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ON THE MINORS OF A SKEW-SYMMETRICAL DETERMINANT
By J. BriL, M.A.

[Received December 30th, 1902.—Read January 8th, 1903.]

1. The most general type of determinant that can arise as a minor of
a skew-symmetrical determinant may be expressed in the form

[1z,], [1zg], ..., [lz.]],
[22,], [2zg), ..., [2za)

(nx)], [nzo), ..., [nx.]
where we have, generally, [rz;]4[z,7] = 0.

In the most general type the two sets of numbers 1, 2, 8, ..., n and
&y, Ty, Ty, ..., &, are distinet, but all special cases may be deduced by
making pairs out of the two sets identical.

Now we have

[1z), [1z,]
(22:], (2]

Further, the determinant

(1z,], [1zy], [11:3]
(2z,], [2z), [2z)
(8z.), (8], (8]

= [1e,] [22,]—(12,] [22,] = — [122,2,]+[12] [, 2,].

1s equal to
(1z,] { —[28z, z5)+[28] [z, ,) } —[12,]{ —[28z, z5]+ (28] [z, 2] }
+ (1] { —[282,25]4(28] [z, 2] }

= — (128, 2, 23]+ [12] (82, £y25) — [18] [ 22, 2 23]+ [28] [ 1.0, 4 25)-
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Similarly, the determinant of four rows and columns is equal to
(1e,]{ —[2842,2,7,]+[28] (42,2, 2,] —[24] (87,252, ] +[84]( 22,752, ]}
—[1z,) { —[284z, z,z,]+[23][42, 2,7, —[24] (8%, 2z, ]+[34][ 2z, 25 2,] }
+{12,] { —[2842, z,2,] +[28][42, 2y 2,]—[24] (82, 257, ]+[84] (22, 7,2, ] |
—[1z,]{ —[284z, 2, x5+ [23][42, 2,75 ] — [24] (87, Zy 5] +[84] [ 22, o z5] }
= (1284%, 2,252, ] — {[12] (842, 7yz52,] —[18][24%, 2,252, ]
+[14][28%, 2,752, ]+ [28] (142, 2y g2, ] —[24][ 182, 25252, ]
+[84][122, 2525 2,]} +[1284] (12,757, ]-
Proceeding in this manner, we obtain, for the determinant of five rows
and columns, the expression
(128452, zy2q7,2;]— {[12][8452, o252, x5 ] —[18][ 2452, 2, 22, 5] - . ..
+(45][1282, 2,257, 5]}
+ {[1284](52, 2,25, 25] —[1285] 42, Ty 252, 25 )+ . ..
4284511z, 2y 252,25} -
Also, for that of six rows and columns, we should have
—[1284562, 2,257,757
+ {[12][8456%, 2y 0y 24 25 2] — . .. +[56] (12842, 2y 292, 25 2] }
— 1[1284][56x, 2,237,256 — . .. +[3456][122, Ty 2y 2, T525) |
+[128456] [z, 2 T3 T, T5 T -

We are now in a position to state the general rule deducible from these
special cases. For the determinant of n rows and columns we have an
expression of the form

+{[128 ... nz, 7, ... T)
—Z4[rs][12... =D 4+1) ... s—1)(s+1) ... nx, 2y ... Ty
+Z4[pgrs][12...(p—1)(p+1)...(¢g—D(g+1)...0— D (r+1)...
e 5=+ ...nz, 2y T ]—... }*F Q)

* To obtain the sign attached to any particular product under one of the 3's, we have the
following rule :—Write down the numbers in the first Pfaffian of the product, and after them
write down such of the numbers 1, 2, ..., #» as occur in the second Pfaffian, preserving in each
case the order ic which the said numbers stand in the Pfaffians. Then, according as the number
of displacements requisite to restore the numbers so obtained to their natural order be odd or
even, 80 is the sign of the product negative or positive.
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This expression needs some further explanation. Firstly, with regard
to the ambiguous sign outside the double bracket, we have the following
rule :—If » be even, the negative or positive sign is to be chosen according
as 31 1s odd or even; if # be odd, the negative or positive sign is to be
chosen according as 4 (n—1) is odd or even.*

For the typical sum-term within the double bracket, we have

(=12 [pp ---P2k] Clpps oo Do),

where p;, ps, ..., pa. are a set of 2k numbers, standing in their natural
order, selected from the set 1, 2, ..., %, and the symbol C[p,p,... pu]
denotes the Pfaffian whose symbolical expression can be formed from
the set of numbers 1, 2, ..., n, 2, zy, ..., 2, by leaving out the set

pl, _p2: ceey Z’2I,~-
If » be an even number, the last term within the bracket is

(— 1) [128 ... n)[z 2925 - .. Tn)-

If » be an odd number, then we have, for the last sum-term, the
expression

(—1D¥-VZ £128 ... (p— 1) (p+1) ... 0] [ pZ, B Zg - .. T

I propose to give a justification of the generality of this result by
the method of induction. Thus, supposing the result to be true in the
case of the determinant of n rows and columns, we proceed to establish
its correctness for the case of the determinant of n+1 rows and columns.
All the minors of this latter determinant will be expressible in the
form (1); and, as the sign outside the double bracket will be the same
for all, we may leave this out of account for the present.

Now [1z,][284 ... (n+1) 2y zg, ... Ty
—~[12,)[284 ... (n+ 1)z x5, ... Tus1)
+...
+(—=1)"[1z,4:1][284 ... v+1) 2, zg05 ... 2.
= (—=1"{ [128...(n4+1) 2,275 ... Tn+1]
—[12][845 ... n+1) 2,225 . .. Tns1)
+[18])[245 ... (n+1) 2,225 - .. Tuir1)

— (=1 1 (n+1)][284... 72, 2,2y ... Tus1])}- )

% The referee points out that this sign may be accounted for by the inclusion of the factor
nn-1)
(G
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This supplies us with the first term of the new expression, and with
those portions of the first sum-term for which » = 1. Further, con-
sidering the typical term out of those composing the first sum-term, we
have

(1z,][284 ... =D (+1) ... (s—1)(s+1) ... (n+1) a5z, ... Tns1]
—[1zJ[284 ... 0= +1) ... (s—1)(s+1) ... (n+ 1) 2, 792, ... Tnys1]
+(—1"[12,41)[284...00= 1) (r+1)...(s = 1) (s+1)...(n+ 1) 2,2974. .. ]

= (=1"! [128...0—=1)(r+1)...(s—=1) (sF1)...(n+ 1) 2,ZeZ5. .. T 41]
—[12][845...00— 1) (r+1)...(s— 1) (s+ 1)...(n+ 1) &, 29g. . . T 11)
+[13][245...(7'—-1)(')'-{-1)...(8—1)(5-[— 1)...(n+ 1) 2,xe2g. . . Ly 41]

—(=D*1(n+1)]
X[284...00— 1) (r+1)...(s— 1) (s41)..02, Ty 25 ... Ty ]} (3)

In this expression there will be no terms containing [17] or [1s]. The
alternation of the positive and negative signs attached to the terms will,
however, be steady throughout the expression.

It will thus be seen that, taking the latter terms on the right-hand
side of equation (2), and all those included under the typical first term of
the right-hand side of equation (3), we shall have the first sum-term of
our new expression complete, viz.,

(=) {—=Z 4+ [»s][128 ... ' —=1)(+1) ... s—1)(s+1)...
RO A A g

The remaining terms on the right-hand side of equation (8) will go
towards the formation of the second sum-term. Thus, collecting all the
terms containing

(284 ... (¢g—D(g+D ... =D+ ...(s—1)(s+1)...(n+ Dty Ly Zg... Zyy1],
we have, for the coefficient of this expression,
(=" (=17 [1g] (= )™**~° [rs] (= D (1] (- 1)*+*~* [gs]
+ (=1 [1s] (=1 [gr]}
= (=1 (=10 {[1q][rs]—[1r])[gs]+[1s][gv]}
= (—=D* (=D =3 [1grs] = (—1)" (— 1)+ 1¢rs).
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Thus these terms give us that portion of our next sum-term for which
p =1, viz,

(—1)" 1 +Z + [1grs][128 ... g =1 (@+1) ... r— D) 41) ... G—D(s+1) ...

oo 1) 2, Ty Ty .. Ty}

Now, dealing with the typical sum-term, and making a slight and
obvious modification of our notation, we have, on consideration of the

coefficient of [, p, ... pa],
(1z,)C{1p g ... pary] — [125] C[1p, 2g ... PrZg) + ---
+(—1)"[12,41] C{ip, Py .- . PoTr+1)
= (=" {C[p1pe ... pu] — [12]C[12p,p5 ... Pi]
+[18]C[18p, ps ... ] — ..
+(—1)"*[1(n+1)] C[1p,p, ... pa @+ 1)]}.

The contribution of the typical sum-term of expression (1) to the sum-
term of the same order in our new expression is thus clear. It only
remains to consider its contribution to the sum-term of the next order.
Considering the portion containing C[p,p ... Pa+1], we have, for the
coefficient of this expression,

(=" (=D*{ (=1 [1p](=1)* " [paps ... Par+1]
+ (=122 [1p,] (= V[, Pa Py - - Pa1]
(=15 [1ps] (= 12 [ pa py Ps - - Prit]
+...
A (= 1P D gy (= 1) [y py - pei]}
= (=" (= D¥(—=D*" {[1p)] [Peps - .- Prsr]—[10] [P1 D5 D5 - - P2ics1]
+.

+[1pas] (2123 - - D)}
= (—1)"(— 1D (—=1)"2[1p, pg ... Pors1hs

where h=p,+p:+... + o1 —k(2k+8).
Further, h—2 =p1+_’p2+...+p2k+1—(2k2+3k+2),

and therefore
h—2(k+1) = py+po+ ... +po1— @k +1) (k4 2).



108 Mz. J. BriLL [Jan. 8,
Also (— 124D = (12— P = (— 1)
Thus our expression becomes

(= 1)H (— 1)F+1 (— 1+ Pt et Pk =@ DEAD [ 1, o .. Pyn] -

Thus we obtain the contribution of these terms to the next sum-term, and
observe that it is of the required form.

The only point remaining to be considered is the ambiguous sign out-
side the double bracket. We have shown that, for the determinant of
n+-1 rows and columns, we have an expression of the proper type affected
with the sign (—1)*. Further, if » be an even number, the ambiguous
sign outside the double bracket in the expression (1) may be replaced by
(—D¥. Thus our new expression is affected with the sign

(—DH (=i = (— i = (— 1,

where m = n+1, since n is even. As m is an odd number, this is of the
proper form.

Taking n for an odd number, the above mentioned ambiguous sign
may be replaced by (—1)*®-1, and in this case our new expression will
be affected with the sign

(=DM —DAD = (=D = (—1pim,

since 7 is odd. Further, m now denoting an even number, this also will
be of the requisite form.

2. Having established the law for the general case, we proceed to
obtain a few verifications, by application to special cases. It is a
general rule that, if in the series of numbers involved in the symbolical
expression of a Pfaffian any number be repeated, the corresponding
expression vanishes. Thus, in some of the special cases our general
expression becomes much reduced. Taking, for example, the case of the
skew-symmetrical determinant of # rows and columns, we obtain this case
by putting z, =1, 2, =2, ;=38, ..., z,=n; and we see that, if # be odd,
it vanishes entirely. Further, if » be even, it reduces to (—1)* {[128...n]}%,
that is, to {[128 ... n]}>

We next apply our result to the first minors of a skew-symmetrical
determinant of » rows and columns, considering the minor of [rs]. In
this case we shall have a determinant of 7—1 rows and columns, obtained
from the fypical form by assuming z;, =1, z3=1, ..., T3 = s—1,
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2 = s+1, Zey1 = s+2, ..., Tooy =n, and by replacing the numbers
7, r+1, ..., n—1 by the respective numbers r+1, r+2, ..., n.
If » be an even number, the expression for our minor becomes -
(— 1RO (1 pO=-D(—1)"=[128 ... b —1)(r+1) ... s—1)(s+1) ... n]
X [5128 ... (s—1)(s+1) ... n]
or (—1p*=D(—1Pp"-D(—1)"[128 ... (s—1)(s+1)... r—1)(r+1)...n]
, X [5128 ... (s—1)(s+1)...n].
Now [s128 ... s—1)(s+1)...n] = (—1)"1[128 ... n]
and (—1IRO=D(—1RE-D(— )= (—1) " = (—1)~5,
Thus our minor is equivalent to either
—[128...r=1)(r+1) ... s—1)(s+1)...n][128 ... n]
or —[128 ... (s—1(s+1) ... =1 (+1)...2][128 ... n].
If n be an odd number, we obtain for our minor
(—1RO-D(—1)-D[128 ... (r—1) (r+1) ... ] [128 ... (s— 1) (s+1) ... n]
=[128...r—1)(r+1)...n][128 ... s—1)(s+1) ... n].
As a further illustration we will consider the minor of
(pr], [ps]
Ler), [as)

In this case we have a determinant of n—2 rows and columns, obtained
by putting 2, =1, z, =2, ..., zZ,.,yr=7r—1, 2, =r+1, 2., =742, ...,
Z_g =s5—1, 2, 1 =s+1, 2, =542, ..., o2 = n, and by replacing the
numbers p, p+1, ..., g—2 by the respective numbers p+1, p+2, ...,¢—1,
and the numbers ¢—1, ¢, ..., n—2 by the respective numbers g+1,
g+, ..., n.

For simplicity we will take the case in which p, g, 7, s are in order of
magnitude. In this case, if % be even, we have

(—1)n—2) { (— 1= (—1)n—(r+a)+8
X [128...(p—D(@+1)...@q=1(g+D ... =D +1)...(s—1)(s+1)...7n]
X[7s128 ... r=1)(r+1) ... (s—1)(s+1) ... n]
+(—1-2[128 ... (p—1) (p+1)...(g— 1 (@+1) ... n]
' x[128 ... r—=1)(r+1) ... s—1)(s+1) ... n]}
= —[128...(p—1)(p+1)...(g—1(g+D)...0 =D (r+1)...s— D (s+1)...n)
X [128 ... n] +[128 ... (p—1D(p+1) ... (g—1)(g+1) ... n]
x [128 ... r—1)(r+1) ... (s—1)(s+1) ... n].
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On the other hand, if » be odd, we have

(=18 (=" 2128 ... (p— 1) (p+1) ... @—1)(g+1) ... ¢’ —1)(r+1)...71]
x[128 ... (s—1)(s+1)...n)

+(—=1*1[128 ... (p—1)(p+1)... (g— 1D (@+1D) ... s—1)(s+1)...n]
x[128... r—1)(x+1)...n]

=—[128...(p—=1) (p+1) ... (g—D@+1) ... r—1+1)...n]

x[128... (s—1)(s+1)...n]

+(128... (p—1)(@+D...(@—Dig+D ... 6—D(s+1)...n]

x[128 ... (r—1)(r+1)...n).

In a similar manner we could determine those cases in which either or
both of the numbers p and ¢ are greater than either or both of the
numbers 7 and s.

3. In the thirty-fourth volume of the Proceedings of the Society* I
gave the following theorem :—

[(12y,2) ... ym2a])[845 ... (211,);'1,/1,21 s Ymm]
—[18y,2; ... Ym2m][245 ... 20 Y121 ... YmZm)
H(—=D[1 20y, 2, ... Ymzn)[284 ... @n—1)y,2; ... YmZm)
= [1,2) .-  Ym2n][128 ... @") Y, 2 ... Yir Zum)-

This theorem leads directly to a generalization of a theorem given by
Baker in a former volume of the Proceedings.t Thus, if we expand the
Pfaffian [123 ... (2n)], and replace each element of the type [7s] by an
element of the form [7sy,2; ... Yn2s], then the value of the resulting
expression will be

(121 o Ynzn1[128 ... 20) 912, ... YinZm)-

We can also apply our first quoted theorem to our typical determinant,

* P. 149. I find that I had been anticipated in some of the theorems of this paper by Vivanti.
See Rendiconti del Circolo Matematico di Palermo, t. xi., pp. 1-20.
t+ Vol. xx1x., p. 141.
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and obtain an expression for the determinant derived from it by replacing
each element of the type [7z;] by an element of the form [7;y,2, ... Y 2u)-
The resulting expression will be of the form
i[[123 N Ty e En Y1 2y e Y 2] (Y121 e Yua) }PE

+ o yman]}" =2 £ [rsy120 o Ymim]

X [12...0—1)@+1)... (s—l)(.s+1)...nxlfcz...z,‘ylzl...ymzm]—i-...}].



