
106 Mr. S. Roberts on [May 12,

line L} in the plane IIj always passes through a fixed point of the plane
II. And secondly, if a fixed circle Cx in the plane Hx always touches a
fixed line L in the plane II, this is equivalent to the condition that a
fixed point in the plane ITj is always situate in a fixed line Lx in the
plane Uv The different forms of condition therefore are—

(a) A fixed circle C1 in the plane. nx always touches a fixed circle C
in the plane II (where, as above, either circle indifferently may be re-
duced to a point).

(/3) A fixed line Lx in the plane TIj always passes through a fixed
point C in the plane n.

(y) A fixed point Cl in the plane nx is always situate in a fixed line
L of the plane II.

Hence, if the motion of the plane IIj satisfy any two such conditions
(of the same form or of different forms, viz., the conditions maybe each
a, or they may be o and /3, &c), then the motion of the plane II x will
depend on a single variable parameter, and the question arises as to the
locus described by a given point or enveloped by a given line of the
plane II; and again of the locus traced out or enveloped on the moving
plane IIj by a given point of the plane n. The case considered in the
present paper is of course a particular case of the two conditions being
each of them of the form (u).

It may be remarked, that if the two conditions be each of them (/3),
then there will be in the plane IT1 a fixed point Cj which describes a
circle; and similarly, if the two conditions be each of them (y), then
there will be in the plane IT1 a fixed point Cx which describes a circle ;•
that is, the combination (/3/3) is a particular case of (a/3), and the com-
bination (yy) a particular case of (ay).

In a discussion on the paper, Mr. Roberts gave some additional re-
sults bearing on the subject, and Mr. Spottiswoode stated that many of
the curves drawn (and exhibited) were recognized by him as having
come under his notice in the course of experiments he had recently
made with elastic strings.

Mr. Roberts then read his Paper

On the Ovals of Descartes.

1. As a contribution to the theory of Cartesian Ovals, I wish (1) to
fix the interpretation of the polar equation ; (2) to explain a method of
description by points, which does not imply the existence of more than
one real and finite single axial focus, and is therefore applicable to Car-
tesians generally, whether the axial single foci are all real, or contain an

* The theorem is, that if an isosceles triangle, on the base AA' and with angle - 2»
at the vortex C, slide between two lines OA, OA' inclined to each other at an angle o>,
in such manner that C is the centre of the circlo circumscribed about OAA', then the
locus of C is a circle haying 0 for its centre.
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imaginary pair; and, by way of illustration, (3) to state some conclusions
•which afford general interpretations of analytical results incompletely
explained or overlooked in consequence of the ambiguity of the polar
equation.

Since for a class of Cartesians, viz. those to which I have alluded
as having two imaginary axial foci, the vectorial equations so effectively
employed by Mr. Crofton (Proc. No. 6, p. 5) become unreal,—that is
te say, the coefficients are imaginary in equations representing real
curves,—an attempt to interpret the polar equation, which is not subject
to this drawback, will not be without utility. I am aware that ima-
ginary vectorial equations, considered as forms derived from real
equations, maybe interpreted ; yet, as remarked by M. Chasles, it is de-
sirable sometimes to use forms which do not imply more than one real
axial single focus given. In any case, I may justify myself by another
remark of his apropos of these curves,—" On ne saurait avoir trop de
moyens differens de d6crire une meme courbe, parceque chacun ex-
prime une propri6t6 caract6ristique de la courbe d'oii d6rivent naturelle-
ment plusieurs autres propriety qui n'apparaissent pas aussi ais&tnent
dans les autres modes de description."

I do not, of course, aim at giving a complete account of the curves
in question as far as they are known, and I am afraid that some of the
points touched upon are treated with too great conciseness.

2. According to their most general definition, Cartesians are quartic
curves having the circular points at infinity for cusps. Their class
being 6 and their order 4, they possess only one double tangent. It
immediately follows that they consist of not more than two ovals; and,
if real, the two ovals lie one within the other. The double tangent
also must touch the outer oval only, if the points of contact are real.

Since the circular points at infinity are cusps, the system of Carte-
sians having the same ti'iple focus* and the same double tangent
touching at the same points, real pr imaginary, may be represented by
S2+k (x — l) = 0, where S = 0 is the equation of a circle, whose centre
is at the triple focus and which passes through the points of contact of
the double tangent x—I = 0. Hence, evidently, the curves are symme-
trically formed on each side of an axis.

This involves the property, that there are three axial single foci, and
that the axis passes through the triple focus. For, generally, if a curve
is symmetrical with regard to an axis, and p tangents can be drawn

• In employing the term "triple focus" to designate the intersection of the cuspi-
dal tangents, I follow Dr. Salmon and others. (" Higher Plane Curves," p. 128.) In
the case of simply circular curves, tho intersections of tangents at the circular points at
inanity are analogously called " doublo foci.'' In tho caao of Cartesians, tho triple
focus is also the centro, and has been so designated. The name " cuspo-focus" has
been suggested to me as more satisfactory; this terminology however Booms to be
incapable of extension.
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from a circular point at infinity to the curve, there are j> corresponding
axial foci; since the two circular points at infinity are symmetrical
with regard to any axis.

I have long ago pointed out (" Quarterly Journal of Pure and Applied
Mathematics," vol. ii. p. 196) that if any curve has four concyclic
foci, there are four sets of concyclic foci lying on four circles which cut
one another orthogonally. Consequently, in the present case, since there
is in a certain sense a fourth focus on the axis, but infinitely distant,*
there are three circles (one of them imaginary) which have their centres
on the axis and contain the non-axial single foci of the curve in fours, only
6 of these foci however being finite. Encountering these circles as
limiting cases of triconfocal Cartesians, Mr. Crofton has called them con-
focal circles. It will be convenient to call the three single and (in the
case of proper Cartesians) finite axial foci, simply, the axial foci.

3. We may conveniently take the axis of the curve for the axis of »,
and a line perpendicular to it through a focus for the axis of y.

Writing p8 for a>* +y2, we have for the equation of a complete Carte-
sian, a focus being the pole,

Oa-2Baj+C2]2-4Ay = 0 (A).
The equivalent form

{(.6-B)2+7/2-B2-2A2+C2{2-4A2(A2-C2+2Ba0 = 0 ... (A')
shows that (x = B, y — 0) are the coordinates of the triple focus, and

C2—A2

the line x = ——— is the double tangent. The radius of the circle

which passes through the points of contact of the double tangent, and
has its centre at the triple focus, is v/(B2 + 2A2—C2). The radius of
the corresponding circle, having its centre at the focus pole, is A.

The first polar of the origin is
2 (P

2-2Bas + CJ) (C 2 -Ba0-4Ay = 0.
Subtracting this from (A), we get

(P
2-2Ba; + C2)(p2-C2) = 0.

Hence C is the radius of a circle whose centre is at the origin, and
which passes through the points of contact of tangents drawn from the
focus pole to the curve. The first factor relates to the tangents which
make the focus.

The constants of (A) are now defined in relation to the curve.

• AB to this, see "Higher Plane Curves," p. 126. Cartesians constitute a sub-class
of a class of Bicircular Quartics. In the class, four concyclic foci have become
linear. In the sub-class, since only three of these foci are finite, the remaining one
is assumed to be infinitely distant. Infinitely distant points arc, however, very often
analytical conventions. In fact, all points which at infinity remain finitely distant
from each other analytically coincide. Thus two parallel straight lines at a distance
k from each other can only intersect the line at infinity in points at a distance k from
each other; but by a convenient convention, the lines are said to intersect at infinity.
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4. We proceed to identify (A) with the vectorial form mpi—p = K;

that is to say, with m ,v/(p
2_2&a;+&2)—P = if,

A 7^—1 m'—1 / ( m 2 — l ) 2 r v '

The equalities A' = - / _ , B = - ? * C" = 2*
(ra2—I)2 ?H,2— 1 m

give ^

A"+C2-B2

A.

the roots of (C) representing, of course, the two axial foci not at the
origin.

There is a noteworthy reciprocity between the forms
(P

8-2Ba5 + C2)8-4AV = 0,
(p a - 2Aa;+C2)a-4B2pa = 0,

which continually reappears.

On the Polar Equation and its interpretation.

5. It is essential to distinguish between the ovals which are said to
be conjugate to one another. For this purpose, we may advantage-
ously use the equations

p2-2Ap-2Ba5 + C3 = 0 (E),
P

2+2Ap-2Ba;+C2 = 0 '. (F),

the left-hand members of which are the factors of (A). I find it less
confusing to keep these forms distinct than to combine them in one
sole equation.

If p cos to be written for as, the equations become polar, and the .
importance of distinctly determining their meaning makes it worth
while to dwell on them at some length.

Negative values of p indicate that the corresponding lengths are
measured on the vector or transversal produced below the axis. Posi-
tive values are taken above the axis.

The angle to being taken from 0° to 180° in both equations, we shall
have the complete curve. The points determined by (F) are, however,
the reflexions, relative to the axis, of the points determined by (E) ;
and, generally speaking, we need only consider specially the latter
form.

The portions of the ovals represented by (E) will reach the axis
without passing i t ; they will consist, in fact, of half-ovals.

6. It may be remarked at once, that if G2 be positive, the signs of
the roots of (C) are alike. The origin, therefore, is an extreme focus.
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On the other hand, if Ca is negative, the roots of (C) are unlike in sign,
and the origin is the middle focus.

We will, by convention, measure w from the side of the origin on
which the triple focus lies; B will then be essentially positive.

Making w = 0 and =7r successively in (E), we have for the axial
points of the curve

Consequently, if C2 is negative, the four intersections are all real. If
C* is positive, we must have (A+B)2 > C* for a real curve. If Â v<B
is >C, there will be two real ovals; and if A <v> B is < C, there will be
one real oval only.

The discriminant of (C) is of the form
(A+B + C) (A-f B-C) (A-B + C) ( -A+B + C)

- 4Ba

It is easy to see that, A+B being >C, the roots of (C) are imaginary if
A ^ B is < C, and vice versa. Hence, when there is only one real oval,
there are two imaginary axial foci, and vice versa.

7. For an angle w, we have
p = A+B cosw± / { ( A + B C O S M O ' - C 1 } .

If there be a passage from real to imaginary values of p as the vector
moves about the focus pole, such passage will take place when there is
a real tangent from the focus pole, and

C-A C+A
cos w = _ g - or - - X - .

There cannot be more than two breaks of this kind. The following
schemes show the different cases for C2 positive, and are obtained by
reference to the limiting values of cos to:—

A<C

{No breaks C—A>B, C+A>B (a),
One break C-A>B, C+A<B) f (b),

C-A<B, C+A>B) "•• L(c),
Two breaks C—A<B, C+A<B (d).

A>C
TNo breaks A-C>B, C + A>B (a'),

, JOnebreak A-C>B, C+A<Bl
K ' I A-C<B, C+A>BJ " "

LTwo breaks A-C<B, C + A<B (d').

As to (a) and (6), for a real Cartesian, we have seen that (A+B)1 is
> C2; this disposes of these cases.
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As to (c), when A is <C, we cannot have A—B>C and A>B, nor
can we have B—A>0, B>A, on account of C + A>B.

As to (cZ), we cannot have A>B, nor 0>B—A, B>A.
As to (a'), we cannot have B > A.
As to (6'), the conditions are inconsistent.
As to (c'), we must have B>A, C>B—A.
And as to (d'), we cannot have A > B nor C>B—A.

8. Wo have now a reduced scheme,
/-No breaks A>B, A—B>C,

(3) 5 One break A -v B < C,
(.Two breaks B>A, B—A>C.

In the first case, the equation (E) represents two half-ovals on the
same side of the axis, and theiefore the origin must be the extreme in-
terior focus (§6).

In the second case, we have only one real oval, half of which is re-
presented by (E).

In the third case, the equation (E) represents two half-ovals on dif-
ferent sides of the axis, and the origin must bo the external focus (§ G).

If C2 be negative, there are evidently no breaks. The equation (E)
represents two half-ovals, on different sides of the axis. The origin is
the middle focus (§ 6).

Let the points in which a vector through the origin meets the part
curve represented by (E) be called corresponding points. We shall see
hereafter (§ 25) that these points are inverse with respect to a definite
circle whose centre is the focus pole.

Then, in the first case, corresponding points lie on adjacent parts of
the conjugate ovals. In the second case, they lie on the one real oval.
In the third case, they lie on one oval. Lastly, when C2 is negative,
they lie on non-adjacent parts of the conjugate ovals.

In what precedes, I have, for simplicity's sake, not specially noticed
the case of equalities. These indicate singularities, which do not affect
general results. Thus, C2 = (A—B)2 shows that the Cartesian is a
Liraacon, and C2 = (A + B)2 indicates a point. If A = C, the- double
tangent passes through the focus polo.

When we have recognized the position of corresponding points for a
given focus as pole, the interpretation of the analytical results becomes
easy. The conclusions just arrived at arc therefore important in many
applications.

On the Description of the Curves by the Transformation
of a Uinh:.

9. The equation of a circle
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can be transformed into (E) and (F) by very simple substitutions.
Put p =F A for p, and x—a for x. Then we have

(p =F A)2-2BrB + B2 + 2 B a - R 2 = 0,

which coincides with (E) and (F) if
A 2 + B 2 + 2 B a - R 2 = C 2 .

For brevity, I call a straight line parallel to the axis of y a y-line.
Let p', x be the mixed coordinates of a point in (E) and its reflection,
and let pv x^ be the mixed coordinates of the corresponding point
and its reflection on the circle. Then a corresponding point and its
reflection on the Cartesian are determined by taking p' = Pj±A,
x' = x-\-a\ that is to say, by the intersection of the vector ftdrA with a
?/-line separated from the corresponding y-line relative to the circle
by a distance a.

We may state the matter thus:—Given a straight line, a circle
whose centre is upon the line, and a Cartesian having the line for its
axis; we can always determine a point upon the line as pole of the
circle, so that to a point of the circle whose coordinates are (p, x) shall
correspond a point of the Cartesian whose coordinates are (p±A, x+a)
relative to an axial focus as origin.

The distance of the pole of the circle from its centre is evidently
equal to the distance of the triple focus from the corresponding focus
pole, and A is, as we have seen, the distance of the points of contact of
the double tangent from the focus pole, if those points are real.

It is convenient to make corresponding y-lines coincide. This will
be the case when the distance between the focus pole and the pole of
the circle is a.

The mode of description now given is evidently a modified extension
to Cartesian genei'ally of the well known method of describing a Li-
macon,the equation of which being written in the formp= ^=A+B cos w,
suggests the transformation p ± A for p in the equation p = B cos w.
In this case, however, the angles correspond; and in the general case
it seems necessary to make the x coordinate correspond.

The auxiliary circle may even degenerate to a point; in which case,
however, the construction depends on what is stated in the next article.

10. In the transformation now treated of, a real point on the Carte-
sian may correspond to an imaginary point on the auxiliary circle.
We must take account therefore of the real coordinates (p, x) of such a
point on the circle. It is evident that a constant length added to p may
convert an imaginary point into a real one. If it were not easy to find
the values of p in such cases, this mode of constructing the Cartesian
would practically fail. The following-methods of finding these values
present themselves.
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Let 0 bo the pole, C tho circle, L the foot of the y-\ine corres-
ponding to x = OL.

Construction.—Through the pole draw a y-lino, and take OM upon
it equal to the radius of the circle C. Also through 0, the centre of the
circle, draw a y-\ine. Then, with centre L and radius LM, describe
a circle meeting the y-line through C in N. CN ia the length of the
p corresponding to x = OL.

For we have, r being the radius of the circle,
OLHr2 = CN3 + (OL-OC)2,

or CN 2 -2O0. OL+OC2-r2 - 0.
Or we may, with L as centre, describe a circle cutting tho given circle O

orthogonally. A tangent from the pole to this circle will give the re-
quired vector length.

11. I find it best to take a=A, so that we have the forms
R2 = 0 (G),
R2 = 0 (H) ;

the pole of the auxiliary circle is here supposed to be intermediate be-
tween the focus pole and the centre. The circle is doubly tangential
to the curve on the axis, and may be called a diametral circle.

Putting %=p, we have
p = A + B ± R ,

p = B - A =fc / R a - 4 A B .
If R' bo the radius of the diametral circle corresponding to x = p in
(H), we have R'2= R2-4AB.

The condition for imaginary axial foci is therefore
R'* = R2-4AB < 0,

which, when (A-f-B)2— C2 is put for R3, agrees with the condition
previously given.

As a matter of construction, it is better to interpret (G) and (H) so
that each may represent an oval. To this end, we must include somo
negative values in (G). For, to complete tho outer oval, it will often be
necessary to tako the difference of the p of the circlo and A, instead of
the sum. This happens, for instance, when the outer oval is indented.

12. If the pole of the auxiliary circlo is further from its ceutro than
the focus pole, and on tho same side, it is evident geometrically that
wo have to writo (B—A)a—IV instead of (A + B ) 2 - R \ If tho focus
pole and the pole of the circlo lie on different sides of the centre, wo

•have B negative.
Supposing R2—4AB > 0, so that thcro aro two real ovuls, there nro

two diametral circles in caoh caso, by aid of which tho Cartesian may
be constructed when a focus is given. For if p,, pa be the axial values

VOL. HI.—NO. 28. i
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for (G), and p, p" those for (H), when aj = p, we may take the dia-
metral circle through (pb p2), or the diametral circle through (p\ p")}

as the auxiliary circle. But it is to be observed, that we cannot for a
given focus take at will any one of the six diametral circles as the
auxiliary circle.

The matter will be made
more clear by a figure (Fig.
1). Let F be the focus pole
of the Cartesian, APB the
given auxiliary circle whose
centre is C. On FC as FM O ~3L T J /C 3*
diameter draw the circle -pIG j
FPC.

Draw the y ordinates of the circle FPC, QM = EN = -^r-.

Then if 0, the pole of the circle, be anywhere between M, N, we
have a Cartesian with a pair of imaginary axial foci. If 0 be on the
left of F, F is the external focus, and the inner oval touches at A, B.
If 0 lie between F and M, there are two ovals, and the circle touches
the outer oval. If 0 be between N and C, there are two ovals, and F
is the innermost focus. The circle APB lies between the ovals. If 0
lie beyond C, the quantity B becomes negative, or the position of the
triple focus changes sign relative to FC. This indicates a change of
front, so to speak, of the curve. The exterior focus changes sides with
respect to the given circle.

If F is situated within the circle APB, the focus F is the middle one.
Taking FT = OC, T is the triple focus. Also FP is the radius C.
The circle whose radius is FP also passes through the antifoei of the
axial foci not at the origin. This is true also of a circle'whose centre
is the triple focus and whose radius is FO.

On Certain Systems of Cartesians.

13. In the series of curves which can be thus described, by the
chango of position of 0, we have a focus, a diametral circle, and tho
axis given. Referring to (E), we have A ± B given and C2 given. It
follows that the apices relative to the given focus lie on tho circle
p2 = C2, and the vertices relative to the axis of the antifoei of the axial
foci not at tho origin are on tho circle p8 = (A=fcB)J. The system shows
how wo pass from a Limacon having a. conjugate point through a scries
of Cartesians of the second kind to a Limacon having a node.

Tho figure (2) will illustrate such a system. The figure is drawn,
however, on too small a 6calo for minute uccuracy.
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FIG. 2.

M

The focus pole is F. The auxiliary circle is ATB, whose centre is C.
The apices lie on the circle RST. The extra-axial vertices lie on the
circle 0C. The ovals and their conjugates are numbered in the order
of the positions of the corresponding pole of the auxiliary circle. Thus,
for (1), the pole is to the left of F ; for (2), it lies between F and M

(MP = A ^ \ ; for (3), between M and N (NQ = ^ p V (3) there-

fore has no real conjugate oval; for (4), which is a Limacon, the pole
is N ; for (5), the pole lies between N and C ; and for (6), (concentric
circles,) it is at C. The curve (7) shows the effect of taking the pole
on the right of C. For the pole M, we should have a Limacon with a
conjugate point, which curve, however, is not drawn.

When two axial foci are imaginary, it cannot be properly said that
they are within or without the curve; but it will be observed that
their mean, which is real, may lie within or without the oval. The.
real antifoci are within the oval.

In a similar manner, wo can readily construct a diagram to illustrate
the system of Cartesians when A and B are given ; for in this case we
have F, O, C given, and the system of auxiliary circles will be con-
centric. We shall see that the apices relative to F will lio on a
Limacon, and a set of extra-axial vertices will lie on a circle.

It will be observed that two concentric circles constitute a complcto
Cartesian. The triple focus and two axial single foci are united at the
common centre, and the third axial focus has gone off to infinity.

FIG. 3.
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Figure (3) illustrates a system of tri-confocal Cartesians, two of tho
common axial foci being imaginary. Ft is the real axial focus, F2 is
one of the real antifoci of the imaginary axial foci. There are then two
sub-systems of curves, with respect to one of which systems Fx lies be-
tween the axis of F9 and the curve, and with respect to the other Fi
lies outside the axis of F2. These systems cut each other orthogonally,
but the curves of one and the same sub-system do not cut each other.
The circle described, with Fi as centre and Fj Fa as radius, forms a limit-
ing curve, or rather two limiting curves, of the series. In fact, the
doubled arcs terminated at the real extra-axial foci constitute degene-
rate Cartesians. The letters T1} T2, T3, Tr, T»», Ty indicate the positions
of the triple foci of the curves 1, 2, 3, 1', 2', 3'. For the circle, the
triple focus unites with Fx. In the case of these Cartesians, the whole
series of curves may have real contact with their double tangents. In
order that there may be imaginary contact, the angle which FJFJ makes
with the axis must be smaller than in the figure. For real contact, we
must have generally, by (A'),

C > >

or 2AB>A2cvC1.
Now, if A is > C, we have, considering the triangle formed by F b F2,
andT, C2 = A2+Ba--2AB cos0, or A a -C 9 = 2AB cos0-B2.
Hence, in this case, the contacts are real. But if C is > A, we have

AJ = C2+B9-2BCcosa, or Ca-A2 = 2BC c o s ^ - B J ;
and for imaginary contacts we must have

T>

C cos (f> > A + ^ ,

which is not the case in the figure. The curves complete themselves
symmetrically on the other side of the axis.

Fia. 4.

Figure (4) relates to a similar triconfocal system, in which, however,
curves which have imaginary contact with their double tangents occur.
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14. A system of Cartesians represented by mp — p = K, where p', p
are vectors from two given axial foci, m is constant, • and K variable,
may be simply defined as a system having in common two axial foci
and the triple focus.

For, comparing (A) and (B), we see that B is constant if m and h
are given.

The equation mp'—p = 0 represents a circle having its centre at the
triple focus, passing through the antifoci of the given axial foci, and
having the latter foci for inverse points. This circle is, in fact, one of
the circles connected with the two axial foci, the triple focus, and the
focus at infinity (which are four foci on a straight line), in the same
manner that the confocal circles are connected with the three finite
axial foci and the focus at infinity. In fact, all the circles so depending
on the axial foci and the triple focus, taken in fours, stand in a more
or less special relation to the Cartesian.

From the equation of the system we have, by differentiation,
m (xdx— Mx+ydy) xdx+ydy _ Q

P P ~~
The points of contact of tangents from the external focus constitute
real apices of the curve. There are also imaginary apices relative to
the internal axial foci, and real apices relative to the infinitely distant
focus.

Making -^ = 0, we find that the locus of the points of contact of
if

the double tangents of the system is the circle mp—p'~ 0. Also, making

-y = 0, we find that the locus of the apices relative to the infinitely
distant focus is ma (z—Jc) p*—a;Va = 0. This is the locus of the vertex
of a triangle, when the base and the ratio of the cosines of the angles
at the base are given. The curve is mentioned by Mr. Croftou
as the locus of the intersections of pairs of equal tangents to a
Cartesian.

This quartic is circular and unicursal, having a double point
at infinity. It is, in fact, one of those which I have shown to bo
traceable by means of a conchoidal motion (Proceedings, Vol. II.,
p. 125).

If a line RQ moves with its extremity Q on a given line, and is
always a tangent to a given circle, the extremity of a line PQ perpen-
dicular to RQ at Q, and equal to half the radius of the circle, will de-
scribe the locus in question, P being taken on the samo side of RQ as
the centre.

The curve consists of two infinite branches which cross at a node, or
of two branches which turn back so as not to meet, in which case both
the finite double points are conjugate points.
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To find the locus of the apices relative to one of the given axial foci,
we must eliminate K between

' =

Tho locus consists of two circles through the focus

15. Tho system of Cartesians given by

where Ca is alone variablo, may bo defined as a system having a com-
mon triple focus and a common axial focus, and such that the points of
contact of its doublo tangents lie on a given circle having its ccutre at
the given axial focus.

Wo get from the general equation, by differentiation,

= 0.

Hcnco putting -^ = 0, we have for tho points of contact of doublo

tangents and tho axial points (P=FA) y = 0;
and for tho apices relative to the infinitely distant focus, tho locus is

which represents tho conchoid of Nicomedes.
In order to obtain the locus of tho apices relative to tho common

focus, wo havo to put pa for C2 in the equation, and we obtain
p2 == BOJ d= Ap,

tho well-known equation of a Limacon of Pascal.

1G. Tho conditions that the two CartcsianB
a = 0 ,

may havo tho samo axial foci are, by (C),
p a n,a B2+C2-A2 B'2+C'2-A"

c = c , — B — = — - — .
Theso two conditions express that tho apices relative to a focus shall
lie on a circle having that focus as ccntro, and the mean of tho two
other finite foci shall be tho samo in all tho curves of tho system.

On the Normals.

17. Tho condition that an axial circle may pass through tho anti-
foci of tho nxial foci not at tho origin, is

K B
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the equation of the circle being
- R a = 0 (K).

If (K) intersect (E) in p', we have
, _ K A ± B R

9 K - B '
For, eliminating x,

(K-B)pa-2AKp + KC a -B(K a -R 2 ) = 0;
or, by tho condition

T7-2A« TVR'

(K-B)pa-2AKp + g ~ p = 0.

18. Following the analogy of the theory of Conies, wo may call tho
part of the normal line intercepted between the point of the curvo
through which it is drawn and the axis, the Normal.*

It is therefore the radius of the axial tangential circle whose centre
is its foot. The equation of the circle being

we have, as we have seen, eliminating x between this and (E),

a 2AK , C2K-BLa
 ft

p4 — a + = 0.
p K - B p K - B

If tho circle touches, we have the condition
(A2-C2) K2+B (C2+L2) K-B2L2 = 0.

And to dctermino p when K is given, or vice versa, we have
pK—Bp-AK = 0.

Writing p = K, we have K = 0* which related to the focus, and
K = A + B ; in like manner, writing p = — K, we have K = 0 and
K = B—A. Hence, for the vertices relative to the axis of the antifoci
of the axial foci not at the origin, wo have the vector and the axial
coordinate of tho foot of tho normal equal. Hence if, with the focus
polo as centre, we describe circles whose radii are A+B, B—A, tho
chords joining the points where tho circles meet the corresponding
ovals to the corresponding points where they meet the axis, are normals
at the extra-axial vertices. It is here supposed that tho focus is ex-
ternal, and therefore B is > A. The other cases can be similarly
determined.

Wo have also
Q , , ^ p 8 -3V+(C J +2A 2 -2B ! )p -AC 1

Subnormal = K—x = Z ^ V. ' -pr — .2B (p—A)
If N bo the length of the normal, we get, writing La = Ka—N2,

K

* It is evident that real normal distances may correspond analytically to ima-
ginary normal lines.
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Making N = 0, we again obtain the equation (C) which determines the
axial foci; and, generally, it appears that there are three normals of
given length, and the mean of tJie positions of their feet is the mean of the
positions of the axial foci.

If K', K", K'" are the coordinates of the feet of such a set of normals,

we have j f f = ^

For points whose vectors are p, we have

When N = 0, the equation (D) is satisfied. Hence — K is the value of
p corresponding to the evanescent normals whose feet are the axial foci
not at the origin.

19. The circles which have their centres on the axis are, as is well
known, essentially connected in several ways with the Cartesians pos-
sessing that axis.

To exemplify this, we may make use of Professor Sylvester's re-
markable theorem, that if a Cartesian passes through four concyclio
points, these points are concyclic foci of a cubic passing through the
foci of the Cartesian. Now since this Cartesian is symmetrical with
regard to the axis, it follows that it passes through the four concyclic
reflections of the given set of points. Hence the foci are determined as
the linear intersections of two circular cubics which are the reflections
of each other relative to the axis. These cubics intersect besides in six
points on an axial circle. Hence the axis and the system of axial circles
constitute the intersections of all such cubics corresponding to Car-
tesians having that axis.

20. If (E) and (K) intersect in p', we have seen (§17) that

P = = ( L )

But if K'be the distance from the origin of the foot of the corresponding

normal, we have K' = , p , and (L) is the condition that the normal
p—A

may bisect the angle between the vector p' and the radius R, which
meet on the curve. A circle passing through the axial foci and through
the point (p') will meet the circle (K) orthogonally.

Hence Mr. Crofton's theorems,—The arc of the curve is equally in-
clined to the focal vector and the circle passing through a point on
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the curve and the other axial foci; and, Tri-confocal Cartesians cut at
right angles.

21. If the equation of a Cartesian be written in the form
(pJ-Z;2)2+Ai a J+B1=0 (M),

the radius of curvature R is given by means of

R 3 = =

This can be further reduced by means of the equation of the curve.
In this way the square root of the denominator becomes

4[{16a>»(AI*+BI)-.A; } G*2-*2) - 8 (AiaJ+B1)(A1a5 + 2B1)-2AJy2] ;

and, equated to cipher, this function represents a circular cubic. Hence
the eight points of inflection of a Cartesian lie on a circular cubic.

To find the radius of curvature at the points of contact of the double
tangent.

Putting p 2 - ^ = 0, f = F - a 8 = A ' 7 < ; 2 7 B ' ,

we have R3 = A i - r - = ^ 5—.
16.4. At yK 64(AjA^-Bl)2

Comparing the forms (M) and (A'), we find finally

» - • • • " ? * • . - or R = * B ' A '|4A2B2_(A2_C2)2{2'

We have R = 00 if A2 cr> Ca = 2AB. In this case the points of contact
unite at the vertex of the outer oval.

22. If we are given an axial focus, the triple foens, and a point on
the curve, as well as the circle having its centre at the axial focus and
passing through the points of contact of the double tangent, we have a
very simple construction for the normal at the given point. L e t / P
(Fig. 5) be the vertex of the given point from the given axial focus.
Take PS = A the radius of the given circle; then, joining S to
tho triple focus T, the normal PK is parallel to ST; for we have

IK — /T—
/P /P -PS

FIG. 5.
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23. Denoting by w, to, the angles which the tangents from the ex-
tornal focus make with the axis, we have

C - A , C+A
cos w = ———, cos w = ^—.

13 13
„ „ . . , N/(A4+B4+C4-2AaBJ~2AaCJ-2B2Ca)Hence B sin w sin w = %-*———^—^ — -.

a
And we have, by (C),

7 T> oW + iV -r, o 10 — W

k = B cos2 —£—, or B cos2 —-—.
it a

This gives an easy construction for tho remaining foci when the ex-
ternal focus and the triple focus are given. ' We must draw vectors

: bisecting the sum and the difference of the angles made with the axis
by the tangents to the two ovals from the given focus. Then, projecting
the triple focus on these vectors and again on tho axis, we have the
foci.

Properties deducible front the general interpretation of the Polar
Equation.

24. I propose to give some examples by way of illustrating the con-
clusions of §§ 5—8. It is known that if a transversal meet a completo
Cartesian, the sum of the vectors to the points of intersection is alge-
braically constant. This result must be interpreted differently accord-
ing to the focus which is taken as pole. Let the pole focus be external,
and lot the transverse meet both ovals.

To eliminate w between
p 8 - 2 Ap - 2B cos w p + Ca = 0,

(a cosw + 6 sinw) p + c = 0,
we have to put the last equation in the form

(a cos wp + c)2— b2 sina top* = 0 ;
that is to say, in effect, we take two lines equally inclined to tho axis.
Since the lines arc reflexions of one another relative to the axis, we
can refer these intersections to one of them. Remembering this and
the nature of corresponding points, wo see that, in the case supposed,
the sum is pi+pj—p— p", tho vectors pup2 belonging to the inter-
sections on the outer oval, and p', p" being the corresponding vectors re-
lativo to the inner oval.

But suppose that tho transversal meets tho same indented oval in
four points, then the sum is Pi + pa+P3+P4- For tho equally inclined
lines will intersect the oval at points whose vectors are positive.

Again, suppose that the focus pole is the extreme inner one. In
this case the vectors are positive; and tho sum is Pi+Pz+p'+p"- And
if tho pole is the middle focus, we have again tho difterence
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. The algebraic sums in question do not therefore comprise all those
obtained by alteration of signs.

25. Since the absolute term is the same in (C), (E), and (F), it
follows that the product of the vectors of corresponding points is equal
to the product of the distances of the other two foci from the focus pole.

The interpretation of this for a particular focus as pole, depends im-
mediately upon what has been stated relative to corresponding points.

Thero are two real circles, and one imaginary circle, having their
centres at a focus, and the two other foci for inverse points.

It follows that corresponding points are inverse to each other, with
respect to the confocal circle which has its centre at the focus pole.

An oval is therefore inverse to itself relative to the confocal circle
whose centre is the external focus. The adjacent parts of conjugato
ovals are inverse with respect to the confocal circle whose centre is the
extreme inner focus. And the non-adjacent parts of the conjugato
ovals are inverse with respect to the imaginary confocal circle.

In the same manner, by reference to corresponding points, we can
completely interpret M. Quetelet's theorems, where his statement is
adapted to the case of a particular focus as pole.

26. Suppose we have a polar equation of the form
pn + (A cos w+B sin w -I- C) p""l

then the sum of the squares of the roots relative to p
Spa = (A cos w+B sin w+C)a—2 (a cos 2w + b sin 2w+&c.)

Consequently 2 / ~ dvo is integrable in finite terms.

If, therefore, the vector roots represent real points on the branches
of the curve, the algebraic sum of the areas intercepted by the different
vectors is capable of quadrature when there is no break of continuity.

The origin is a focus, for if odd powers of p are pi'esent in (N), the
complete curve will be represented by a form #a—p3^ = 0.

The ovals of Cassini, and bicircular quartics generally, present a case
in which only even powers of p are present.

In the case of a Cartesian represented by (E), we have
+!
2

= (Ba -f 2Aa—Ca)+4 AB cos w+Ba cos 2w.
Therefore

f p—^- dw = (B2+2A2- C2) w + 4AB sin w + ^ sin 2io.

If tho limits are 0, JT, the origin being the extreme inner focus, we find
that the sum of the areas of the ovals is equal to twice the area of the circlo
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whose centre is at the triple focus, and which passes through the points of
contact of the double tangent.

Hence, if we consider the ovals of the locus as forming a ring, a
circle, whose radius is determinate, described about the inner oval, will
divide the ring into equal portions.

The doctrine of corresponding points on a vector enables us to see
that if the origin is external, the areas are intercepted by the same oval;
if tho origin is the middle focus, the areas are intercepted by non-
adjacent parts of the conjugate ovals; if the origin is the innermost focus,
they are intercepted by adjacent parts of the ovals.

We may vary the expression of the theorems thence arising in several
ways. Thus, let the origin be the external focus, and let two vectors
meet the outer oval in (P, Q), (R, S) and the inner oval in (p, q), (r, s),
then Area PQpq — Area RSrs can be expressed in finite terms.

27. The equation of a Cartesian being

pa— 2Ap - 2B cos wP + C2 = 0,

Mr. William Roberts has inferred that the difference of the arcs of
the conjugate ovals corresponding to the same position of the radius
vector is expressible by an elliptic arc. (Liouville XI., p. 195, quoted
by Salmon " Higher Plane Curves," p. 268.)

In fact, the difference of the elements of the arcs is represented by

2 >/A2+ B2 - C2+2 AB cos"^. dw.

Referring again, to what has been said of corresponding points, we
are enabled to state the meaning of the analytical result more com-
pletely.

For (1), when the focus is external, the corresponding arcs are on
the same oval,—Mr. Crofton has remarked this case from a different
point of view; (2) if the interior extreme focus is the origin, the cor-
responding arcs are adjacent portions of the conjugate ovals; (3) if the
middle focus is the origin, the corresponding arcs are non-adjacent
portions of the conjugate ovals; (4) if two of the axial foci are ima-
ginary, the corresponding arcs lie on the real oval of course, but the
difference in question is expressible by two elliptic integrals of the first
and second order. For in this case

( A ^ B ) ' < C 2 ; or, As+Ba-C2<2AB.

Also, with respect to case (3), it will be observed that it is not really the
geometrical difference, but the sum of the corresponding arcs, which is
expressed by an elliptic arc. For the corresponding elements ai'c on
non-adjacent parts of the conjugate ovals, and one becomes negative to
the other.

28. Sinco, when the foci are real, there are two interior foci, and in
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order to obtain the whole length of a semi-oval, we must integrate
from w=0 to K>=7r, we are enabled to draw a remarkable conclusion.

For let the length of the outer oval be 2L, that of the inner 21. Then
denoting a complete elliptic integral of the second kind by Eiir, we have,
the extreme inner focus being the origin,

L — i! = KEj,.
But again, taking the middle forms as origin, we have

Hence 2L = KE^+K'E'j,, 21 = K'E'lw-KE4..
That is to say, the lengths of the ovals of a Cartesian are expressed by
syzygetic relations between two elliptic quadrants. I confess, however,
that a verification of this is desirable.

29. In the case of a nodal Limacon, the external and middle focus
coincide in the node, and we have to modify our integrations. The arc
of this curve can be expressed by an elliptic arc in virtue of its cha-
racter as an Epitrochoid.

Referring the curve to its single focus as origin, we get the equation
p2_ 2A/> - 2B cos wp+(A - B)2 = 0.

Hence the difference between the outer semi-loop and the inner semi-
loop is given by

2 f V2AB + 2ABcosw.dw = 8^AB f 'cos^.d . — = 8\/AB.

Now, if the equation above given be compared with the form derived
from the common equation p = =fca+6 cos u>, which is transformed into

a? -b*-

A -m

we see that B = —, A = —, so that we have the theorem,

The difference of the lengths of the loops of a nodal Limacon is four
times the distance between the vertices.

It is remarkable that the difference is independent of the parameter
b ; if we take the node as pole, the difference in question comes out by
means of a formula in the theory of elliptio functions. In consequence
of the node, the integrations are not from 0 to TT, but from 0 to wu and

from 0 to w2, when COSM^ =— f, and wa-\-Wi = ir.
o

We then get a formula
L-Z = 2(a + fc)(2E11,i-E|r),

and the equation of amplitudes for the comparison of elliptic arcs,
sometimes written

cos a = cos^cos^—sin^sim/* v^l —
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is satisfied. It follows that

2E*,, - E 4 , = 1 - v / W = - ^ - ,
a-\-b

and thus the previous result is verified.
30. I may remark that the transformation given in § 9 is a particular

case of a more general one. For it is evident that the equation of a
Cartesian in the form pa — 2Ap—2Bz+C* = 0
is transformed into another of similar form by the substitutions p — A',
x—a, for p and x respectively. The circle employed in § 9 is itself a
Cartesian, and any point may be considered as an axial focus of it,
relative to the diameter through the point as axis. In the general case,
the pole of the auxiliary equation will be one of the three axial foci.
By means of these substitutions, wo may derive a Cartesian of the second
kind from one of the first kind, and vice versa. It will be observed,
however, that a real point on the derived Cartesian may correspond to
an imaginary point on the auxiliary Cartesian, as in the particular case
when this curve is a circle.

If we are given a parabola, we can also derive Cartesians of both
kinds by an obvious and simple transformation.

The equation of the parabola being written in the form

we only have to substitute p for y to obtain the equation of a Cartesian.
Hence, if the feet of the y ordinates be gathered at the origin, while
the extremities slide on perpendiculars to the diameter which is the axis
of as, the locus of the extremities will be a Cartesian. The limiting
axial points correspond to y = =b» in the parabola. On account of the
identity of the coefficients in the two forms of equation, the theory of
Cartesians might be discussed with some advantage by means of the
auxiliary parabola.

A slight discussion followed upon the reading of the paper. Dr.
Henrici exhibited a plaster cast of the surface

A cardboard model of this surface was shown to the Society at its
meeting in the previous November.

The following presents had been received:—
" Sulle ventisette retto di una Superficio del torzo ordino, nota del

Prof. Luigi Cremona;" from the Author.
"Monalsboriclit;" Miirz, 1870.




