{i}=f(\lambda) a_{i}
$$

We have

$$
\begin{aligned}
\phi b_{i} & =\lambda b_{i}+a_{i}, \\
\phi^{2} b_{i} & =\lambda \varphi b_{i}+\phi a_{i} \\
& =\lambda\left(\lambda \dot{b}_{i}+a_{i}\right)+\lambda a_{i} \\
& =\lambda^{2} b_{i}+2 \lambda a_{i},
\end{aligned}
$$

and generally

$$
f(\phi) b_{i}=f(\lambda) b_{i}+f^{\prime}(\lambda) a_{i}
$$

In the same way, if x_{i} is in the $8^{\text {th }}$ group,

$$
f(\phi) x_{i}=f(\lambda) x_{i}+\ldots+f^{(0-1)}(\lambda) a_{i}
$$

9. Now let $s_{1}=s_{2}=\ldots=s_{r}=1$: then we have, if

$$
\begin{gather*}
\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{9}\right) \ldots\left(\lambda-\lambda_{r}\right)=\chi \lambda \\
f(\phi)=\Sigma \frac{\chi(\phi)}{\left(\phi-\lambda_{i}\right)} \cdot \frac{f \lambda_{i}}{\chi^{\prime} \lambda_{i}} \ldots \ldots . \tag{A}
\end{gather*}
$$

f being any function not involving any matrix other than ϕ.
The function

$$
\frac{x(\phi)}{\phi-\lambda_{i}}
$$

simply means

$$
\left(\phi-\lambda_{1}\right)\left(\phi-\lambda_{1}\right) \ldots\left(\phi-\lambda_{i-1}\right)\left(\phi-\lambda_{i+1}\right) \ldots\left(\phi-\lambda_{r}\right) .
$$

To prove (A), I denote the right-hand side of it bj $F(\phi)$, and I show that $f(\phi) e_{j}=F(\phi) e_{j}$, e_{j} being any latent point. We have, if e_{j} appertains to λ_{j},

$$
\begin{aligned}
\frac{x(\phi)}{\left(\varphi-\lambda_{i}\right)} e_{j} & =\frac{x \lambda_{j}}{\lambda_{j}-\lambda_{i}} e_{j} \\
& =0 \text { if } i<j \\
& =\chi^{\prime} \lambda \text { if } i=j .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
F(\phi) e_{j} & =f\left(\lambda_{j}\right) e_{j} \\
& =f(\phi) e_{j}
\end{aligned}
$$

and, therefore, generally $\quad f(\phi)=F(\phi)^{*}$.
If the s are not all equal to unity, the formula is much more complicated.
10. If we have r asyzygetic points e_{i}, and no more, such that $\phi e_{i}=0$, ϕ is said to be of nuility r. It follows, from what was proved in (6), that in this case (since $\phi e_{i}=0 . e_{j}$) r, at least, of the latent-roots must vanish. But more than r may vanish; and, accordingly, if s latent roots vanish, ϕ is said to be of vacuity s. We see that the nullity of a matrix cannot be greater than its vacuity, but may be less. A point x, such that $\phi x=0$, is called a null-point of ϕ : the r-point determined by the r asyzygetic null-points of a matrix of nullity r is called the null-space of the matrix.

If $e_{1} \ldots e_{r}$ are r asyzygetic null-points of a matrix of nullity r, it is obvious that $\sum \lambda_{i} e_{i}$ is also a null-point; that is, every point in the nullspace of a matrix is a null-point. Moreover, it is easy to see that every null-point must be in the null-space; for, if there were a null-point e_{r+1} not in [$e_{1} e_{g} \ldots e_{r}$], we should have ($r+1$) asyzygetic null-points, and the nullity of the matrix would be $r+1$.

Applying what was proved in (6) above, to the case $\lambda=0$, we see
that we get.

$$
\phi=\frac{0 \quad a_{i} b_{i} \ldots}{a_{i} b_{i} c_{i} \ldots}
$$

We see that, if there are s groups $a, b, c \ldots$ and $a, \beta, \gamma \ldots$ points, $a_{i}, b_{i}, c_{i} \ldots$, the nullity of ϕ is a, and its vacuity $a+\beta+\gamma \ldots$; the nullity of ϕ^{2} is $a+\beta$ (since $\phi^{2} b=0, \phi^{2} a=0$), and its vacuity $\alpha+\beta+\gamma \ldots$; the nullity of ϕ° is ($a+\beta+\gamma \ldots$), and its vacuity $\alpha+\beta+\gamma \ldots$ Therefore the nullity of ϕ^{\prime} is equal to its vacuity : and, if we apply this to

[^5]the matrix $\phi-\lambda_{i}$, where λ_{i} is a latent root of ϕ having s_{i} groups, we see that s_{i} can be defined as the order of the lowest power of $\left(\phi-\lambda_{i}\right)$ of which the nallity is equal to its vacuity. ${ }^{\text {. }}$

Consider the equation $y=\phi x$. Given x, this determines y uniquely; given y, x is not determinate unless the nullity of ϕ is zero: for, if we have $y=\phi x=\varphi x^{\prime}$, we have

$$
\varphi\left(x-x^{\prime}\right)=0 .
$$

Therefore ($x-x^{\prime}$) must be a null-point of ϕ; and, if ϕ is of nullity r, the solation of the equation $y=\phi x$ contains r arbitrary constants : if x is any solution, the general solution is

$$
x+\sum_{i}^{\dot{r}} \lambda_{i} e_{i},
$$

the a being r asyzygetic null-points, and the λ arbitrary scalars.
11. Now, take as points of reference r asyzygetic null-points, $e_{1} \ldots e_{r}$, and $n-r$ points not in the null-space of ϕ; then, if

$$
\begin{gathered}
x=\sum_{1}^{n} x_{i} e_{i j} \\
\phi x=\sum_{1}^{n} x_{i} \phi e_{i}+\sum_{r+1}^{n} x_{i} \phi e_{i j} \\
=\sum_{r+1}^{n} x_{i} \phi e_{i}
\end{gathered}
$$

since $\phi e_{1}=\phi e_{9}=\ldots=\phi e_{r}=0$: therefore the point ϕx is in a certain $(n-r)$ point; viz., the $(n-r)$ point

$$
\Pi \equiv\left[\phi e_{r+1} \cdot \phi e_{r+2} \ldots \phi e_{n}\right]
$$

This product does not vanish ; for, if it did, there would be a relation

$$
\sum_{r+1}^{n} c_{i} \phi e_{i}=0
$$

that is,

$$
\phi \Sigma c_{i} e_{i}=0
$$

Therefore there would be a null-point of ϕ in $\left[\theta_{r+1} \ldots \theta_{n}\right]$, which is contrary to the hypothesis.

The ($n-r$) point Π is called the latent space of ϕ : it is obvious that it contains all the latent points for which λ does not vanish.

If the vacuity of ϕ is greater than r, it follows, from what was proved above, that the latent space of ϕ will contain some or all of its null-points.
12. Let ϕ, χ be two matrices of nullities r, s respectively: it is required to find the nallity of ϕX. I shall show that, if the null-space
of ϕ intersects the latent space of X in a t-point, the nullity of $\phi \chi$ is $s+t$.*
I take as points of reference, $e_{1} \ldots e_{n-1}$, being ($n-s$) asyzygetic points, not situate in the null-space of χ, and $e_{n-++1} \ldots e_{n}$ asyzygetic null-points of χ; let the null-space of ϕ cut the latent space of χ in the t-point [$E_{1} \ldots E_{t}$], where the E are, of course, supposed to be asyzygetic; lastly, let $\chi e_{i}=e_{i}^{\prime}$. Let $A=\Sigma A_{i} e_{i}$ be any point: then

$$
\begin{aligned}
x A & =\sum_{1}^{n} A_{i} x e_{i} \\
& =\sum_{1}^{n=1} A_{i} e_{i}^{\prime}
\end{aligned}
$$

since $e_{n-+1}^{\prime}=\ldots=e_{n}^{\prime}=0$; therefore

$$
\phi X A=\sum_{1}^{n-1} A_{i} \phi e_{i}^{\prime}
$$

But we can select from $e_{1}^{\prime} \ldots e_{n-s}^{\prime}, n-s-t$ points, asyzygetic with the E, and then we have

$$
\begin{equation*}
e_{i}^{\prime}=\sum_{k=1}^{t} \beta_{i k} E_{k}+\sum_{j=1+1}^{n-1} a_{i j} e_{j}^{\prime}(i=1 \ldots t) \tag{X}
\end{equation*}
$$

Therefore, since $\phi E_{k}=0$ (since the E are in the null-space of ϕ),
and

$$
\begin{gathered}
\phi e_{i}^{\prime}=\sum a_{i j} \phi e_{j}^{\prime}, \\
\phi \times A=\sum_{j=i+1}^{n=0} \phi e_{j}^{\prime}\left(A_{j}+\sum_{i=1}^{i} a_{i j} A_{i}\right) .
\end{gathered}
$$

Therefore all points ϕ, X, A are in the $(n-8-t)$ point [$\phi e_{t+1}^{\prime} \ldots \phi \theta_{n-1}$]; and, to show that this is actually the latent space of $\varphi \chi$, we have only to show that these ($n-8-t$) points are asyzygetic : but if they were not asyzygetic, and we had
we must have

$$
\begin{aligned}
0 & =\sum_{1}^{n-1-i} c_{i} \phi e_{i+i}^{\prime} \\
& =\phi \Sigma c_{i} e_{i+i}^{\prime}
\end{aligned}
$$

which is contrary to the supposition on which e_{t+1}^{\prime}, \&c. were selected. Therefore the latent space of ϕX is an ($n-s-t$) point, and therefore its nallity is $(s+t)$; and it can be shown without difficulty that its null space is the $(s+t)$ point joining the null space of χ to the t-point in its latent space, which χ transforms into [$\left.E_{1} \ldots E_{t}\right]$.
13. In all that follows, I shall assume that, in the notation of (7), $s_{1}=8_{8}=s_{r}=1 . \dagger$

- Cf. Yhil. Mug., Nov. 1884.
\dagger That is, that all latent points are a's: Case (2) of (6).

Now let it be proposed to find a non-vacuons* matrix ψ such that $\psi \phi=\phi \psi, \phi$ being a given matrix.

Let $e_{1} \ldots e_{n}$ be the latent points of φ. Lét e_{i} appertain to λ_{i}; sappose $\lambda_{1}=\lambda_{1}=\ldots=\lambda a_{1}=\lambda_{1}$, \&o. ; lastly, let

$$
\psi e_{i}=\Sigma a_{i j} e_{j}
$$

Then

$$
\begin{aligned}
\phi \psi e_{i} & =\Sigma a_{i j} \phi e_{j} \\
& =\Sigma a_{i j} \lambda_{j} e_{j} .
\end{aligned}
$$

Bat

$$
\begin{aligned}
\psi \phi e_{i} & =\psi \lambda_{i} e_{i} \\
& =\lambda_{i} \Sigma a_{i j} e_{j} .
\end{aligned}
$$

Therefore, since $\psi \phi=\phi \psi$, and ψ is supposed non-vacuons, we have

$$
a_{i j} \lambda_{j}=a_{i j} \lambda_{i} .
$$

Therefore, unless $\lambda_{i}=\lambda_{j}, a_{i j}=0$; and it follows that ψ transforms all latent points appertaining to the same latent root λ_{i} into points of the same a_{i}-point, if a_{i} is the multiplicity of λ_{i}; we therefore have

$$
\psi=\Sigma \psi_{i},
$$

where ψ_{i} is a matrix of nullity $n-a_{i}$, having [$e_{1} \ldots e_{a_{i}}$] as its latent space, and therefore transforming every latent point appertaining to $\boldsymbol{\lambda}_{\boldsymbol{i}}$ into another latent point appertaining to λ_{l}.

If $a_{1}=a_{9}=\ldots=a_{r}=1$, we can go further than this, and can assign the form of ψ; for in this case it is obvious that ψ must transform every latent point into itself ; that is,

$$
\psi=\frac{\Lambda_{i} e_{i}}{e_{i}}
$$

But

$$
\frac{\Lambda_{i} e_{i}}{e_{i}}=\Sigma \frac{\chi(\phi)}{\phi-\lambda_{i}} \cdot \frac{\Lambda_{i}}{\chi^{\prime} \lambda}
$$

using the same notation as in (9). This can be proved by the method there employed. Therefore we can say that, if $\phi \psi=\psi \phi$, and if ψ is non-vacuous, and the latent roots of ϕ are all different, ψ is a function of ϕ, of order ($n-1$), and with scalar coefficients; viz., we have

$$
\psi=\sum_{\phi-\lambda_{i}}^{\chi(\phi)} \cdot \frac{\Lambda_{i}}{\chi^{\prime}\left(\lambda_{i}\right)}
$$

[^6]where the Λ are scalars, and χ^{λ} is the latent function of ϕ, viz.,
$$
x^{\lambda}=\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{n}\right) . *
$$

We can apply a similar method to the equation $\phi \psi=k \psi \phi, k$ a scalar. We shall ind that k is an $n^{\text {th }}$ root of unity, and that, if it is a primitive $m^{\text {th }}$ root of unity, ψ is equivalent to a substitution operating on the n latent points of ϕ; viz., if $n=m m^{\prime}, \psi$ is the product of m^{\prime} cyclio substitations, each cycle being of order m.
14. As a last example of the methods of this paper, I take the solution of the general anilateral equation.

Let the given equation be

$$
0=F(x)=A_{0} x^{m}+A_{1} x^{m-1}+\ldots+A_{m}
$$

where the A are known matrices of order n, and x is an unknown matrix of the same order.

Let $\lambda_{1} \ldots \lambda_{n}$ be the latent roots of $x ; e_{1} \ldots e_{n}$ its latent points. Since $F(x)=0$, we have

$$
\begin{aligned}
0 & =F(x) e_{i} \\
& =F^{\prime}\left(\lambda_{i}\right) e_{i} .
\end{aligned}
$$

Therefore e_{i} must be a nall-point of $F\left(\lambda_{i}\right) ; F\left(\lambda_{i}\right)$ must be vacuous; aud therefore, if we take n points of reference a_{j}, we must have

$$
\prod_{j=1}^{n}\left[F\left(\lambda_{i}\right) a_{j}\right]=0 \dagger \quad(i=1 \ldots n)
$$

that is, the latent roots of x must be roots of this equation of order $m n$, and, if we take any set of n roots, the latent point of x appertaining to a root λ_{i} is a null-point of $F \lambda_{i}$, and ∞ is thus completely determined.

[^0]: *This result might, of course, have been obtained in one step, and the general theorem is so obtained in the paper. I have preferred the langor form of the proof because it seemed to show the principle involved more clearly.

[^1]: - In strict analogy with the rest of the notation, a_{1} should of course denote $a_{11} e_{1}+a_{18} e_{2}+\ldots+a_{3 n} e_{n}$; but this inconsistency is unavoidable if we are to keep to the ordinary conventions for matrices. I do not think it need cause any confusion; I have tried to guard against it by using a_{1} instead of a_{1}.

[^2]: - This law and the commutative ($a b=b a$) law are the only laws for which this is true; this is proved by Grassmann in his Ausdehnungslehre.
 \dagger Cf. Proc. Lond. Math. Soc., Vol. xiv., p. 84.

[^3]: - If $\phi=\left\|a_{k}\right\|,(\phi-\lambda) e_{1}=\left(a_{11}-\lambda\right) e_{1}+a_{21} e_{2}+\ldots$ and if we write down the corresponding expressions for $(\phi-\lambda) e_{2}$, \&c., and use the theorem given at the ond of the introduction, we shall get (B) in the form $f \lambda\left[e_{1}-e_{n}\right]$, and it will be seen that $f \lambda=0$, the well-known determinant equation giving the latent roots.

[^4]: * Jordan, "Trait́ des Substituṭions," 125.

[^5]: * (A) is Professor Sylvester's "interpolation formula," giving the standard form to which all functions of a matrix can be reduced : it appears above in what is, I think, a more general form than Professor Sylvester's.

[^6]: - A matrix is vacuous if its vacuity >1.

 VOL ITI.-NO. 238.

