ON THE OUTER ISOMORPHISMS OF A GROUP

By W. Burnside.

[Received December 11th, 1911.-Read December 14th, 1911.]

While preparing the second edition of my Theory of Groups for the press I made many ineffectual attempts to determine whether an outer isomorphism of a group necessarily permutes some of its conjugate sets, or, in the alternative, if groups exist some outer isomorphisms of which change every operation into a conjugate operation.

I have since succeeded in constructing comparatively simple examples showing that of the two suppositions the latter is the correct one. One of the simplest of these is given below.

Taking p^{3} symbols $x_{a, \beta, \gamma}$, where the suffixes are reduced $(\bmod p)$, the four substitutions

$$
\begin{aligned}
& A_{1} \quad \text { or } \quad x_{a, \beta, \gamma}^{\prime}=x_{a+1, \beta, \gamma}, \\
& A_{2} \quad \text { or } \quad x_{a, \beta, \gamma}^{\prime}=x_{a, \beta+1, \gamma}, \\
& A_{3} \quad \text { or } \quad x_{a, \beta, \gamma}^{\prime}=\omega^{a+\beta} x_{a, \beta, \gamma-\beta}, \\
& A_{4} \quad \text { or } \quad x_{a, \beta, \gamma}^{\prime}=\omega^{\beta} x_{\alpha, \beta, \gamma+\beta-a},
\end{aligned}
$$

where ω is an assigned primitive p-th root of unity, generate a group of monomial substitutions of finite order.

The substitution that corresponds to $A_{3}^{-1} A_{1}^{-1} A_{3} A_{1}$ is determined by eliminating the intermediate symbols between

$$
\begin{aligned}
& x_{a, \beta, \gamma}^{\prime}=\omega^{-a-\beta} x_{a, \beta, \gamma+\beta}, \\
& x_{a, \beta, \gamma}^{\prime \prime}=x_{a-1, \beta, \gamma}^{\prime}, \\
& x_{a, \beta, \gamma}^{\prime \prime \prime}=\omega^{a+\beta} x_{a, \beta, \gamma-\beta}^{\prime \prime \prime}, \\
& x_{a, \beta, \gamma}^{\prime \prime \prime \prime}=
\end{aligned}
$$

Hence $A_{3}^{-1} A_{1}^{-1} A_{3} A_{1}$ is $x_{a, \beta, \gamma}^{\prime}=\omega x_{a, \beta, \gamma}$.

In the same way it is shewn that

$$
\begin{aligned}
& A_{4}^{-1} A_{1}^{-1} A_{4} A_{1} \quad \text { is } \quad x_{a, \beta, \gamma}^{\prime}=x_{a, \beta, \gamma-1} \\
& A_{3}^{-1} A_{2}^{-1} A_{3} A_{2} \text { is } x_{a, \beta, \gamma}^{\prime}=\omega x_{a, \beta, \gamma-1}^{\prime} \\
& A_{4}^{-1} A_{2}^{-1} A_{4} A_{2} \text { is } \quad x_{a, \beta, \gamma}^{\prime}=\omega x_{a, \beta, \gamma+1}
\end{aligned}
$$

while both $A_{1}^{-1} A_{2}^{-1} A_{1} A_{2}$ and $A_{3}^{-1} A_{4}^{-1} A_{3} A_{4}$ are E, the identical substitution.

Denoting the two substitutions
and

$$
\begin{aligned}
x_{a, \beta, \gamma}^{\prime} & =\omega x_{a, \beta, \gamma} \\
x_{a, \beta, \gamma}^{\prime} & =x_{a, \beta, \gamma-1}
\end{aligned}
$$

by P and Q, which are obviously independent substitutions of order p, it may be at once verified that both P and Q are permutable with $A_{1}, A_{2}, A_{3}, A_{4}$; while, on repeating them, it is found that $A_{1}, A_{2}, A_{3}, A_{4}$ are all of order p. It follows that every substitution of the group is expressible in the form

$$
A_{1}^{x_{1}} A_{2}^{x_{2}} A_{3}^{x_{3}} A_{4}^{x_{4}} P^{y} Q^{\vdots}
$$

where the indices take all values from 0 to $p-1$, and that the p^{6} substitutions contained in this form are all distinct, so that the group is one of order p^{6}.

The existence of this group of linear substitutions proves that the relations

$$
\begin{gathered}
A_{1}^{p}=A_{2}^{p}=A_{3}^{p}=A_{4}^{p}=P^{p}=Q^{p}=E \\
A_{1}^{-1} A_{2}^{-1} A_{1} A_{2}=A_{:}^{-1} A_{4}^{-1} A_{3} A_{4}=E \\
A_{3}^{-1} A_{1}^{-1} A_{3} A_{1}=P, \quad A_{4}^{-1} A_{1}^{-1} A_{4} A_{1}=Q \\
A_{:}^{-1} A_{1}^{-1} A_{3} A_{2}=P Q, \quad A_{4}^{-1} A_{2}^{-1} A_{4} A_{2}=P\left(Q^{-1}\right.
\end{gathered}
$$

and relations expressing that both P and Q are permutable with $A_{1}, A_{2}, A_{3}, A_{4}$ are the complete defining relations of an abstract group G of order $p^{\text {b }}$.

Denoting $A_{1}^{x_{1}} A_{2}^{x_{2}} A_{3}^{x_{3}} A_{4}^{x_{4}}$ by R, the general inner isomorphism of G is given by

$$
\begin{array}{ll}
R^{-1} A_{1} R=A_{1} P^{-x_{3}} Q^{-x_{4}}, & R^{-1} A_{2} R=A_{3} P^{-x_{3}-x_{4}} Q^{-x_{3}+x_{4}} \\
R^{-1} A_{3} R=A_{3} P^{x_{1}+x_{2}} Q^{x_{2}}, & R^{-1} A_{4} R=A_{4} P^{x_{2}} Q^{x_{1}-x_{2}}
\end{array}
$$

This changes $A_{1}^{u_{1}} A_{2}^{u_{2}} A_{3}^{u_{3}} A_{4}^{u_{4}}$ into $A_{1}^{u_{1}} A_{2}^{u_{2}} A_{3}^{u_{3}} A_{4}^{u_{4}} P^{y} Q$, where

$$
\begin{aligned}
& \left.y \equiv-u_{1} x_{3}-u_{2}\left(x_{3}+x_{4}\right)+u_{3}\left(x_{1}+x_{2}\right)+u_{4} \cdot x_{2}\right) \quad(\bmod p) . \\
& z \equiv-u_{1} x_{4}-u_{2}\left(x_{3}-x_{4}\right)+u_{3} x_{2}+u_{4}\left(x_{1}-c_{2}\right)
\end{aligned}
$$

Now $A_{1}^{u_{1}} A_{2}^{u_{2}} A_{3}^{u_{3}} A_{4}^{u_{4}}$ is obviously not a self-conjugate operation of G. If it is one of p conjugate operations, then y / z must be independent of x_{1}, x_{2}, x_{3}, x_{4}. Now, if y / z is λ, then

$$
\begin{aligned}
x_{4}\left[\lambda\left(u_{1}-u_{2}\right)-u_{2}\right]+x_{3}\left(\lambda u_{2}-u_{1}-u_{2}\right) & +x_{2}\left[\lambda\left(u_{4}-u_{3}\right)+u_{3}+u_{4}\right] \\
& +x_{1}\left(-\lambda u_{4}+u_{3}\right) \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

Hence, if λ is independent of $x_{1}, x_{2}, x_{3}, x_{4}$, then
or

$$
\left.\begin{array}{|cccc}
\lambda & -\lambda-1 & \cdot & \cdot \\
-1 & \lambda-1 & \cdot & \cdot \\
\cdot & \cdot & -\lambda+1 & \lambda+1 \\
\cdot & \cdot & 1 & -\lambda
\end{array} \right\rvert\, \equiv 0 \quad(\bmod p) \text {, }
$$

It follows that if 2 is a quadratic non-residue $(\bmod p)$, then $A_{1}^{u_{1}} A{\underset{2}{n_{3}} A_{3}^{u_{3}} A_{4}^{u_{4}}, ~}_{\text {a }}$ is one of a set of p^{2} conjugate operations of G; or, in other words, that

$$
A_{1}^{u_{1}} A_{2}^{u_{2}} A_{3}^{u_{3}} A_{4}^{u_{4}} P^{i} Q^{j} \quad(i, j=0,1, \ldots, p-1)
$$

constitute a conjugate set for G for all values of $u_{1}, u_{2}, u_{3}, u_{4}$, except

$$
u_{1}=u_{2}=u_{3}=u_{4}=0
$$

Now the defining relations of G are unaltered if $A_{1} P^{i_{1}} Q^{j_{1}}, A_{2} P^{i_{2}} Q^{j_{3}}$, $A_{3} P^{i_{3}} Q^{j_{3}}, A_{4} P^{i_{4}} Q^{j_{4}}$ are written for $A_{1}, A_{2}, A_{3}, A_{4}$, while P and Q are unchanged. Hence

$$
\left(\begin{array}{cccc}
A_{1}, & A_{2}, & A_{3}, & A_{4} \\
A_{1} P^{i_{1}} Q^{i_{1}}, & A_{2} P^{i_{2}} Q^{j_{2}}, & A_{3} P^{i_{3}} Q^{j_{3}}, & A_{4} P^{i_{4}} Q^{i_{4}}
\end{array}\right)
$$

gives an isomorphism of G, whatever the i 's and j 's may be. Moreover, any two of these isomorphisms carried out successively give a third isomorphism of the same form. There arises thus an Abelian group of isomorphisms of G of order p^{8} and type ($1,1, \ldots, 1$) ; and every isomorphism contained in this group changes any operation of G into a conjugate operation. The order of the group of inner isomorphisms of G is p^{4}. Hence G admits outer isomorphisms which change every operation into a conjugate operation.

The above group of isomorphisms of order p^{8} is the greatest which changes every operation into a conjugate operation, since it changes the four generating operations into any four which are conjugate with each of them respectively. Every isomorphism of G not contained in this group must permute some of the conjugate sets.

