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If V be any function of @, y, # the coordinates of a point, the
function being finite and continnouns throughout a spheve of radius A
whose centre is the origin, it is known that

oD 1)'“ |
T AN — ‘ .’n
“ Vas = 4”1 et ( n+l)'

the integration being taken over tho whole surfaco of the sphere, and
V¥ having its value at the origin; V* denotes Laplace’s operator.
This theorom has been applied by My, W, D. Niven* to the ovalua-
tion of a number of importunt definite integiuls involving spherical
" harmonics, and to the development, in series, of the potontials of a
uniform solid ellipsoid and of a homawoid.

I propose here fo investigate n more general surface-integral
_theorem which includes tho above, and which also furnishes n proof

& Phil, Tyans., 1879,
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and an extension of an important surface-integral theorem due to
Maxwell. The theorem 1s then applied to the determinution of the
expression for an external ellipsoidal harmonic in o series of spherical
harmonics. I have then shown how to obtain expansions of the
potentials of ¢llipsoidnl shells, solid ellipsoids, und elliptic discs of
variable dengity, the law of forco being any given function of the
distance.

‘I'he formulae given by most writers on the subject of the attraction
of ellipsoids, express the potentials in the form of definite integrals;
such formulae have been given by Dr. Ferrers,* and recently in a
very eolegant form by Mr. Dyson.t The formulae given in the
present communication are of such a character that approximate
values of the potentials may be obtained by taking as many torms of
the series as may be necessary, whereas the definite integral formulae
do not lend themselves readily to such approximation.

1. It is known] that the expansion of ¢"*** in & series of zonal
harmonics P, (cos 0) is given by
weors — N (er)" { 1— r” ' r - }
e - uz-ﬁ 3.5.7...(2n—1) 2.2043 + 2.4.2043.22+5 '
XP,(o8O) cvvrrvniriireieniiirreieeeennne (1),

This expansion may be conveniently obtained as follows :—

The differential equation
| v, v

o
i — =0..ccuu.ns venrreneeies
Tt TV o)

is satisfied by the expressions
YV Jy () Py (cos8), VY, (v) P, (cosb),

where J,,, (), Y, () denote the two Bessel's functions of order
‘#+% ; the functions »~4J,,,, and r~1Y,,; are of the forms

A sinr g dYcosy
d@h) o’ aeh) o+’
respectively, 4 and B heing constants. Now (2) is satisfied by

* Quartorly Journal, Vol. xav.
“+ Quarterly Jowrnal, Vol. xxv,
1 Soe Hoinv's Kugelfunctionen, Vol 1., p. 82,

VOL. XXIV.—NO. 455. G
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V=e"= e"“‘"’; thus, if e"** be expanded in a series of the harmonics
P, (cos 6), we should expect the general term to be

" sinr d*
A Bt
{ r d( !)u r + d( ])u
It is clear that we mnst have B, =0, as the expression must be
finite, when r = 0; thus ‘

co: r } P, (cos 8).

weoss — o a" sinr
e = 3 4, ¢ Ws)” . —— P, (cos 8),
or g\revse
ﬂ ) { - ____L_ o <__‘!‘:_7 _ }
@) M U aanrs T rs o P00

Equating the coeflicients of the term " cos”8 on both sides of the .

equation, we have
(=1l (20)!
uwl (2u+1)1 290 !’

(=1)a!

Cu+)t " (..n—- )

and thus the expansion (1) is proved. In (1), change » into —ep; we
thus obtain the expansion

or

ces — ___._".____

¢ n? (Zn+1) Zn+1
(1t K P )
XWMtsomm toammesags T § Falcosd)..3).

2. Let Y, (2, y, 2) deuote a spherieal harmonic of positive integral
degree n, and supposc it is required to cvaluate

“. e Y, (v, y, 2) dS,

where dS is an element of surface of the sphere of radius B, whose
centre i8 the origin, the integral being taken over the whole sarface
of the sphere. Using the expansion (3), we have

i Byty:

=3 R («’+ 8+ y)V { B (d+B8+7) 6
=3(@+1) =5 +1 = st }P,.(cos )

6= az+fy+v7

where cos B (it B +'y")‘
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If we substitute this expression in the definite integral, since

“' P, (cos ) Y, (x,y,z) dS
is zero, unless m = n, we have

Ij e Y (2, y, 2) S

- B (“ +ﬁ’+7’)'"{ B (+3+y") ]
(@u+1)° omii U Tomags ot

X ” P,.(cos0) Y, (=, y, 2) dS.

N " . — 4 a2 a B Y
Now Ij P, (cos0) Y, (2, ¥, 2)dS = It 'y, ( T 4 71—)

_ 41'_ Rud
= ont1 . ':{,T‘ Y, (a, B, 7){

A denoting (a®+ 087+ 9%} ; we thus obtain the expression
‘H' ettt Y (2, 4, z) dS

= 4n Rt 2"1»!{ R+ +y") | R (345! ;
= 4rl (2n+1)! LY +242n+32,,+5 }

XY, (a, /3, ¥) oo ()

Now put for «, 3, ¥ the operators -~ 9 , respectively, and

a%aha%
let each side operate upon a function f (s, 4y, 2,), where f (2, 3, 2) isa
function which is finite and continnous throughout the volume of the
sphere, and where 2, y,, 2, are all pnt zero after the operations are
performed ; then, since

cx.a/axn-;-y.i)/D_i/0+:.3/D:,,f (%o Yor %)

=f(ax+ry y+yy 2+2) =f(z y, 2),

we have the following surface-integral theorem :—
[ 7t 517 o5y as

— miz 20l { ‘__RZYZA — _]_',_‘_V‘__.._ }
= dmld (Cn+1)! Y snrs T AT s T

J 0 )
T, (a a aﬂ)f (Ty Uy z) ......... (.)),
a2
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where, on the right-hand side, #, 7, # are all put equal to zero after

the operations have been performed, und ¥* denotes the operator

a4 a2
+

EERE RS

is subjeot, is that it must be finite and contmuous throughout the

aphere,

The only restriction to which the function f (=,y,2)

3. I now proceed to conmsider some particular cases of the
theorem (5).

Putting 2 =0, in which case we can put ¥,=1, the theorem
reduces to that employed by Mr. W, D. Niven,

ﬂf(w,y,z)d8=4n1a’{1 e+ B 4.} Gu o 0.1 (6).

Next suppose that f (2, 9, £} is o rational homogoneons function of
degree m ; in that case the integral vanishes, unless m—u i a positive
even number; the theorem then becomes

[ j Y, (@, 3, ) fu (@) 9, 5) 48

(m;n) !

('m;n) I (m4n+1)!

Seseseraines '“(7)’

— 4”R'm+n«ﬂ 2u

since all the other terms on the right hand vanish.

A particular case of (7) is

” wyz' Y, (», 9, z) dS

(1l+tr+l3+'¥)
= Aot g 2
(“_‘*'_’3‘75_7_‘_‘_) I (n+at-B+y+1)!
0 9 0
GetBtr-n K- L (8 N
(a ay 2 )my )

where a+34+y—n is an even integer.
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In (7), put m = n; we then have

2n+ 2 n‘ a a a
I[ Y. (2, 9,2) fu(2,9,2) d8 = 4n D a(2n+1)l Y"(a:a ay az)

Lo (@ 4 2)iiiiniiiiiiiiiiniiniin e n(9).

This last theorem (9) includes, as a particular case, Maxwell’s theorem,
giving the snrface-integral of the product of two surface harmonics
of the same degree n. If hy, h, ... h, are the axes of ¥, we have*

Yu( Jd 0 8) _ (2n)! o

g 9o o\_ +a multiple of V*
oz’ ay’ Oz 2"n! n! Oh,0Oh, ... Ok, P ’

and thus (9) becomes, in the cage in which f, (z, y, 2) is a spherieal
harmonie,

4m.R2n+Q i an
2n+1 n! Oh0h, ...

[ f Y, (@ 9,5 fu (z, 9, 5) dS = e )

.(10),

which is Maxwell's theorem.+ The theorem (9) is more general than
Maxwell's, since f, (z, ¥, ) is not restricted to being a spherical
harmonic, but may be any homogeneous function of degree n.

An important case of (5) is that in which f (z, y, 2) is of the form
F((~=, n—y, {—z), where £, n, { ave the coordinates of a point out-
side the sphere. In that case, we have

® o oy
(5% ap* aa) (a5 e

=(— l)"(. a’+a’)‘

+ 2 0. 9 O\P(t-m, n—y
3 o+ ap) T (g oy o) e

o¢’

and, when =0, y = 0, z=0, the expression on the right-hand side
becomes

-0 (E+ 2 Z) v (2. 2 B reno,

* Sce my paper on ‘¢ A Theorom in Differentiation,’’ p. 68 of the present volume.
t See Llectricity and Magnetism, sccond edition, Vol. 1. p 186.
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We thus obtain the following theorem :—

[[ 7@ 9 260 1=y t=5) a5

9 n! { v Riv¢ }
— M+ ¢ w__ & ———e “s aim o meme e e oo o
= drR(~1) 2n+1)! 1 2.2n+3+2.4~.2n+3.2n+5 Foe

Y, (2, 2, Q) P& m0) (1),

0t O’ 0L
¢, D
where vi= 5{2 + 571—’ + éz"
It P = (E—a)f+ (1—9)"+ (F—2)}
and I(t—m 1—y, {—2) =9 (),

we obtain the theorem

” Y, (w3, ) ¢ (o) dS

—_ "2n+'.‘ 1) 2" n! 'yt 8_ ..a. 0
= 4n R+ (—1) miri)l{l+z.2n+3+"'}Y"(a£’ £ az)"’(")

v e (12),
where W= E+n'+{.

This theorem can be applied to tho determination of the potential of
a surface distribution on the sphere at an external point, under any
law of force; I shall however consider this application in the more
general case of a distribution on the surface of an cllipsoid.

If dv is an element of volume of a shell contained between the
spheres of radii I and R4 dR, we have dv = dS.dR; hence (12)
may be written

jj Y, (@ ) ) ¢ (o) do

— 4 e 2'nl nv? d 9 0
= ArE"dR (—1) (2n+1)!{1+2.2n+3+“'}Y"(ag’ on’ a;)““)'

Multiply both sides by ¢ (Z), and integrate with respect to I from
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R =0+to R =a; we then obtain the formula

f f j V(R) Y, (2, 95 2) ¢ (p) dv

= dr (=122 (22 :'1)'{]' R"‘+’¢(R)dR+j R+ Y(R)dR 2_2Z'+3+...}
2 d\yu
1"(85 5 a;)"’“’ verenenn(18).

This volume-integral can be used to obtain the potential of a solid
sphere of density Y (R) Y, (z, v, z) at an external point, under any
given law of force.

4. In the fundamental formula (5), put R =1, change =, ¥, z into
%’ —:Z—, % respectively; then the surface integral will be replaced by

one taken over the surface of the ellipsoid whose equation is

a? oy? 2 .
Ftpta=h

c?

instead of dS, we must write pif—, where the new dS denotes an ele-
a

ment of arcn of the ellipsoidal surface, and p is the perpendicular
from the centre upon the tangent plane containing the element. We
thus obtain the formula

(& 4 2 (5 S)vas

— drgpe 2 (1, D 3,9 .9
=4 “b°(2n+1)1{1+2.2n+3+"‘} ( e’ bay’ °a,,)

(54 %)
or, cha,ngingf(% ,

e

’ ‘i‘) into f (x, ¥, 2),

[5(2 4. £)r@nanas

DAY D? Dt
=4
- "“b°(2n+1)!{ Tonts T 0.4.9n+8.0048 T }
0 ,0 0
Y, (2, 8%, ¢ 2\ fa,y5)...... 14),
(a7 b5 o) (@) (1)
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where D' denotes the operator a! ai +b aai/ +c aﬁ;; as in (5),

z, i,  are put equal to zero when the operations on the right-hand
gide have been performed.

Corresponding to (11), we obtain, by putting

fy2) =T @E—a n—y, {—2)

where £, 5, { are the coordinates of an external point,

2oV E\p(i—- — —
(2. . )t renicari

. 2 n! i
= dmahe (—1) (2n+l)!{ +2.2n+3+"'}
2 32 O\ PE D). 15),
Y, (e & e a)I’(E M 8o (15)
where D® now denotes the operator 2 S +b == > +¢ g
os FERRSFT

Corresponding to (12), we obtain
r. ¥ 2
”.Y”(a' b’ c)q;(p)pds

B gy 2"l _Dr
= 4mabe (—1) Zgﬁi)!{1+2,2n,+3+m}

2 42, .2 Frr+0)..(16
Y,,(aag‘,ban,ca:)go(x/5’+ﬂ+4’) (16),

where P = (E—a)'+ (r—y) + ({2
In (16), change a, b, c into ea, €b, ec; then
&p.dS =3{~.pdS =dv
is the element of volume of a shell hounded by the two ellipsoids

whose semi-axes nre ea, €b, ¢¢ and (e+de)a, (e+de) b, (e+de)c
respectively. Multiplying both sides of the equation by e"~'y (¢) de,
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and integrating from e = 0 to e = 1, we obtain the formula

[”Y“(%’ ‘Z" %) ¥ (e) ¢ (p) dv

e - " 2""l ! 21+ 2 204
= 4drabe(—~1) @t D Le ¢(e)de+[ ‘Y (e) de 22n+3+ .-

9 30 O\ (VEFALD. (17
Y,,(aaz,ban, az)M Hini+2)..(17),

where the volume-integral is taken throughout the volume of the
) 3 F) 244
ellipsoid, and e denotes ( :-Z; + ;1; + l’;) .

5. The first application that I shall mnke of the formulne of the
lnst section is to express an external ellipsoidal harmonic in a series
of spherical harmonics; I use thronghont the notation in Mr. W. D.
Niven’s memoir* on ellipsoidal harmonics, in which memoir the
expression is found by other methods.

At tho surface of the ellipsoid, the ellipsoidal harmonic

B y2 o gt 2 1
Gu(ye) or {1 y s aps Mt gl 4 S0 )

z ay

is equal to

{ ez b c“y~ a be
(-9 {1 b’y ¢'a 'z “‘b"c“myz} X {1 b ca abc}
c

¢'z a b 'zy

T A 2 )
X (a".u"+0+b“.b"'+0+c’.c"‘+0’

or {1 Z f: abc]‘ll( o)H( q, i)
¢ ab J a’ ¢

where H, (z, ¥, #) is a spherical harmonic.

* Philosophical Transactions, 1891,
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In (16), put ¥, = H,, ¢ (p) = _;_ ; we then have

(%4 ) 3ees

_ s 2'nl b
= dmabe (—1) (2n+1)!{1+2.2n+3+"'}
7 (9 50 ,0y___1 .
o, (aa—i, ba,71 caz) Wy rwony
0 ,0 0 1
Hn ~_ ) ~ 3 ~ Ll tILUTITT I
now (aaE ba,7 caz) ~/E’+n’+£’
PR 3 9 & _ 1
={1 b oo abe (-0 B (G 50 ) VATt

and thus we have

J'J —;1’— A, (z, y, z) pdS

- 3 5?",_7‘!7(-1-1)u 'e D? }
= drabed {HO)}= 5° 17 Pt gg g+

1
X Hu("a"y a ] _a') B - -l |
Ot Oy oY VE+n+l
where « denotes the bracket containing a, b, c.
Now, if &, (7, ¢) = G.(¢ 0, ) L, (5 n,2) denotes an external
harmonic, where I, is an integral of the form
r"” o ax _ o
Je (0i=A) (8= ) ... (@+M)E (P +A) (S +M)Y
e being the parameter of the confocal ellipsoid through the point
£, n, ¢, the surface density o of o distribution on the ellipsoid which
will produce an external potential &, (£, n, {), is given by

o® oG
4 =— In ““""
==ty

where Oy is an element of normal, and I, has its value at the surface
of the ellipsoid ; we thus obtain

1 1

e
4o = G, (2, 1, 2) = « ———— s ——,
To (@ y )av {II (9)}2 aber?
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and it is easily shown that af =2p;
v

hence o =P0: (292 1
or {11 (8)]? " abos*-

We obtain therefore the formunla

n Yol a a a
Onhym ) = (=1) (217.-{-1)!H (5&’ a—,)’ a—()

D D
{1+2 2ut3 T 2TE B3 Tt T } VEEnGr

which is Mr. Niven's expression for an external ellipsoidal harmonic
in o series of spherical harmonics, It will be observed that in the
above proof the distance of the point &, 5, { from the origin is not
necessarily greater than the greatest semi-axis of the ellipsoid, for,
since (12) holds for all points external to the sphere, it follows that
(16) and consequently (18) holds for all points external to the
ellipsoid.

6 When it is required to find the potentials of ellipsoidal shells or
of solid ellipsoids of variable density, at an external point, it is in
ordinary cases better not to use the ellipsoidal harmonics, but to nse
the theorems (16) and (17), The formula (16) gives an expression
for the potential of a surface distribution of which the density is
pY, (%— ) }I:—, %), when the law of force is —¢’(p) ; in order to find
the potential of a surface distribution of density pF (v, y, 2), it is
necessary to express F (z, y, z) as the sum of a number of functions

m Y, (%, XL %
of the form l"(a i )

The formula (17) gives the potential, at an external point, of a solid
ellipsoid whose density is

2oy oz N
Y"(a’b’c)“”(\/ +L,+',),
and thus, as in the case of a shell the potential of an ellipsoid whose

density is B
Py x(%+%+5)
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can be found, the law of attraction being —¢’(p). I shall obtain the
formulae for the potential in one or two simple cases, as an example
of the general method.

(a) To find the potential of 8 homeoid whose density is uays, the
law of force being that of the inverse square: in this case ayz is a
harmonio of degree » = 3; we thus obtain, from (16),

— __ 4mad’u D’ D! 0 1
V== {”2 9teaont }agana('¢m’
where ’§P+ ’aa! +¢ ’a—a%.

(b) To find the potential of a solid gravitating ellipsoid whose
~ density is »
pt (Zt L4 2,

where m i any positive quantity : in this case wo write pz? in the form

(-5

3 3
the quantity ?c—:"— ZL }/? being of the form

b

L5 )

The requirved potential is the sum of the potentials of the ellipsoids

- 95 of 3 3 e
whose densities are E; (-"—— —_——— 2_) e, and 5;’- e+, e thus

obtain, from (17), for the potential required,
1
(26+3) (2 +5) (2t +2m+5) (2 +1) !
i (9,0 O o [y
¥ (2 0° Iz
(5636~ o) vrawrs

! oo, b

(2t +2m+5)(24+ 1)1 ey

V = $wpabc® 3

+$mpade®

(¢) To find the potential of a solid gravitating ellipsoid whase

density is P A\t
(- 557
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where m is & positive quantity : we have

! + — m-1 F(t+s) l (7“’)
L A=) de = M (m+t+4) '

so that the required potential is

= D(t43) L(m) .1
V= 2”“1’“‘.20 P(m+c+g)(2¢+1)tv VETAR

7. I shall now proceed to modify the formula (17), so that it may
be adapted to the case in which the ellipsoid becomes an elliptic disc;
we put ¢ =0, and in this case we must suppose that Y, (z, y, z) does
not contain z, or that Y, (z, y) is one of the harmonics

4+ g) + (e—w)? {(“‘ +uy)'—(x— ‘y)"} .

The muss of a prismatic section of the ellipsoid of which the base
is the element dxzdy, is

2cd:cd./\ j(‘)e de,
e“'"ﬂ

@ Y
where o =5+ i

If we put x (a) for the value of the definite integral, we find, on
dividing both sides of the equation (17) by 2¢,

“(“*‘ )"x(a)¢(p)dsz

=9 — n_z__?l"__ [t 2+ 2+

=2rab(=1)" ot s “ ¢(e)dc+I “W(e)de g +3+ }
(aé%:i:cb 3%)”? (VETT+3Y)...(19),

where D=a & + b o

- o oy’ '

This formula gives the potential of an elliptic disc of density

b
being — ¢’ (p).

. " md e
(;‘:— . }L) X ( -“i; + {7) at an external point, the lnw of force
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As an example of the use of (19), suppose
b = (-

then x(a)—J’ (i/__:u)m : ede
-d

Changing the variable in the integration to », where

(1—¢) =v (1-d?),

we have X (a) =1 (l—a’)“‘J‘l v (1—v) " dv;

Pm+3)T(3) —

T (1 (2m)!
1‘(m+1) )

ﬂ)m 2'"' (__ '_)_.

Putting n =0, in (19) we find, for the potentia] of an elliptic disc of

thus x(a) =1 (1—d?)"-

. . m
uniform thickness, and of density u (1-— " "éT) , the value

_ oruer (m! ) 'S r 2A+2 e)ym-i 3
V=2 absy K (1—¢) de(2t+1)l¢(/zﬂ+,,+z)

()m.)lp
SO Y
= ml,lmab‘_Eo (t+m+l)' t|2u( ak’ b’ ) (P(JP+U +&d)

As another example, suppose it is required to tind the potential of a

2 2y\m
disc of density u 2y (1— i’T — %[ ) ; in this case we put n = 2, since

ay is & hnrmonic of the second degree: The values of Y (¢) and x («)
are the same as before; we have therefore

— O2m42 (""'!)a 321 2l Al () -}
V=2 (2111)"‘ o 5 e-zo Jo (1 —efyide

15D '+
(‘)t+1)|()t+3)(2¢+0) afan (JE+ e
3 B 1
_%ml,mub‘ o t(t+m+2)! (2t +5) 2
x(“ aa“ ) asan’°( P

8. A line-integral round the circumference of a circle, analogous to
the surface integral in (4), may be found,
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We have eres = J (p) +2 2: & J, (p) cosng,

where J, (p) = { ——————’i—-——— }
u P nl 2n+2 Yo i onto ontd d

thence we have

3 2 2 Al 2 3\3
e-zoﬂy={1+R (a2j'ﬂ ) +R (‘Z’.‘:’“B) +'"}

22Ru (“ +'B2)lu { 1 + _RS (ai+ﬁ2)

2" ! 2.2n+2

+...}cosﬁ¢p,

here a'+3' = R’ and cos =-—“—a-3—'»*_l_-ﬂ-l—_ = cos (06—
w o'ty ¢ W ( )

, sinf = -P_-

‘/_a 8+ﬂ3

where # = Rcosf, y =Rsinf, cos 8 =

‘The value of the integral J ¥ (x4 1y)" ds, taken round the circum-

ference of a circle of radius I¢, whose centre is at the origin, is easily
seen to be

20 4 1 1 R (a2+ﬁ’) R‘ (u’ '*'B’)i n
A TR R & T e ety rew ] (OOl

As before, we obtain from this result the theorem

j (@) f (2, y) ds

1 RV b {AdvAd
W+l T . -
=2l 2,.""{1%2'2”_'_21 2.44.2n+2.2n+4+'"}

(aa, d:"‘) @ y)en...(20),

where, on the right-hand side, « and y are put equal to zero after the

operations are performed; f(z, y) must be finite and continuous
within the circle, and -
‘ o, &

vi
3 T oy
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If [z y) = F (§-z, n—y),

wheve £, 7, { are the coordinates of an external point, (20) becomes

[ @y e, 1y, ) i

_2",Rm+lﬂ {1+_I"’g_vi_. +.. } (a cé-%)"F(E, 7,¢) ...(21),

2l 2 2042 ot
o, 0
here Vi — +
wher 85’ a”

The theorem for the ellipse which can be derived from (20), is

[(2 = 1Y r@wpis

1
1
guptd + 2 942 + 24 2042, 2nt4

X (a. ) —)f (2, 9)...(22),

1 4
= 27ab f D D }

Y
o T oy

and, as before, the value of the expression on the right-hand side is
talken at the ovigin. In the specinl case

f (@, y) =1 (@E—a, n—y,{);

where D=

this becomes j ( :; Y -% ) ¥ (E—ayn—y, pds

= Z#ab( 1)"

(Vg o} (g0 2 ) P @0 o9,

3

2 3
where D= d* Q + 13 57_ .
o arf

We might proceed to obtain, from these last results,intograls taken
over the aren of the elipsc : snch integrals we have, however, obtuined
as n special case of the ellipsoidul volume-intograls; it is therefore
nunceessary to proceed further in this dirvection,



