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a» A y, $, c, p, a connected by five equations. The equivalence of the
two sets of formulae may be shown withput difficulty.

To the Table 2 of the Quintic Equations, given in the paper, may
be added the following result from Legendre's w Th6orie des Nom-
bres," Ed. 8, t. ii., p. 213,

IP

64.1

v5 n*
1 + 1 -256 - 5 6 4 +5238 -5120 = 0,

calculated by him for the isolated case p = 641.

On the Theory of Matrices. By Mr. A. BUCHHEIM, M.A.

[Head Nov. Wh, 1884.]

INTRODUCTION.

The methods used in the following paper are essentially, though
not historically, an extension of Hamilton's theory of the linear func-
tion of a vector, and the simplest way to connect Grassmann's methods
with the theory created by Cayley and Sylvester will be to conneot
them both with Hamilton's investigations.

It is, or ought to be, well known that the linear and vector function
of a vector is simply the matrix of the third order. This is obvious
from the definition : for, if p is any vector, <rz= <f>p is a vector whose
constituents are linear functions of p's constituents; that is, if

p = xi+yj + 2 h, a = x'i+y'j + «'&,

we mast have the three equations

as' = ax+a'y+a"z,

y'=hx+b'y + b"zt

z' = cx + cy + c'z,

that is, (x'y'z') = ( a a'- a" $a>, y% z) (A).
b b' b"
0 C C

That is to say, it is the same thing whether we say that o = ty>, or
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that the constituents of a are obtained from those of p by operating
on them with a certain matrix; and we see that in this sense we can
identify <f> with the matrix, and we can say that

<p = (a d a"} > .......(B).
b b' ft" I
o c' c"\

Now, in (A), let p = i, that is, let (xyz) = (100); then

(xyz) = (abc),

that is, tr = ai+bj+ck,

or say, <j>i = ai + bj+ck = a.

In the same way, we get

<f>j = di+b'j + ck = d.

And then <f>p = tp (xi+yj+zk) = (ax+a'y+d'z) i

c"z) k

s= x (ai + bj -f- ck )

'i + b'j+ck)

And we can say that (the linear f anction or matrix) <j> changes i, j , k
into three given vectors a, a', a", and changes any other vector
xi+yj+zk into xa+yd+20".

Now, on looking at what precedes, it will at once be obvious that we
have used none of the special properties of i, j , k: so far as our work
is concerned, they might have been any three vectors, provided only
that every vector could be expressed in terms of them ; and if we call
three such vectors asyzygetic, and change the notation, we can say
that a linear fanction, or matrix, changes three given asyzygetio
vectors a, /3, y into three given vectors a', /3', y, and changes any vector
ara+ y/3+zy into xd+yfi+zy. As regards the word "asyzygetic,"
I remark that any vector can bo expressed in terms of a/3y, provided
Safiy does not vanish ; and we know that Sufly = 0 is the necessary
and sufficient condition that we may have a relation \a-\-fif3-j-yy = 0,
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where X, fxy v are scalars.: it is better to nse this as a definition of
asyzygetio vectors ; viz., three vectors are asyzygetic if they are not
connected by a linear relation witb scalar coefficients.

If we nse the notation of the paper, we can write

<p (xa+yfi+zy) = xa +y/3'+«y\

M y ) .
a' 6' o' I
a" 6" o" I

= (a a' a").
6 b' b"
c c' o

Before passing on to matrices of any order, I shall give a simple
application of the method as an example. I choose the proof of the
identical equation (Hamilton's Symbolic Cubic).

It is known (c/. Hamilton's Elements, § 353, seq.) that for any
matrix <j> there are in general three scalars X, £i, v, and three vectors
a, /3, y, respectively, such that

<pa = Xo or (0—X) 0 = 0^

( (C)
>—v) y = 0 ;

t + 2/j3+ay

= ,i/3 or ty-/i)/3=

97 = o r

and that the three vectors o, /3, y are asyzygetic. Let p =
be any vector; then

by (0),
~X)p = x (0-X) a + y ( ^ -

= 2/(?-*)(*-

That is, (<p— X) (0—p

(f-X) ty-
by (C),

=;.O, by (C).

—1») p always vanishes; that is,

* This result might, of course, have been obtained in one step, and the general
theorem ia so obtained in the paper. I have preferred the lengor l'orin of the proof
because it seemed to show the principle involved more clearly.

VOL. XVI.—NO. 237. F
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We have now to extend this theory to matrices of higher orders. It
is fairly obvious that, in the case of matrices of the third order, the
saccess of the method depends on the fact that for three variables
(», y, z) we are able to substitute a single vector (xa+yfi+zy) ; and
the only property of the vector that we have used is the following: •

If za + yfi+zy = x'a+y'(i+z'y (a, /3, y being asyzygetic), then

x = x't y = y , z = %'.

Now, to extend this to sets of more than three letters, take n units
eu ev eH ••• e» (we are not at present concerned with their meaning) ;
and in place of the set of n letters x^xi} ... xn consider the point

x =

and stipulate as before that

say x = y,

shall mean a$, = yu x% = y% ...»„ = yn.

Then we have, for instance,

\x+py = (Aa^/i^x) 6!+... +(X

where X, ft are scalars.

We now require the theorem,—Every point can be linearly ex-
pressed in terms of any n asyzygetic points. Passing over the word
asyzygetic for the present, it is easy to see the meaning of the theorem,
and to convince oneself of its truth. Let x be any point, and let
o, /3, y. . . be n given points; then we are to have

(d),

\,ptv... being scalars, that is

... +xnen= X
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That is, we are to have

.(D).

Now we know that these equations determine X, ft, v..., if, and only if,

A = a, ft y l f . . .

does not vanish. And therefore, if we say that the points a, /3, y ...

are asyzygetio if A > Q, the theorem is proved, and we have also a

definition of asyzygetic points. But we can get a better definition :
for we know that A = 0 is the necessary and sufficient condition that
we may be able to solve (D) after putting xx = x2 . . . = » „ = 0; and
therefore, if we go back to the equation (d) from which (D) was
derived, and write, as we obviously may,

we see that n points or, |3, y ... are not asyzygetic if it is possible to
satisfy a relation of the form

or, say, if they are connected by a linear relation with scalar co-
efficients ; or, in other words, n points are asyzygetic if they are not
connected by a linear relation .with scalar coefficients. This is the
sense in which the word is used in the paper.

Now, suppose we have taken n asyzygetic points ev e2,... e,,, and
have expressed everything in terms of them, and consider the trans-
formation

a21

write <f> to denote the matrix || ait||, and denote the transformation
by y — fe.

Now, take x = eu that is, take

(»„ a>a, ... x ) = ( 1 , 0 0);
F 2
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then we get

or

similarly

Moreover,

. Mr. A. Buchheim on

(yi»y8...yn) = (ai»asi".a«i)i

: ^ex = ane,+a81ea+...+a»iei = a,,*

f e, = alle1+aI8e,+ ...+afaei = a,.

[Nov. 18,

nzn)

+an 8en)

And we see that we can say that the matrix <f> changes the points of
reference, e^ es... en into n given points nv a,... an, and then changes
any other point (a51e1+ajgea+..-fa'oen) into JB1a1 + «,a,+ ...+ajnan.
This is the definition of the matrix used in the paper; the relation
between a,, &c. on the one hand, and the matrix on the other, will be
made clear by the following set of equations:

<*>n

(a,, a, ... on) = (

a , = <peh

°n
e» e , . . . en),

0>nn

* In strict analogy with the rest of the notation, ax should of course denote
8n e\ + «u *s + • • • + °m fn; but this inconsistency is unavoidable if we are to keep to
the ordinary conventions for matrices. I do not think it need cause any confusion;
I have tried to guard against it by using oj instead of at.
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It remains to add a few words on the multiplication of points. The
laws of the multiplication of all points depend on the laws assumed
for the units; the law assumed by Grassmann is that known as polar
multiplication; viz., we have ab — —ba, a* = 0, for the original units of
reference, and then this law holds for all points.* From this, and the
associative law, it follows that any product of points vanishes if a
point is repeated. We can use this theorem to interpret the products
of points. In all that follows, I use geometrical language. The point
x is supposed to be the point in a space of (n—1) dimensions, having
as its homogeneous (multiplanar) coordinates (&„ a?,... »„) ; and then we
can use the following definitions : let a, /3 be two points, then, if X is
a variable scalar, the point a + X/3 moves on the straight line a/3 ; if
X, ft are two variable scalars, the point a + X/3+/iy moves in the plane
a/3y ; if X, /u, v are scalars, the point o + X/3+py + vB moves in the linear
space (three-point) q/3y5; and generally, if Xx, X,... Xr.t are scalars, the

point A = a+X1a1+X,a,+ ...+Xr.iar_i

moves in the r-point (a, ê  ... ar-1) ; since A can have a oo1""1 series
of positions, depending linearly on (r—1) parameters, it is obvious
that an r-point is the same as what Clifford calls an (r— l)-flat.

I shall follow Grassmann in enclosing all polar products in square
brackets. We have to interpret the product [a/3] : we have

X'[a/3] + X[/3a]+XX'[/3/3]

For [act] = [/3/3] = 0, and [/3a] = - [a/3].

Therefore the product is unaltered, to a factor pres, if for a, /3 we
substitute any two points of the straight line afl; and it will be
altered if we substitute any point not on the straight line (this can
easily be verified); thus we see that the product appertains to the
straight line, and defines i t ; we may therefore say that [a/3] is the
straight line a/3.f Moreover, we see that

[a/3(a + X/3)] = [a/3a] + X [a/3/3]

= 0.

* This law and the commutative (ab=ba) law are the only laws for which this is
true; this is proved by Grassmann in his Ausdehnungslehre.

t Cf. Proe. Lond. Math. Soc, Vol. xiv., p. 84.
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Therefore, the product of two points is the line joining them, and the
product of three collinear points vanishes.

In precisely the same way, we can show that the product of three
points is the plane containing them, and that the product of four corn-
planar points vanishes; and, generally, the product of r points is the
r-point determined by them, and the product of (r +1) points contained
in the same r-point vanishes.

This last theorem can be put in another form. Suppose the (r+1)
points au a,... arH to be in the same r-point; then, since or+i is in the
r-point (aj, a,... a,), we have, by definition,

ar+i = \a i + \a j ...+Xrar.

That is, the (r+1) points a are connected by a linear relation, that is,
they are not asyzygetic, and, writing r for r + 1, we can say that the
product of r asyzygetic points is the r-point determined by them: if
the points are not asyzygetic, the product vanishes. Moreover, it can
be proved that, if r points are not asyzygetic, their product will not
vanish, and we have, therefore, the important theorem: the necessary
and sufficient condition for the existence of a linear relation

i\ta = 0,
I

connecting r points, is [ojct,... a ] = 0.

Lastly, I have to remark that the product of n points xlixi...xH is

Defc | x* | [eji e, . . . e n ] ;

and that [e,, e,... en] can always be supposed equal to unity.

On p. 241 of the Ausdehnungslehre of 1862, Grassmann defines a
certain operator, which he calls a quotient: this operator transforms
n given" points of a space of (n — 1) dimensions into n other given
points, and then transforms any (w + l) t h poiut into a determinate
point. This operator is, in fact, the general matrix-of the nth order ;
the object of the present paper is to treat the theory of matrices from
Grassmann's point of view.* It will be seen that some important
parts of the theory are considerably simplified by this treatment. It
is hardly necessary to point out that there is not a new theorem in
the paper, and that its existence can only be justified, if at all, by the

• Cf. Clifford: " A Fragment on Matrices," Math. Papers, 337.
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methods employed. The language and notations of the paper have
been explained in the introduction.

1. Take n asyzygetic points, e,,'e,... en, and n points corresponding
to them, Ox, at... an; then a matrix 0 of the »tt order is defined as an

operator, such that <pet — a(,

and that ^Sfyfy = 2ic<̂ e< = Sc<a<,

the c being scalars; this matrix can be conveniently written as a

fraction 6 = —-—LIU—"t

or, more simply, ^ = —.

We may, if we please, make this notation more definite by adopting
a notation of Prof. Cayley's,* and writing

Another form is also convenient, and is, in fact, the usual form ; let
o4 = 2a,i£<, then we write

.1 '•*!»' ^ 8 • • • ) l

viz., we have

and .then <p = —i-

has the form just given.

2. Two matrices, <p, f', are said to be equal if <pz = <p'xf whatever x

a, b U = a.
0 I
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may be; if e\ is any set of n asyzygetio points, f = '̂ if 0ej = '̂e<;
for we oan express x in the form 2a5<e(, and then we have

= 0'0.

Hence we can prove that, if e\ = Se^e, is any asyzygetio Bet,*

for 0ej

Lastly, if ̂  = \<pe{, where \ is a scalar, we obviously have generally
<p'x = \^x, or <p' = \^, and, if <pe{ = Xe{, ̂  = X.

5. If we have $ = £*-,

we define the prodnot \<p by the equation

tut«, ^oil.jad-W

This product need obviously not be commutative. I proceed to show
that it is associative. Let

G{ Obi ai

Then ( ( ? ° ) a £)
a, / e4 a,

and therefore the product is associative.
The following formula is important, but no use is made of it in

this paper.f
Let . 0

• Set means set ofn points. .
t It is, in fact, the ordinary formula for the multiplication of two matrices.
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Then
* ' e*

We have

2 n,:t. 2 hi, Bi

(&=l . . . n )

ty(ajf)
Therefore 0> = i * (& = 1 ... w).

e

6. We have now to consider the following problem: Given a
matrix <p, to find a soalar X,> and a point a>, such that

0» = Xa?,

or (f —X) a? = 0.

Let »

be the required point, then we have

0 = ty—\)»= Saj,(^—X)e, (A).

That is, the n points (0—X) e< are asyzygetic; and their product
therefore vanishes, that is, X must satisfy the equation

o (B).

If this equation be multiplied out, we get an expression /X [ex... en],
and, as the second factor does not vanish, X must be a root of f\ = 0 ;
and then the xt are obtained (by solving a set of linear equations) as
the coefficients of the syzygy (A). If there are s unequal roots of
the equation f\ = 0, we obviously get s points x, one such point apper-
taining to each root: in particular, if the n roots are all unequal, we
get n points. I t is possible, however, in every case to get n points
appertaining in groups to the different roots of /X=0. This I proceed
to show.*

* If <pso|| o« ||, (<p—x) elB(au—\)el + Ome9 +... and if we write down the corres-
ponding expressions for (<£—A) «2, &o., and use the theorem given at the end of the
introduction, we shall get (B) in the form J\ [el—«„], and it will be seen that/X = 0,
the well-known determinant equation giving the latent roots.
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The whole investigation depends on the fact that, since we might
have expressed x in terms of any n asyzygetic points, we can substi-
tute any n asyzygetic points for the eif in (B).

Let Xj be any root of (B), let (<f>—X,) et = e'(; then we have, by (B),

It follows, from this, that we have at least one linear relation connect-
ing the e'(; but there may be more. Let there be r relations,

*; = 0 (< = i , 2 . . . r ) , . (0),

where ej = (̂ —X,) et.

Let

Since the r relations (c) are asyzygetic, by hypothesis, it follows that
the r points a are asyzygetic, for, if they were not, and we had
S/irftti = 0, we should, by operating with 0—A,, get a relation connect-
ing the equations (C).

It follows that we can substitute the points a for r of the e: suppose
we substitute them for ^ ... er; then (B) becomes

faa,... are,+,... cn] = 0,

if On = (0»—X) #,-.

But ( 0 ) gives (0—Xx) a< = 0,

or ^d{:

and therefore (0~-X) a<:

and (B) becomes (Xx—X)r[aja,... arer+\... eii] = 0 (B).

Therefore, if there are asyzygetic relations (C), there are r points a,
such that (0—X,)a< = 0, and Xx is an r-tuple root, at least, of (B).
But the multiplicity of X, may be greater than r ; if it is, we must

have 0 ,8 , . . . are',+i... e«] = 0,

Suppose, as before, that there are s asyzygetic relations

V ^ O (• = !...«) .(C).
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Then all the coefficients J5Ur+1)... Bin cannot vanish, since the a are
asyzygetic, and we can take

i^lBqej (t = ! . . .«)>
r+I

and substitute the a points b in place of, say, e,+1... er+,. We have now
to see what (B) becomes. In the first place, we get

(Xl-\ytol... ar\ ... I, Jr+I+1... ;„] = 0.... (B'),

if 6<==(0—X)6<.

Now (C) gives 2 By a,—(0—X,) 6< = 0,

for 3 £ ( , e ; = (0-X,)6 i t

Therefore &̂< = X, 6<+2 J5y a,.

Therefore (^ - X) b( = (Xa- X) 6< + S B^ a,.

Therefore [oj ... ar 6t... 6,] = [oj... ar] n [(Xx -X) 6,+5 By a,]

= [a1 . . .a r ]n( \ 1 -X)fe<*

= (X l -X) ' [a 1 . . . a r 6 1 . . .6 l ] ,
and (B') becomes

(X^X)'** [a, . . . or 6j... 6,e,+,+1... en] = 0 (B").

It is obvious how we might go on if the multiplicity of X, were
greater than r + s ; we should get t points c, such that

(0 — Xx) C< = S Cy O, + S Cy 6̂ ,

and then (B") would become

( X ^ X ) — ' [a,... ar b,... &, (H ... e.ir+,+m ... in] = 0 (B'").

We can now enunciate the following theorem :—The equation

11(0—X)ei==0

[the left-hand side of which is called the latent function of 0] has n
roots [called the latent roots of 9 ] ; to a latent root (X) of multiplicity
a appertain a points; these points group themselves into sets, such
that, if we call the points of the first set at, those of the second set
lu and so on, we have

ait bit Ci

where Ait Bu &o. denote syzygies of the ai} bi} &o.

• Vide p. 69, 1. 8.
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Now it is obvious that the A, &o. are asyzygetio: this follows from
the way in which they were determined. It follows that their number
cannot be greater than that of the a; and obviously <f>A{ = \A(. We
can, therefore, substitute the At for an equal number of the a, and
then we get

. _ Xa<t X

where obviously A( is not the same as before. But now we can sub-
stitute Ai+Bt for an equal number of the 6. Let B( = SJ3</6/; then

i) = X

Therefore we must substitute 22?ya, for a,-, and then we get

__
a,, 6,, Ci

and it is obvious how we may proceed.*
The points ait &,-, &c. are called the latent points of <j> appertaining to

the latent root X.
The number of groups a,-, bit c< that we get for any latent root

depends on the coefficients of the latent function. There are two cases
in which the theory of the latent points is particularly simple:—(1) the
case in which no latent root is repeated, so that, for a latent point
a{ appertaining to a root X,, we have

and (2) the case in which a latent root is repeated, but all its latent
points are a's, so that, again, for all latent points (ty appertaining to A,,

7. We have (0-X)aj = O,

(<f>—X) bt = a,,

and therefore . (<p — X)S6< = (f—X) at = 0;

similarly (<p—X)'aj< = 0,

if x{ is a latent point in the flth group.

Therefore, if there are 8 groups of latent points appertaining to X,

( f - X ) ' e < = 0 ,

where e{ is any latent point appertaining to X.

• Jordan, " TraitS des Substitutions," 126.
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Therefore, if the latent roots are X,, X,... Xn and if there are ̂  ... sr
groups of latent points appertaining to them, then, for any latent
point eit

to-KlHt-K)H...(t-K)t'et = 0.
But the n points e{ are asyzygetio; therefore, for all points as,

that is, to-Xi)*^-*,)"1 - (0-*X')'r = 0.
This is the identical equation.

If the roots are all unequal, r = n, «x = «a = ... = «„ = 1, and the
equation is

( • - V (•-*•) ••• (•-*.) = 0.

8. We have â< = Xa<,

and therefore Qmat = \ma{}

and generally, if / is any function, not involving matrices other than ̂ ,

We have

= X

and generally / (^) 6, = / (X) 6< + / (X) at.

In the same way, if »< is in the 8th group,

fit) * =f (X) z<+... +/-1* (X) a,.

9. Now let «j = fig = ... = «r = 1: then we have, if

(X-X,)(X-X,)...(\-Xr)=x*.

• (A),

/ being any function not involving any matrix other than <f>.

The function

simply means
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To prove (A), I denote the right-hand side of it by Fty), and I
show that / (<j>) ej = F (<p) ejt es being any latent point. We have,
if ej appertains to \Jt

= 0 if i>j

Therefore F (<p) e, = / (X,)

and, therefore, generally f (<j>) = F (<{>)*.

If the 8 are not all equal to unity, the formula is much more com-
plicated.

10. If we have r asyzygetic points e,, and.no more, such that ^ = 0 ,
<J> is said to be of nullity r. It follows, from what was proved in (6),
that in this case (since 0e< = 0. e,) r, at least, of the latent-roots must
vanish. But more than r may vanish ; and, accordingly, if 8 latent
roots vanish, <p is said to be of vacuity 8. We see that the nullity of a
matrix cannot be greater than its vacuity, but may be less. A point
x, such that <j>x = 0, is called a null-point of <f>: the r-point determined
by the r asyzygetic null-points of a matrix of nullity r is called the
null-space of the matrix.

Iiel ... er are r asyzygetic null-points of a matrix of nullity r, it is
obvious that ^X{e{ is also a null-point; that is, every point in the null-
space of a matrix is a null-point. Moreover, it is easy to see that every
null-point must be in the null-space; for, if there were a null-point
er+i not in [ e ^ ... er], we should have (r+1) asyzygetic null-points,
and the nullity of the matrix would be r + 1 .

Applying what was proved in (6) above, to the case X = 0, we see

that we get 0 a< &,...
• a { b i Ci , . i

We see that, if there are 8 groups atl, c... and a, /3, y ... points,
ait bit c,..., the nuliity of <l> is a, and its vacuity o+/3 + y . . . ; the
nullity of <j>% is a+jS (since0J6=O, ^»8a=0), and its vacuity a+/> + y...;
the nullity of f is (a+/3 + y...), and its vacuity a + /3 + y... There-
fore the nullity of <p' is equal to its vacuity : and, if we apply this to

• (A) is Professor Sylvester's "interpolation formula," giving the standard form
to which all functions of a matrix can be reduced: it appears above in what is, I
think, a more general form than Professor Sylvester's.
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the matrix <j>—Xf, where X, is a latent root of <j> having s( groups, -we see
that 8i can be defined as the order of the lowest power of (<j>—X,) of
which the nullity is equal to its vacuity/

Consider the equation y = <f>x. Given x, this determines y uniquely;
given y, x is not determinate unless the nullity of ^ is zero: for, if
we have y = 0» = <px', we have

f (as—»') = 0.

Therefore (x—xf) must be a null-point of <j>; and, if <p is of nullity r, the
solution of the equation y —<p% contains r arbitrary constants : if x
is any solution, the general solution is

the e being r asyzygetic null-points, and the X arbitrary scalars.

11. Now, take as points of reference r asyzygetic null-points, el... er,
and 11—r points not in the null-space of <f>; then, if

x = S

since 0e, = 0e, = ... = $eT = 0 : therefore the point <px is in a certain
(n—r) point; viz., the (n—r) point

This product does not vanish ; for, if it did, there would be a relation

that is, ^ M i = 0.

Therefore there would be a null-point of <p in [er+1... en], which is con-
trary to the hypothesis.

The (n—r) point II is called the latent space of ^ : it is obvious that
it contains all the latent points for which X does not vanish.

If the vacuity of <p is greater than r, it follows, from what was
proved above, that the latent space of <j> will contain some or all of its
null-points.

12. Let <f>} x be two matrices of nullities r, 5 respectively: it is
required to find the nullity of £x- 1 shall show that, if the null-space
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of <j> intersects the latent space of x iQ a ^point, the nullity of <px

I take as points of reference, ^ ... en.n being (n — s) asyzygetic points,
not situate in the null-space of x. and en.,+1... en asyzygetio null-points
of x ; let the null-space of <f> cut the latent space of x in the £-point
[Et... Et], where the E are, of course, supposed to be asyzygetio;
lastly, let xe< = e'(.. Let A = 2-4^ be any point: then

XA =

since ej,_,+i = ... = e,' = 0 ; therefore

But we can select from e[... e'n.., n—8—t points, asyzygetic with the E,
and then we have

pitkii4(i=l...t) (X).
*»1 jmt-t-l

Therefore, since <pEk = 0 (since the E are in the null-space of 0),

and

Therefore all points 0, x, ^ are in the (»—»—t) point [^e/+1... 0eB_,] ;
and, to show that this is actually the latent space of <px» we have only
to show that these (n—e — t) points are asyzygetic : but if they were
not asyzygetic, and we had

0 = '£

we must have j + < JJ,

which is contrary to the supposition on which e'ltl, &o. were selected.
Therefore the latent space of <p\ is an (n—s—t) point, and therefore
its nullity is («+£); and it can be shown without difficulty that its
null space is the (s + t) point joining the null space of x to the £-point
in its latent space, which x transforms into [Ex ...Et"\.

13. In all that follows, I shall assume that, in the notation of
(7), «, = s% = ar = 1. f

• Cf. Mil. Mag., Nov. 1884.
f That is, that all latent points are a's: Case (2) of (6).
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Now let it be proposed to find a non-vacuous* matrix \p such that
yp<f> = <p\f/} <p being a given matrix.

Let Si... ea be the latent points of <p. Let e< appertain to X,; suppose
Al = A, = ... = Xax = Xj, &c.; lastly, let

Then

But

Therefore, since ^ = <p\p, and ^ is supposed non-vacuous, we have

Therefore, unless X, = \jt ay = 0; and it follows that \p transforms all
latent points appertaining, to the same latent root X̂  into, points of
the same appoint, if a, is the multiplicity of X<; we therefore have

where fa is a matrix of nullity n—ait having [ex... e ] as its latent space,

and therefore transforming every latent point appertaining to X< into
another latent point appertaining to X,.

If ay = 04 = ... = a, = 1, we can go further than this, and can assign
the form of \p; for in this case it is obvious that \p must transform every
latent point into itself; that is,

But Ai£i = s3d i ) . AL,

using the same notation as in (9). This can be proved by the method
there employed. Therefore we can say that, if <p^> = \p<f>, and if \p is
non-vaouous, and the latent roots of <p are all different, $ is a function
of <p, of order (n— 1), and with scalar coefficients ; viz., we have

• A matrix is vacuous if its vacuity ^ 1.
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where the A are scalars, and x* is the latent function of <p, viz.,

We can apply a similar method to the equation <j>\p = tytp, k a scalar.
We shall find that h is an »to root of unity, and that, if it is a primitive
mP root of unity, i/> is equivalent to a substitution operating on the
n latent points of <f>; viz., if n = mm', \p is the produot of m' oyclio
substitutions, each cycle being of order m.

14. As a last example of the methods of this paper, I take the
solution of the general unilateral equation.

Let the given equation be

0 = F (x) = 4,a>w+A»""! + - + Au
where the A are known matrices of order n, and » is an unknown
matrix of the same order.

Let A,... X,, be the latent roots of x; el...enita latent points. Since
F (a>) = 0, we have

0 = F(x) e,

Therefore e< must be a null-point of F (A,); F (\t) must be vacuous,
and therefore, if we take n points of reference %, we must have

that is, the latent roots of x must be roots of this equation of order
mn, and, if we take any set of n roots, the latent point of x appertain-
ing to a root X{ is a null-point of F\i, and x is thus completely
determined.

• Cf. Clifford's Math. Papers, 339.
f This equation ia simply Dot (Fk») «= 0.


