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Introduction.

IF an integral function F(z), of finite or zero order, has — Oj, — a2, ...

for its sequence of zeros, the Dirichlet series 2 a~s converges when the

real part of s is greater than some finite number k, not less than zero,
and, for this range of values of s, defines an analytic function of s. If
the sequence Oj, a^, ... is perfectly general, the line 3&$ = k is a barrier
of essential singularities of the function. If, however, an is an analytic
function of n, it will usually happen that the function defined by the
Dirichlet series can be continued across the line 311 s = k, and that it gives
rise to an analytic function S (s), whose finite singularities are isolated
points. M. Mellin has shown that when this is the case there is an
intimate relation between the function S(s) and the asymptotic expansion
of the function log F(z).*

The typical function of finite non-zero order has — np for itsn-th zero.
The Dirichlet series Sw"1" then leads to Riemann's function £ (ps), and
the properties of this function and its generalisations play an important
part in the theory of Dirichlet series and asymptotic expansions of func-
tions of finite order, t

In the integral functions of zero order, we have, for all values of p,
| cin | > np when n is sufficiently great. There is no single functional
form for an that is typical in the sense in which np is typical in the case
of finite non-zero order, but an unlimited number of such forms. Thus,
starting from en, we have among possible forms of an,

en\ exp(e*P), exp exp(e'O, ..., (k > 1, p > 0),

* Ada Soc. Sci. Fenn., T. xxix., No. 4 (1900). " Ein Formelfiir den Logarithmus trans-
cendenter Funktionen von endlichem Geschlecht" [Reprinted Ada Math., T. XXVIII. (1904)].

t E. W. Barnes, Proc. London Math. Soc, Ser. 2, Vol. 3, p. 273.
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in ascending order in n, and

en\ exp [(log tt)1+'], exp [log n (log log nf\ exp [log n (log3 nf\ ....

(k < 1, P > 0),
in descending order.

The first of these two classes may be disposed of very briefly.
M. Fabry* has shown that, if 2bnz

c be a power series of unit radius of
convergence, and if (cn+1—c,,) -> oo, the unit circle is a barrier of essential
singularities of the function. It follows, on taking z = e~s, that the
function 2bne~sc" has the line &s = 0 for a barrier. Now, although
M. Fabry's result assumes the c's to be integers, we must expect that
in all cases when (cw+1—cn) -*• co, Ilbne~sr», and in particular 2e~sc'',
has fts = 0 for a barrier, for, as we have said above, the general
Dirichlet series has His = ft for a barrier.

It will follow that, if atl be any function of n which increases more
rapidly than epn for all values of p, we must expect the Dirichlet series
2a~s to have &s = 0 for a barrier, and the function S(s) to exist only
where the Dirichlet series converges. The problem of finding the analytic
continuation of the series then does not exist.

In this case, M. Mellin's method for determining an asymptotic expan-
sion for log 11(1 -\-zlan) cannot be applied, for it involves the integral

) zsds
S (s) —: , taken along the line &s = — I, and in the present case

this integral does not exist.
It is interesting to notice that the functions of this same class

exhibit a certain peculiarity, viz., their asymptotic approximation cannot
be effected in terms of the ordinary analytic functions of analysis. I
have shown in a former papert that we can find, from arithmetical con-
siderations, closely approximate asymptotic expressions for the functions
in question, and that these expressions involve other than elementary
analytic functions.

It is clear, then, that for this class of functions there can be no theory
analogous to that developed by M. Mellin and Dr. Barnes for the functions
of finite order.

It is otherwise with the functions for which an is of our second class,

• Annales de VEcole Normale, Oct., 1896.
| Proc. London Math. Soc, Ser. 2, Vol. 5, p. 361, " On the Asymptotio Approximation to

Integral Functions of Zero Order."
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i.e., for which an is of less order than e", and the present paper is occupied
with the problem of determining the functions S(s) which are the con-
tinuations of the Dirichlet series with certain forms of an of this class,
and with the problem of applying, on the lines of M. Mellin's method,
the knowledge of these functions S (s) to the determination of asymptotic
expansions for the corresponding integral functions IL{l-\-zlan).

It will be observed that we have included the form a,, = e'1 in neither
of our two classes. This form occupies a limiting position between these
classes, and, as might perhaps be expected from this fact, the integral
function TUX+zje") exhibits a number of exceptional characteristics.

The Dirichlet series 2e~Ils is the simplest of all such series, and the
function S(s), viz., e~sl(l — e~s), is expressible in terms of elementary
functions. The finite singularities of S(s) are seen to be isolated, but they
are infinite in number.

M. Mellin* has given an asymptotic expansion of log 11(1+^r/e"), but
the finite term in the expansion occurs in the form of an infinite series. +
It is also noteworthy that this expansion is not merely asymptotic,
but exact, the infinite series in descending powers of z being conver-
gent.

Thus the properties of the function n(l+z/e'1) are quite unlike those
of II(l-f-£/en) (k > 1) (which belongs to our first class), and we shall see
that they also bear little resemblance to the properties of the function

of our second class.

Abstract.*

The simplest function of our second class is that for which we have
an = exp (pnl/k), where &/) > 0 (k > 1). Two generalised forms of this
function are considered, corresponding to an = exp (pnlik) n~\ and
exp [p (nlk-\-plw

1/fcl-+-... +/vi1/A>)] respectively, where X and p may be
complex (subject to the condition t&p > 0), but where k, kv ..., pv p2, ...
are restricted to be real, and where we have kr > k. These forms of a,,

* hoc. dt.
f This series exhibits peculiarities analogous to those mentioned in connexion with our

first class of functions. It may be remarked that if the integral function be taken to be
n (1 + ee~"a>), where w is complex, the series in question no longer remains finite for all values
of z. Cf. my paper cited above, § 12.

X The Abstract was added at the request of the Council.

p 2
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give rise to the Dirichlet series,

(I.) Jiexp(~s?i1/fc)?iXs, and (II.) 2

respectively. (The factor p is omitted, as we do not thereby impair the
generality of the series.) These series converge when 3SU > 0, and
define analytic functions for this range of values of s. Analytic functions
S (s) are found, which represent the values, for any value of s, obtained
by the process of continuation from the Dirichlet series.

For tJie first case we have

S{s) = kT{k\s+k) s-^-x+Pis, \), (1)

where P(s,\)= S J ^ *
»=o

In the second case,
8 (2)

where Q(s) is an integral function of {apparent) order kj{k—l), with the
origin for a simple zero, and where

n ( ) ( w f c + ) 1
v==1 \1 {av-\-l)/ \>'=1 /

(3)
the 2 inside the square brackets being taken over all positive or zero
integral values ax, a2, ..., aM, such that a1H-a2-f-...-|-a,i = in.

The method by which the first result is obtained (I., § 1) may be
sketched as follows. We first suppose a and X real and positive. Follow-
ing the method of Lindelof,* we take a contour C embracing the positive
real axis, and cutting it in the point a, where 0 < a < 1, and consider
the integral _

taken over C. The singularities of the integrand are at the points
n = 1, 2, 8, ..., and we obtain for the Dirichlet series, S{s) = / . The
integral I may be divided into the three parts

and J 3 = — i ^g ,
JC e l — 1

* Le Calcul des Bteidus, p. 56.
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where Cx and C2 denote the parts of C respectively above and below the
real axis. In Ix the contour may be deformed into the line from a to
infinity, taken along the real axis, and in I2 and J3, C1 and C2 may be
deformed into the straight lines a+too to a, and a to a—ioo respectively.

It is easily shown that Ix tends to the limit s~kKs~k kT [k\s+k) as a
tends to zero (when s and X are positive), while Ig+Ia is shown to tend to
the limit /•<»

23& exp[—stllkehnilk] pseiiTi

Jo
<dt

If the factor exp[—stllk e*rL'k~] under the integral sign in this last expression be
replaced by its expansion in powers of s, and if the integration be effected
term by term, we obtain an expression for / 2 + J 3 which leads to the
result (1). Now the right-hand side of (1) defines an analytic function of
the two variables s and X for all values of s and X, and we have proved
that it represents the Dirichlet series when s and X are real and positive.
It follows that it is the analytic function representing all values obtained
by continuation, for the variables s and X, from the Dirichlet series.

The analytic function (1) is in general multiform, the multiformity
depending on s~kKs~k. If a cut be made along the negative real axis pre-
venting the point s from making a circuit of the origin, the function
obtained by continuation in the cut plane from the Dirichlet series is
evidently uniform. [X is now supposed to be a constant.] It is shown
that this function, which is denoted by S0{s) corresponds to the determi-
nation

s-kKs-k _ exp-[-(fcXs+&) log s],

where log s has its principal value.

The function S (s) (in the uncut plane) has s = 0 for its sole finite
singularity. The apparent poles at the poles of F(&Xs+&) are neutralised
by the poles of £(—n\k—\s)\ii = 1, 2, . . . ] .

In the particular case when X is zero, the function P (s, 0) becomes an in-
tegral function of s, whose apparent order is shown to be k/(k — l) (I., § 4).

The result (2) is established on the same general lines (I., § 5). The
series for \fr(s) converges for all values of s, and \fr{s), and therefore also
S (s), evidently has s = 0 for its sole finite singularity.

The function obtained by continuing the Dirichlet series over the s
plane cut along the negative real axis is determined by assigning to every
term s9 of yjr (s) the value exp (6 log s), where log s has its principal value.
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It is important to know something of the behaviour of \fs(s) when U|
is large. I t is shown (II. , § 4) tha t , xohen \s\ is sufficiently large, we have

| ^ ( s ) l<^exp[ | s | 1 + ' ] . (4)

In order to establish this result it is previously shown (I., § 5), that if
the series for \fs (s) be arranged in order of non-decreasing indices of s,
each term of the old expression being retained as a separate term of the
new one* we have

(5)
»i=i -J

where O < 0 1 < 0 ! 2 < . . . , 6n > nu>l+1)IK,

and \cn\<[KI6ny».

In the case when an = exp (nlk-\-pln
llk), the general formula becomes

fairly simple. We have (I., § 6)

where ^{s) = «-* r(*+l) + * 2 { ft ' —r^A/^+A) ,

so that the series within square brackets is an integral function of the
argument s{kl~k)kl of order kjfa—k).

[It is not important to know the coefficients in the function Q(s).
Those of the singular part ^(s) of S{s), however, appear in the asymptotic
expansion of log II

Having this knowledge of the functions generated by the Dirichlet
series I. and II., we may attack the problem of finding asymptotic expan-
sions for the corresponding integral functions IL(l-\-z/an)- We are met,
however, at the outset, by a difficulty which does not occur in the corre-
sponding theory of the integral functions of finite non-zero order. We

require to use the integral — r , taken along parts of the line
* to J s sin ITS ° r

His = — I (I > 0). This integral will not exist in any case unless
\S(s)\ < K exp (TT \ S \ ) . NOW the Dirichlet series itself can give us no
information as to the behavour of S(s) on %s = — I, for it does not con-

* I.e., if two terms of the old expression have the same index for s, they are not to be
combined into one term in the new series.
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verge there. On the other hand, if we appeal, for example in our second
case, to the formula (2), we only know concerning Q(s) that it is an
integral function of order k/(k—l), and therefore that when \s\ is large,
| S(s)\ < K exp [| s | fc/(fc~1)+e]. This result is clearly inadequate for our
purposes, and it is necessary to provide some means of establishing the
better inequality for \S(s)\ which in fact exists, for points on the line
&s = — I. This means is afforded by the following general theorem,
which is proved in II., § 1.

Let F(z) be an analytic function xoith a finite number of singularities
and possessing the following properties :—

(1) In the region B consisting of the ivJiole of the plane on one side of
a straight line L, and including the points of L, a branch F0(z) of F{z)
has no singularities, and for all points of B, and for an arbitrarily small e,

where p > 1, and r = \z\.

(2) In the whole plane, assuming the finite singularities to be ex-
cluded by small circles of radius 8,

\F(z)\<Kexv(r»+<),
for an arbitrary e.

Let L' be the straight line parallel to L and at a distance I from it
on the side of L remote from B, and let B' be the region of the plane on
the same side of L' as B. Let a system of cuts be made so as to prevent
the point z, when it is restricted to the region B', from circumscribing
any singularity of F(z), so that F0(z), when continued over B', generates
a uniform function. Then, for any arbitrary e, toe shall have, for all
points of B; | t f i W | < X « p « r » — • ) .

From this theorem it is easily deduced that on &s = — I, we have

where S0{s) denotes the function obtained from the Dirichlet series I. or
II. by continuation over the s-plane cut along the negative real axis.

Provided, then, that we assume A; > 2, the integral I -^~ - , taken
° J s sin TTS

over the part of the line His = — I either above or below the real axis,
will exist.*

* It should be noted that s cannot describe the whole line continuously in the cut plane.
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The problem of finding an asymptotic expansion for log î O*) is greatly
simplified if S(s) is known to be a uniform function. This can never be
the case for the function II., but occurs in the case of I., provided X is
zero and k is an integer. This simplest case is considered first, and may
be treated on the lines of M. Mellin's paper cited above. (II., §§2, 8.)

We find that, if

F(z) =
M=l

where 3&p > 0, and where k is an integer not less than 8,

log F(z) = (&+1)"1 p~k (log z)k+1

n=l

- * log * - / > ? ( -
=i (r

where k = $k or %(k-\-l), according as k is even or odd, the B's are
Bernoulli's numbers, S(s) is the function (1) (with X = 0), and where

lim \JNzN\ = 0.

This expansion clearly cannot be valid in the vicinity of the zeros of
F(z). It is, in fact, established first for the case ivhen z is excluded from
the spiral strip contained by the curves z — — exp (px + Si), where 8 is an
arbitrarily small positive number, and where x takes all real values from
— oo to +°° (§2). The region thus excluded is of the type usually con-
sidered in the theory of asymptotic expansions. It is then shown (§ 8)
that the region from which z is excluded may be narrowed (outside the
circle \z \ = 1) into the spiral strip betioeen the curves

±iS (log r)-<fc-*>+8],

where S is arbitrarily small.

If X is not zero, the form of the singularity at s = 0 of the function
defined by I. makes the extension of our methods to this case, if not im-
possible, at any rate a matter of great difficulty.

For the function S(s) defined by II., however, the singular part \fs(s)
is the sum of an infinite number of terms of the form cns

9n, and, although
the sum represents a complicated singularity, we are able to consider the
effect of each term separately. We consider the function

F(B)= &
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where an = exp [p {?i1'fc+pX/*1+/^1//C2+... +P^1' fc" (],

and where k^ > ... > kx > k > 2, and 3fyo > 0.

The assumption k > 2 is certainly necessary in order that we may
have | S0(s) | < exp (e | s |) on &s = — I, and it seems necessary to this end
to introduce the additional restriction that plt /o2, ... shall be real. With
these assumptions the inequality for So (s) is readily deduced from the
general theorem given above.

The following expansion is obtained (II., §§ 4, 5)

log F(z) = -P [f(-l/&)+ £/>,£ (-1/&.)]-* log z

_, v pcn sin (k—0«) 7T /log z\ fc~e«+1

'1 = 0 IT \ p I

where

^ = T(0n-k-l)+2 JSi r(2w+e)4-A;-l) U
 2w!

1)7r B2m(log )̂-2"1, (7)

where s k 2 cns°n is the series (5). The infinite series is to be arranged

in order of increasing indices of 11 log z, and, when toe stop at any term,
say of order {log z)~p, we have, if B is the remainder,

lim | B (log z)v | = 0.

Tn the proof it is assumed for simplicity that p is real, and that z is
excluded from the strip between the straight lines

z = exp|> {a^+Pi^+. - .+P^ 1 *^ ±

the expansion may, however, be proved for p complex, and when z is
excluded from a narrower spiral strip.

We have, by the ordinary theory of residues,

c s sin ITS

where S0{ps) is the function derived by continuation, in the plane cut
along the negative real axis, from the Dirichlet series II. (with ps as argu-
ment instead of s), and where the contour C embraces the positive real
axis and' passes between the points 0 and 1. The contour C may be
deformed into the contour C consisting of the line from — I-\-cot to — I
(0 < K. 1), the circle | z\ = I described clockwise from — I to — I, and
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the line from — I to —l—coi. Each term of S0(ps) of the form cn(ps)9»~k

is then shown to contribute a divergent but asymptotic series proceeding
in descending (non-integral) powers of log z; while the uniform part
—%-\-Q(ps) contributes the first two terms on the right-hand side of (7).
The necessity of dealing with an infinite series of terms, each of which
generates a divergent series, is the main cause of the complexity of the
proof of the final expansion.

The line of proof adopted is difficult to extend to the case when
pu p2, ... are complex, and it must break down when k < 2. The expan-
sion, however, is valid in each case, and even when kx, k2, ... (but not k)
are complex, provided that & 1/&,,<1/A;<1. The proof of this, however,
cannot be given here. It depends on a comparison of the known form of
the expansion in our restricted case with a general form obtained by an
entirely different method, which is mainly arithmetical in character. This
method is itself unable to determine the general coefficients of its result,
but it is easily shown that they must be those occurring in (7).*

There is, however, one interesting point which this principle is unable
to decide, as to whether the expansion (6) for the case an = exp (pnl k)
(where k is an integer), which contains an asymptotic series in descending
powers of z, is valid when k = 2.

It is not possible to apply pur methods to determine asymptotic ex-
pansions for log F{z) in cases where \an\ is of less order in n than exp(n")
for arbitrarily small values of e. (On this point, see II., § 8.) The func-
tions S(s) generated by the corresponding Dirichlet series 2a~s can, how-
ever, be determined in a number of cases. In Part I. (§§ 7-9) the follow-
ing series are considered :—

(III.) £ exp [ -« (log n)l+kl k>0;
it=2

and its generalisation

2 exp [ - s | (log n)l+k+Pl dog n)1+fci+... +/>„ (log tt)1+fc* 11

where k > ^ > ..., and k > 0 ;

00

(IV.) 2 exp[—slogn log logn\ ;
n=3

* I hope shortly to publish an account of this general theory, which applies to all integral
functions of our second class which arise in a natural manner, under the title " On a Class of
Integral Functions."
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and 2 exp [—s log n (logp nf],

where logp n = [log log ... (p times)] n.

For the series (III.), we find (I., § 7)

where P{s) is an integral function of order unity, and where

n=o

so that \fr(s) is an integral function, of the argument s~1/(1+k), of order

For (IV.), we find (I., §9),

S(s) =s-1T(\ogs+s-1

where P(s) is an integral function of order unity, and T{x) is an integral
function of x of infinite order.

In all the cases considered, S(s) is shown to have s = 0 for its sole
finite singularity.

PART I.

Dirichlet Series.

1. We begin with the series

£ expt-sn^W (&>1),
n=l

where \ is any complex number, and nKt is interpreted to mean exp (\s logn),
log n having its real value.

We shall establish the following results :—

The function S(s) is

kT(k\s+k)s-kK'-k+P(s, X),

where P(s, X) = 5 r
( j "

n=o l

S (s) has s = 0 for its sole finite singularity.
If a cut be made in the s-plane along the negative real axis, and if

SQ(S) be the function which is defined by continuation in the cut plane
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from the Dirichlet series,

S0(s) = AT (&Xs+&) exp [ -

ivhere log s has its principal value.

s]+P(s, X),

Let zlfc be interpreted, as usual, to mean exp (log x/k), where log x is
real when x is real and positive.

We shall suppose for the present that s and X are real and positive.
Consider the integral

= [
i-r

taken along the contour Lx-\-L^ where Lx consists of the straight lines
+ °o -\-ifi to a-\-i/3 to a; L2 of the lines a to a—1/3 to + a> — ifi, 8 being
any positive number, and a being any number between 0 and 1.

The integrand is a uniform function of x for 3&x > 0, and the integral
is convergent at infinity. Also the sum of the residues of the integrand
at those singularities which lie inside Lx-\-L2, viz., the points 1, 2, 8, ...,

is —— 2 e~snV 71**, which series is convergent and has -—S(s) for its
27H ft=i 27TI

sum. Thus we have

Now we have

f= - \ e

1 = 8(8).

_«•'.* xKsdx
— ——I5

a2irxt - 1

(1)

(2)

M.

OLl
A+Vfi

-i-p
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Let Mx be the straight line from -f- oo i to ai, together with the
quadrant of the circle | x \ = a from at to a, and let M2 be the reflection
of Mx in the real axis.

e S I i _ ±2im» taken along a part of the circle | x \ = B, inter-
cepted either between Lx and Mlf or between M2 and La, tends to zero as
B tends to infinity. For, if x be any point of either piece of the circle,
we have

lim ,2 ,,-sz1'* x\s
x".e ,±2irX4 = 0.

Hence, in the last two integrals on the right-hand side of (2), we may
deform Lx into Mv and L2 into M2, since we do not thereby pass over
singularities of the integrands. We therefore have, from (1) and (2),

where
Jl

dx
1. i"

(3)

JM2, 0 e •»•

where I means that the integral is taken along the contour G, and that

x is supposed to have the argument $ at the starting point of G.
First consider the integral J^.
The contour Lx may be deformed into the straight line from +oo toa

along the real axis, since the integral is convergent at infinity, and since
we do not pass over singularities of the integrand. Hence

i = — e-sx x^dx

Q
• o

when we write x = (y/s)k.

Since \s > 0, this last integral is convergent at the origin. Hence,
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making a tend to zero, we have

J, = ks-l'x-k f e-vykKS+k-ldy+€{a)
Jo

k k a)* (4)

Next consider J2 and J3.
On the straight portion of Mlt since x starts at + oo / with the argu-

ment ^7r, we have x = teim and xlk = trke*mk, where t is real, and
similarly, on the straight portion of M2, xlk =• tllke~-mk. Hence, dividing
Io and I3 into parts corresponding to the straight and curved parts of the
respective contours, we have

h = I°

h = r*
where I'2 = - [ exp [s? heim"'

" fa -SI1* A» — ^

Jot, jw e x

f

Jo

f—01
,-SX' " ^ A *- J I 1 *
6

Jo, o e — A ;

the last two integrals being taken along arcs of the circle \x\ = a.

It may be shown that Ti + / » ' = e(a). (6)

If x be a point of the contour of Ti or of Is', we have

<Z|a:|A'-\

where K does not depend on a. It follows, since As > 0, that I2' and
I'z tend to zero with a, and we have the result (6).

Returning to (5), let UB now consider I2+J3.

• I shall always use e (x) to mean a function of a; which tends to zero as x tends to its
limit, and shall use the same symbol for all such functions. In the same way to express the
fact that |/(x) | is always less than some finite number, I shall write \f(x) \ < K, and shall
always use the same K.
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We have %+& = 2& f exp [stlkemt2k]Ft"* -£&-
Ja * 1

= 2& f e x p [ - s t ^ e ^ F e ^ -^- +e(a), (7)
Jo ^ •*•

since the last integral is convergent at t = 0, on account of the factor &*.
Galling the integral on the right-hand side of (7) J4, we have, from
(3), (4), (5), (6), (7),

S(s) = kT(k\s+k) s-Us

and therefore, since every term but the last is independent of a,

S(s) = kT(k\s+k) s-^-H/4. (8)

We shall now study the integral I4, where s and X are still supposed
real and positive.

We have exp [-s^V1/2*] = 2 J78}" enin2ktnlk.

Multiplying by emXl.2i^/(e2Trt—1), and integrating term by term from
t = 0 to infinity,* we have

n=o r ( f l ) J 2nt 1

11=0 •H

Now when 3&z > 0, we have

f-l) Jo e2nt — 1

f » jn'fc+X*

Jo e -1

I - ^ — - = — i cosec (tTT-z) f (—^).
Jo e l

£{-njk-\s).

Jo

We therefore have

71 = 0

We now obtain from (8) the result
oo t B\n

(—n/k—Xs). (9)

* The justification of this step offers no special difficulty, either here or elsewhere where
it occurs in the paper. I shall omit the proofs throughout.
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Using the formula

£(*) = 2 (27T)2-1 sin ($«*) V(l-z)£(l-z),

we obtain from (9) the alternative form

S(s) =

(9)'

The results (9) and (9)' have been established on the assumption that
s and A are real and positive. But if s and X are any complex num-
bers such that — {n-\-k\s)/k is not unity [i.e., a singularity of F(l—z)~]
for any value of n from 0 to infinity, the series on the right-hand side
of (9)' is convergent.*

Also it can be shown that the right-hand side of (9)' can be differ-
entiated term by term with respect to s or A, so that this expression is an
analytic function of s and A for all values of s and A, except 5 = 0 and
such pairs of values of s and A as make k (1 — As) zero or a positive
integer.

Now the Dirichlet series defines an analytic function of s and A for
the range of values defined by &S > 0, A being allowed to take any
value. Moreover, we have seen that when s and A are real and positive,
the right-hand side of (9) or of (9)' agrees in value with the Dirichlet series.
It follows that the right-hand side of (9) is the analytic function of s
and A obtained by continuation from the Dirichlet series ; or, since A is
supposed to have a constant value, we may say that for any complex
value of A, the right-hand side of (9) defines, for all values of s except
isolated singularities, the analytic function of s obtained by continuation
from the Dirichlet series, which is defined for &s > 0. This is the first
of our results.

• For sin {£*• (n/fc + \s)} and £ (n/fc + As + 1) are finite for all values of n, while when n
is large | r(n/k + \s + l)/r(n +1) | behaves like «,-£<*-1)/*]n. The series therefore converges like
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2. We shall now establish the third result.
The function P(s, X) is uniform, so also is r(&Xs+&): s~kKs~k means

exp[— (&\s-f&)logs], and the question we have to decide is the relation
between the determinations of logs and the various branches of S(s) as
arising from the primary branch defined by the Dirichlet series for
m.s > o.

The term nAs which occurs in the Dirichlet series means exp(\s log?i),
where log n is real and is a uniform function of X. Then, for a given real
and positive s, the Dirichlet series defines a uniform function of X. Again,
log s being taken real, the right-hand side of (9) defines a uniform func-
tion of X. These two uniform functions agree in value for all real
and positive values of X; they therefore agree for all values of X. We
may restate this result by saying that for any complex X, if s is
real and positive, the Dirichlet series is equal to the right-hand side of
(9), log s being taken real.

If now a cut be made in the s-plane along the negative real axis, and
if S0{s) be the function defined in the cut plane by continuation from the
Dirichlet series, then S0(s) must be the continuation in the cut plane of
the right-hand side of (9). Now in the cut plane log s, which is real
when s is real and positive, must have its principal value, i.e., it
must have the modulus of its imaginary part not greater than w.
This gives the desired determination for s~Us~fc corresponding to the
branch £0(s).

3. The point s = 0 is clearly a singularity of S(s). We have to
show that S (s) has no other finite singularity.

The possible finite singularities other than s = 0 are those values of s
which make — (n/k-\-Xs) equal to 1 for some positive or zero integral
value of n. Suppose then that

the term £(—njk—Xs) then becomes infinite at s = sn.

In the vicinity of this point we have

^(—n/k—Xs) = £ j(X(sn—-s)+l} = — - + a finite expression,
A. (Sn ~~~ S)

( s \n 1
and P(s, X) = 1, , |-a finite expression. (1)

XI (ra+1) s—sNow T(kXs+k) = r O?H-&X(s—sj]
SBB. 2. YOU. 7. NO. 1019.
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has a simple pole at the point s = sn, with the residue

_
k\ T

Hence the general branch of the function k(Tk\s+k)s~kXs-k, in the
vicinity of s = sn, is equal to

( X)" 1
^r, , ..> exp[—(&Xsn+&)(log sn+2pin)] + a finite expression

= Cp7~TT\ exp [n (log Sn+Vpiri)'] — — l ~ a finite expression

= \ T / ' "i -ix t"a finite expression. (2)
\r(n+l) s—sn

 r

Adding (1) and (2) we see that S(s) is finite at s = sn and has no
singularity there.

There is therefore no finite singularity other than s = 0.

4. When X is not zero the singularity at s = 0 is of a complicated
nature, being at once a branch-point and transcendental. If, flOWBVer,

so

\ = 0, in which case the Dirichlet series is 2 exp(—snxlk), we obtain a
simpler expression for S (s).

We have, on writing X = 0 in the formula (9) of § 1,

since f (0) = — ^.
The infinite series on the right-hand side of (1) is an integral function

of s of order kl(k—l).

This result is easily established as follows.

We have C(-nlk) = - 2 (2w) — *-» sin (nir/2fc) r (1 +n/fc) ({1 + njk).

Now f(l + n/fc) = l + «(n), since lira f(l+n/ft) = 1.

Therefore ^ " " 1 * < g H ^ + "/*), (2)
. r (n -i-1) r (w +1)

and |C(-n/fc) , ^ . , (2 i r ) .B* fj l + n/fc) (3)
i r ( n + l ) v ' T(n + 1)
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where (2) holds for all values of n, and (3) for all values of n for which nn/2k differs from every
multiple of it by more than some assigned constant, say rr/ik. There will clearly be an infinity
of values of n satisfying this condition, since 2. »/4fe + ir/2k < *.

Employing Stirling's theorem, we obtain from (2),

r(n + i)

when n is sufficiently great, and from (3),

when n is sufficiently great. From these inequalities it follows, by a well-known result in the

theory of integral functions, that 2( —s)" ^\~n-' -I is of (apparent) order k/(k — l).
i \ii> + 1 )

If k is an integer, the function S(s) is clearly uniform, its only finite
singularity being a pole of order k at the origin. If k is not an integer,
the origin is a branch-point.

5. We shall now study another generalisation of the series Se '" ,
the Dirichlet series

S exp["-
i » = l

where 1 < k < A;x < ... < k^, and where the p's are any complex
numbers. The series defines an analytic function in the half plane deter-
mined by &s > 0.

For this case we obtain the following results.

(i.) The function S (s) is

where Q(s) is an integral function of s of order k/(k—l), xoith the origin
for a simple zero, and where

= kr* z U-r s | n

tfta 2 inside the square brackets being taken over all positive or zero
integral values of alt a2, ..., â , such that

(ii.) S(s) ,Ws s = 0 for its sole finite singularity.
Q 2
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(iii.) If a cut be made along the negative real axis, and if So (s) be the
function which is the continuation of the Dirichlet series in the cut plane,
we have o . . .

where \jsQ(s) = \fs{s), with the restriction that every term sK appearing in
\js{s) is to be interpreted as exp (A log s), log s having its principal value.

(iv.)* If the above expression for \jr (s) be arranged in order of non-
decreasing indices of s, each term of the old expression being retained as
a separate term of the new one, we have

n=l

where 0 < 6X ^ 02 ̂  • • •»

and k |

We suppose s real and positive, and proceed almost exactly as in § 1.
We obtain a result analogous to (5) of that article, but instead of (6) we
have r" i T" I . / \

Thus, for s real and positive,

S0(s) = j exp[-s jaj^+i

where

s) = m £

(1)

u=i i \n-\-L) j 0

and where S0(s) stands for the Dirichlet series.

That Q(s) is an integral function of order kj(k—l) is easily seen as
follows.

The modulus of the coefficient of s" is less than

rf rf p
r(rc+l)J0 e^-1 r(n+l)J0 e«-'-

when n is sufficiently great, by the proof given in § 4.
Hence the apparent order of Q (s) is not greater than kj{k — l).

* This result is required in Part II., where we determine an asymptotio expansion for the
integral function corresponding to the Dirichlet series.
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The further result, less important than the above for our later requirements, that Q (s) is
actually of apparent order fe/(fc-l) may be established in the following way.

After some finite value of t, depending on e, we have

It follows without difficulty that

for an intinite number of values of n.
We have, then, for an infinite number of values of n,

| the coefficient of s" in Q(s) | > JT"1 f (-nfk)/r(n + 1) > n~'- *-» *+•:»,

whence it follows that the apparent order of Q (s) is not less than k/(k — l), and therefore that
it must actually bo fc/(Zc —1).

Returning to (1), consider the integral

[
Jo

If we make the transformation x = (yls)k, it becomes

\[r(s) = ks-k\ expf— £ p,s1-*/fc.yfcfc."Ufc-le-»dy. (2)
Jo L v=i J

Now, since kv > k, this expression defines an analytic function
of s whose sole finite singularity is at s = 0. Therefore, since the
Dirichlet series is equal to \fs(s)—%-\-Q{s) when s is real and positive,
\f^(s)—^-\-Q(s) must be the function obtained by continuation from the
Dirichlet series.

If a cut be made along the negative real axis, since a power sK of s
occurring in (2) means exp (X log s), the logarithm being real, the function
\{so(s)—£+<?(*) obtained by continuation in the cut plane from the
Dirichlet series is \[r(s)—%-\-Q(s), with the restriction that any power
sK occurring in the expression for ^(.s) given by (2) is to mean exp (A logs),
where log s has its principal value.

We must now prove that \Js(s) is given by the form in our result (i.).
We have

(ra-f-l)

5a»=m
I
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Multiplying this expression by ks~kyk~1e~y, and integrating term by
term from y = 0 to oo, a process justifiable without any special difficulty,
we obtain

Ws) = ks~k £["(-)'% S ,*'"£
m=0 L 2 av=m 1 (a •+• 1) . . . 1 ( V

which is the desired form.

The term corresponding to m = 0 is ks~kT(k) or T(k-\-l)s~'\
We have now established the results (i.), (ii.), (iii.); it remains to

consider (iv.).
Let the general term in (8) be the term s~k(cns9") in the expansion

arranged in order of increasing indices. Then

6n = 2 (1 -k/kv) av, 2 kav/kv

and | cn | < K ?£**

Now it is easily shown that F ^ + l ) . . . r(aM-|-l), when a1+a2-|-...+<v
is equal to a given m, is a minimum when

Hav m
a = a2 = . . . = = — .

Then

\cn\ < Km+1 {T(mlfjL + l)\-"r(Zkavlh+k)

< Zm+1exp[|2kajkv+k] log [2kavfkv-\-k\ - {2kav/kv+k\ +K

—Atl—log h*log K)

(on using Stirling's theorem)

< Km+1 exp[(m-0n+&) log(m-d»+A;)—wlogw+Zm]. (4)

Now 7?i-dn = 2 ^ < ^ 2 a F < | - m,

and therefore 6n > K~lm.
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Then, from (4), we have

\cn\ < Ze»exp[(m-0u) logm-w

We have, finally, to prove that

0n> K~l

Now the number of terms in the expansion of

is less than Km?, and all the indices of s which occur are greater than mjKv

Hence the number n of terms of the type s1 which have an
index less than Bn is less than

E KmT <
7 1 = 1

and therefore

6. In the case when /* = 1, the result (i.) for \Js(s) becomes simpler,
and we obtain for the function generated by the Dirichlet series

S(8) =

where Qi{s) is an integral function of order kj(k—l) and where the series
in square brackets is an integral function of the argument sl~k/kl of order

7. We have so far considered Dirichlet series for which | an \ is of
order exp (np) for some value of p less than unity. The simplest type
of function which is of less order than exp (np) for all values of p, how-
ever small, but of greater order than n9 for all values of p, however large,
18

where k is positive. 1

* We have

K"'+1 exp[klog(m-0n + k) + Kvi] < Jf'» + 1 exp (.Km) < jp«+i)

according to our use of the symbol K.
t There exists, of course, an infinity of types, intermediate in order between exp (a") and

exp [̂ log «)1 **J. exp [exp (logn)l-ik*lj] is an example.
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Let us consider, then, the Dirichlet series

J2exp[-5(logn)1+fc].

I shall dwell only on points where the analysis differs in character
from that already employed in other cases.

We start with the integral

f «p [-.(log *)' ^e

in which s is real and positive, log x is supposed to have its principal
value, and where Lx-\-L^ is the contour consisting of the straight lines
+ °° +ij8 to l + a + t / 3 to l + a — </3 to + °° — <A P being any positive
number, and a being any number between 0 and 1.

The integral has the value S(s).
Following the lines of § 1, we obtain

8(8) =

where Ix = — I exp [ ~- s (log x)l+k] dx,

I 2 == f dx

exp[~s(loga;)1+fe] .2ir3;t
a' ,

(1)

exp[—s(\ogx)1+kr\dx.
l + a

Putting s(logx)1+fc = y, we have

Ix =

1 f e-y &y
T+k

(2)

since the integral is convergent at y = 0.
The contours Lv L2 in 72 and I3 may be deformed into Mt and Af2

respectively, where Mx consists of the straight line from 1-f-too to
together with the quadrant of the circle \x—1| = a, from 1+m to
and where M2 is the image of Mx in the real axis.

We divide Ja and I8 into Js, I2 ', Iz, I'z, corresponding to the straight
and curved parts of their respective contours. Then it is easily seen that

(l + a Jr

exp[-5(logx)1+k] V-7L55S = - i + e ( a ) f
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and Is =— l+e{a),

whence Is+Ia = — $+e(a). (3)

The expression l2-\-lA may be transformed as in § 1. Putting
x = l + te**7" on Ml and M"a respectively, we obtain

6~ —m=l ' / l ! L Ja

= £ (-=f [2m |" {log (l + Ufi»)\W jgLJ] +e(a), (4)

all the integrals being convergent at the origin.*
Prom (1), (2), (3), and (4) we now have, when s is real and positive,

and therefore
S(s) = \[s(s)—-

s-VO+k)

(5)where \j,(s) = fe j

[2m

Now, for the coefficient cn of sn in P(s), we have

I ra ij

i ft T
I Ĉ ( I '^^, . I \-̂ *- v ^ ot i I SXLlC*© I 1O& ^X I Co ^ I ^Z

n\ Jo e —1
and, by a slight modification of the proof given in § 5, it may be shown
that P(s) is an integral function of order unity.

The expression for \fs(s) defines an analytic function regular at every
point except s = 0. Then \[r(s)—^-\-P(s), since it agrees in value with
the Dirichlet series when s is real and positive, must be the analytic
function obtained by continuation from the Dirichlet series.

If we expand the term exp[s~1/(1+fc)?/1/(1+fc)] in the expression for \[r($)
in (5), multiply by (l-\-k)~ls~y(l+k)e~yi/~kK1+l'\ and integrate term by term
from y = 0 to co, we obtain

2 ..A e v < f y
M=O 1 {n-\-l) Jo

) f ( l ~ W . (6)

The legitimacy of this step may be established without difficulty.
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'Thus ^(s) is an integral function of the argument s~ll<-1+k) of order

8. It is not difficult to see that the more general Dirichlet series

J 2 e x p [ - s {(logrc)1+fc+ J i ^dogn)1+*>]•],

where k > \ > k2 > ..., and where the />'s are any complex numbers,
gives rise to an analytic function S{s) whose sole finite singularity is
at s = 0.

Proceeding as in the last article, we find that, when s is real and

P°s i t i T O- SW (1)

where P(s) is an integral function of order unity, and

+(8) = J°° exp [ - s |(loga;)1+fc+ 2 p,Qoga01+fcj]<fc.

On putting x = exp[(y/s)1/(1+fc)], the last expression becomes

jr" r M
exp - 2 p ^

Jo L l

which defines an analytic function regular at all pointB except s = 0.
The function S{s), then, is \fr{s)-\-P{s), which has s = 0 for its sole

finite singularity.

9. As an example in which an is near its lower limit of order in n,
let us consider the series

•x.

2 exp [—8 log n log log n].

Here an is the ?i-th zero of an integral function of zero order, but
| an | is of less order in n than exp[(logn)1+A], the case last considered,
for all positive values of k.

We obtain, on the lines previously developed, s being supposed real
and positive,

Sis) = \ exp[— s logx log \ogx]dx-\-I'-\-I",
Je+o

ie+a+ioo t^/£

exp [—slog x log log x] —2^i—7
•+a 6 X

ie+a—ia> id/X

exp [ - s log x log log *] 2,,u 1
e+a e -1

(1)

and where 0 <! a < 3—e.
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Then

S (s) = exp [—s log x log log x] dx

h
exp [—s log x log log x] dx+I' +1".

i

Now each of the last three terms defines a function of 5, regular at
every finite point, and therefore the three terms together define such
a function, i.e., an integral function P(s) of s. The order of this
function may be shown to be unity.

Again, if we put log.r = y/s,
exp[—slog x log log x]dx = exp[—?/(log </ —logs)] exp (y/s) d(y/s)

i Jo

= s~l \ exp [(log s+s"1) if] e-'J
Jo

2
«=o

where T(x) may be shown to be an integral function of infinite order.*
The analytic function ,s~1T(logs-|-s~1) has s = 0 for its sole finite

singularity, and we see that the function S(s) is P(s)+s~1T(logs-f-s~1)
and has s = 0 for its sole finite singularity.

[It may be shown in a somewhat similar manner that the function
CO

S(s), defined by the series 2 exp[—slogw(logpn)&], has s = 0 for its

sole finite singularity, where k > 0, \ogvn stands for log [{log ... [•«]
(p logarithms), and where h is so large that logph > 0.]t

* It may be shown that | T(x) | < exp exp [(1 + «) | x | ] , when \x | is sufficiently great. I t
follows that, for sufficiently large values of \s\,

\s~l T(logs + s - ' ) | < exp(|s|1+«),

and therefore | S (s) | < exp (| s |'+ •).

When | s \ is small, however, we have the inequality,

\ S ( s ) \

when | s | is sufficiently small.

t [Added February 3rd.]
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PART II.

Asijmptotic Expansions.
1. In the present part it will be shown how our knowledge of the

function S(s) enables us, in certain cases, to determine an asymptotic
expansion for the corresponding integral function. We must, however,
for reasons given in the Abstract, first establish the following general
theorem:—

Let F(z) be an analytic function, with a finite number of singularities,
and possessing the following properties :—

(1) In the region B consisting of the whole of the plane on one side
of a straight line L, and including the points of L, a branch F0(z) of
F(z) has no singularities, and for all points of B,

\FQ(z)\<KexV(r"-l+<),

where p is a positive constant greater than unity, r = | z \, and e is any
arbitrary positive number.

(2) In the whole plane, assuming the singularities to be excluded by
small circles of radius S, i j?tg\ i ^ j ^ e Xp (rp+e\

for any arbitrary e.
Let L' be the straight line

parallel to L and at a distance I
from it on the side of L remote from
B, and let B' be the region of the
plane on the same side of L' as B.

Let a system of cuts be made
so as to prevent the point z, when
it is restricted to the region B',
from circumscribing any singu-
larity of F(z), so that F0(z), when
continued over B', generates a
uniform function.

Then, for any arbitrary e,
we shall have for all points of B',

Take any fixed point P of L,
and a line A passing through P
making an angle with L less than
^7r. Let F be a circle with P
as centre including all the sin-
gularities of F(z).
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Let z0 be a point of A lying in R, and such that | zQ | = r0 is large.
Let Gx be the circle with zQ as centre, touching L, and let \r0 be its
radius, so that X1 < 1—K~K* Let C2 be the circle with z0 as centre,
and with radius X2?-0, where Xx < X2 < 1. When \zQ\ is large, the
circle C2 will be exterior to T (since X2 < 1). Let G be the circle with
z0 as centre, touching L'.

Now no point of Gx is exterior to B. Therefore, for all points of Cx,

| F0(z) | < K exp (r"-1+e) < K exp

or, since e is arbitrary, j F0{z) | < K exp (^~1+e).
00

Consequently, if S c«(«—2f0)'
1 be the expansion of F0(z) about the point

71 = 0

zQ, we have, for points z of Cv

| cn(z—z<)n\ < [the maximum modulus of F0{z) on C2]

or |cn | (Vo)'1 < ^ exp (rg"1+e), (1)

where, what is important to notice, K is independent of both n
and r0.

Again, C2 contains no singularity of F(z), and thus lies within the
circle of convergence of Xcn(z—zQ)n. Moreover, we have for points z of C2,

| F0(z) | < K exp (r'+e) < K exp [ ((1+X2) r0 ("+e],

so that | Fo (z) | < K exp

Hence we have

or |C 7 t (X2ro)w |<Zexp(r^) , (2)

where K is independent of both n and ?'o.
From (1) and (2) we now deduce the following result

| cn | < K exp (*$-1+<)(Xiro+J+l)-, (3)

where 2? is independent of both n and r0.

• That is, when rn is large. For the origin is at a fixed distance, independent of ru, from P.
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We have

o~\nl(K.ro)

J
< [e*J**«> exp [ - ^ ~ 1 + e ^

and therefore, provided n ^ rg+*e,

< exp [-^-1+e+Z?*0-1+4'] < K.

Therefore, when n ^ ?*+*e,

exp (>*-l+h(\r0)-
n < KiX^+l+l)-* exp (</*-1+f). (4)

Again,

* exp (rg+^)/ [(X^o+^+1)-'1 exp (^-1+e)

Now, provided ?i > rg+4e, the term —nlog(X2/\) is of higher order in
?•„ than -fiTn/ro-|-rg

+*€, and therefore

exp

We have then, when n >•

[-n log (-^

(X2ro)-n exp (^+ie) < K (X^+l+l)-" exp (^0"
1+e). (5)

If now, in (1), we replace e by %e, and compare with (4), we see that
the inequality (3) holds when n ^ '^+4<r.

Again, replacing e by Je in (2), and comparing with (5), we see that (8)
holds when n > rg+ie.

The inequality (3) holds, then, in any case.
It is now easy to deduce our theorem.
For all points z upon or within the circle C, or \z—zo\ = XirQ-\-l, we

have co
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Now r > (l - ^ ± . * ) r. > ( l - X , - ±) rr

Therefore, since \x < 1,

and \F0(z)\

Since e is arbitrary, we have, then,

|F0(*)i<Zexp(7*-1 + ' ) . (6)

This last inequality, then, holds for all points z which can be internal
to a circle C.

Again, if we take a line A' through P, the image of A in L, the in-
equality (6) will hold for all points which can be internal to a circle C,
which has its centre at a sufficiently remote point of A' lying in B, and
which touches L \

Now every point of the strip between L and L', which is exterior to
some circle 1\ with its centre at P, can be interior to a circle G or C :
and therefore (6) holds for all points of the strip exterior to I\ .

But for all points of rit when the singularities of F(z) are excluded by
small circles, the inequality (6) obviously holds, and it holds, by hypothesis,
within the region B. It must therefore hold within the region B'.

2. When, from our knowledge of the function S (s), we attempt to
determine an asymptotic expansion for logFC?), the problem is greatly
simplified if S{s) is known to be a uniform function of s, for in this event
we can employ the ordinary theory of residues, which is inapplicable when
S(s) is multiform.

Now, if we refer to the various cases of Dirichlet series, considered in
Part L, it will be seen that the only case in which S{s) is found to be a
uniform function occurs when an = exp (>i1/fc), where k is an integer.

We shall, then, first consider this case. The following result will be
established.

Let k be an integer not less than'd, and let S{s) be the function derived
CO

from the series 2 exp( — sn1'1').
i

LetF(z)= II [l+s/exp(/B»1A)], where &p > 0.

Then, if S be a 'positive number as small as we please, and if .: be
exterior to the region between the spirals defined by

z = — exp {px + 8i),
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where x takes all real values from — oo to oo, toe have the asymptotic
expansion,

+ 2 C ( 2 2 ' - 1 l ) 2 ' l J 5

- * log *-/>?(-1/*)+ 2 {-r-\8{ J""'Z-*+JN,
m=l

where K = \k or \(k-\-l) according as k is even or odd, the B's are
Bernoulli's numbers, and

lim | JNzN | = 0.

It is clear that no asymptotic expansion can be valid over the whole
extent of any region containing zeros of F(z).

Now the zeros, which are of the form —exp(/tml-;fc), lie on the equi-
angular spiral z = — exp (px), where x takes all real values. Thus the
two spirals z = — exp (px + Si) [x = — oo to oo ], include between them
all the zeros of F(z).

In the remaining part B of the plane log z is an uniform function, for
z cannot describe a path in B, starting from and returning to the same
point, and circumscribing the origin. We fix the determination of log z
by saying that logs is to be zero at z = 1, and we then interpret zK to
mean exp (\ log z).

Let us determine the limits of the argument of z for a given modulus r,
when z is restricted to the region B.

Let z = — exp (px') be the point of the circle | z \ = r for which x is
real. Then the circle meets the bounding spirals in the points
—exp (px' + Si). The determination of log z at — exp (px'+Si) maybe
found by making z describe a path in B from the point z = 1 to some
point of the spiral z = — exp (px -\-8i), and then making z follow this
spiral up to the point in question.

We thus obtain log z = 7n-\-px'-\-Si.

Similarly, by making z describe a path in B from 0 = 1 to a point of
the spiral z = exp (px—Si), we obtain for the point expos'—Si),t

log z = 7ri-\-px'—Si.

It is therefore seen that for any point z of B we must have

log z = px+<j>i,

where x is real, and where | <j>\ < IT—S.
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We now show that, if | ftps | < K, and if z be any point of B, and if
the points 0, + 1 , ± 2 , ... be excluded by small circles from the range of s,

(1)
8111 7TS

where K is independent of s, though not of z.

Let ps = P+U, so that \/3\<K. Then

We have also | sin ITS | > K'1 exp | |

Therefore, since | <j>\ < ir—<5,

A r exp(- | s | / i i0 .
sin 7rs

Now suppose that z is less than unity. We then have

log F(z)= S

— y (-)1-1

exp

and therefore, since this double aeries is a uniformly convergent series of
functions, each of which is expansible in a uniformly convergent power

series,
= 2 ( -V- '^

= - 2 (- (2)

This series must converge when \z \ < 1.
Now consider the integral

If
2<J

z'ds
—:

ssin-n-s
where Lj+L.2 is the contour +oo+</3 to a+ifi to a—1/8 to +ao—1/3,
where /3 is positive, and 0 < a < 1. The integrand is a uniform func-
tion of s inside the contour; also the integral is convergent at infinity,
since | 2 | < 1 , and since S(ps) is finite on the contour. The singu-

SBR. 2. VOL. 7. NO. 1020. R
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larities of the integrand are the points 1, 2, 8, ..., and the Bum of the
residues of the integrand at these points is

i-\

This series is convergent and has the sum -— log F(z). Hence, when z < 1,

(3)
s amirs

Let M be the line &/>s = constant passing through the point a, and
let Nlt N2 be the parts of the circle 151 = B intercepted between M and
Lx, L2 respectively. Then on Nx and N2. 3fyos > 3H/)a > I/if, and
therefore

\.S(Ps)\<I(.

Now, if z be a point within the unit circle which is also a point of the
region R, we have, as we have seen above,

K
Sin 7T6"

where /3 = HUsp and z = exp (px-\-<f>i).

Now /3 > 0, and since iftp > 0 and U | < 1, we have a < 0; therefore

{5(71—fS)«!- |]/exp[|3ll(7rs<)|]
sin 7TS

exp

On putting s = Rel9, we therefore have

If Sips) ^.Ch 4- If| J W l s s m 7rs I J .

which tends to zero as i2 tends to infinity.*

It follows from this last result that we may deform the contour
of equation (3) into M, since we pass over no singularities of the integrand,

• For it is less thau

xfWexp( -SR siue)de < A'f'exp ( - SRe-2\de <Kf exp(-<f>) ^ |
Jn Jo \ IT I Jo ioti
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and we have, when z is a point of B within the unit circle,

logjF(*)=-.l[
2/ )M S s m 7rs

(4)

We shall now show that this equation holds when z is any point of the
region B. For any such z, we have, for all points s of the contour M,

\s-lS(ps)\<K,

since &ps = &/>a > 0 ;

and, by the result (1),

z*

sm xs
<Kexv(-\s\/K).

It follows immediately that the integral in (4) is convergent. It can
also be shown without difficulty that the integral is differentiate with
respect to z, and therefore that it defines an analytic function of z in the
region B. This function agrees in value with log F(z) in the part of B
within the unit circle; it must therefore represent log F(z) over the whole
region B.

Let M' be the line B/os = constant passing through the point
— (l+l)+a. Now, when 33iy > a,

\S{ij)\< K < KexV(\y\^k-^+%

Also, if y = 0 be excluded by a small circle from the range of y, we have

for all values of y, , c^) | < # exP [| >, |/.(->+<],

since, by the results of I., § 4, S(y) is the sum of r(fc-fl) ?Tfc, and an
integral function of y of order kfik — l). It therefore follows, by the
theorem of II., § 1, that when

we have \S(y)\ < K exp (| y\u'-')+t).

Hence, within and upon the boundaries of the strip of the s-plane between
M and M', the origin being excluded by a small circle, we have

\S(ps)\<Kexv(\Ps\ll(k-i)+t).

Now, for all points of the strip, we have, by (1),

zs

<
s sin 7T61

R 2
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Since k ^ 8, we have l/(k—1) < 1, and we can choose e so that
l/(k—l)+e < 1. Then, within the strip,

Sips)
s sin ITS

< K exp [-1 s \IK+K | ps

!

zsds
S(PS) —•. , taken along M', is con-

5 Sin 7TS °

vergent, and further, that the same integral taken along a straight line
connecting M and M' tends to zero as the position of line tends to infinity.
We have then

1 f a/ x zs ds i 1 f
— 7T SO^)—: hs -

2,t JM S s i n TTS 2t j M '
S sin TTS

r i 0s

= — 27n the sum of the residues of — — S (ps) —: at the
L 2t s sin xs

singularities between M and M' . (5)

The singularities are at the points 0, — 1, — 2, ..., — I. The residue of
2* .<? s in 7rs

Now consider the residue at s = 0. Near this point we have, using the
form of Sips) given in § 4, Part I.,

2i s sin 7rs 2(7r sin 7rs 27n S sin 7rs

2i s sin 7rs

The residues of the second and third terms give

(7)
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As regards the first term, we have, when | s | is small,

1 + Z A%ns ,

wnere

Hence the residue of the first term

sin TTS n=\

__ 2(22u-1-l)7r2w
T>

•"•In — n i -O2«.

(8)

where /c is £& or £(&+!), according as k is even or odd.
We now have from (4), (5), (6), (7), and (8),

log FW = -•£-

2t

s sin

sin ITS

where T is the expansion given at the beginning of the article, with N re-
placed by I, and with the term J# omitted.

In order to establish our result, we have now only to show that

lim S{pS) :
M' S S i nS i n 7TS

= 0.

Let z = exp (px-

where a; is real, and where t is real when s is a point of M'.

Then lim (

J
- o

exp exp
Z ^

TTIS) |

n
: lim if I
'|«|-*0B J - l

; lim K\z\
\z\—?•«>

since I d> I -< TT—
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Now the integral last written is convergent, and it is independent of z.
Also, since a < 1,

lim U|" 1 + a = 0.

We therefore have

lim If
*!->» I Jar * sin ITS

= 0.

3. In the last article we excluded a spiral strip of the 0-plane, contain-
ing the zeros of F{z), from the range of the variable z, (In the particular
case when p is real, the strip becomes the angle of the plane between
two lines making an arbitrarily small angle 8 with the negative real axis.)
The spiral region is, as a matter of fact, unnecessarily extensive, and we
shall show that the expansion of the last article is valid when the excluded
region is contracted upon the curve of zeros. The expansion, in fact,
is valid when the excluded region has for its boundaries (outside the
unit circle) the curves defined by

z - exp[/>£ + &.ar<fc-2>+s],

where x takes all values from 1 to +oo and where S is an arbitrarily
small positive number. These curves start at the points z — exp (p +&);
the boundaries of the region from 0 to these points may be taken to be
the spirals z = exp ipx±8i).*

If z be any point exterior to this region, | z | being supposed greater
than unity, we have

z = exp(pz+i0),

where ir~\ <j> | > Sx~^-^+s > K~l (log r)-(fc~2)+8.

Since TT—\<}>\ is greater than a positive number independent of s, we
have, as in the last article,

2t JM' S sin 7rs

and we have only to prove that

ds
lim A Sips)-A

Jjf' S Sll
= 0.

* The strip between these spirals contains no zeros of F(z), but it must be excluded
from the range of z in order to secure the proper determination of log z, which is supposed
zero at z = 1.
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Now we still have the result (9) of the last article, viz.,

i- I (" i+* a/ \ ds
lim 1 zh+i S{ps) — :

!—>«> I JM> S sin ITS

r
< lim Kr~1+a exp||&<bis 1 exp[K t *<fc-1>+e"| expf

lim Kr~1+a

since

exp[Z|^|1 / ( f c-1)+<

7T- |0 | > K-1 (log•/•)-<'*-

Now, when \t\ > Xlf |&ts| > -K" x\ ̂ |- Also the integral last written,
when taken between the limits t = + Kv is less than a K independent
of z, and this K when multiplied by /-~1+a has zero as a limit when >•
is made innnite. We therefore have

lim
w s sm TTS

lim Kr~1+a L

l / [ l - ( l /&-l+«)] .

Il=0

The innnite series is an integral function of the argument

of order

Therefore

lim I ( zl+*S(ps) -4^—r-*°° \)M' * sin irs

< lim Kr~l+a

Now e and e' may be so chosen that

(k-2—S){ll\l-(l/k-l+e)}+e'] < 1-1/K (since A; > 2).
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Then the right-hand side of (2) is less than or equal to

lim Kr~l+a expfA'dogr)1"1^] = 0,
r—>oo

and the desired result is established.*

4. If k is not an integer S(ps) is no longer a uniform function,
and the ordinary theory of residues cannot be applied. We shall now
consider this case, and shall investigate the more general form

F(z) = fi. [l+*/exp |p (nl'k+ £ Pvn
1/K) ) ] ,

where k^ > A;M_i > ... > kx > k > 2, plt p2, ... are real, and where we
suppose, for simplicity, that p is real and, of course, positive.

We obtain the following result:—

If the angle of the z-plane contained between the hoo straight lines
which make an arbitrarily small angle 8 with the negative real axis
be excluded front the range of the variable z, we have the asymptotic
expansion

y pun oiu \n> — vn) TV

»=0 7T \ p )

ra2m-l _ -t \ _2m

00

where the B's are Bernoulli's numbers and s~k 2 cns
e" is the expansion

for \fr{s) given in I., § 5. The infinite series is to be arranged in
order of increasing indices of I/logs, and when we stop at any term,
of order (log z)~v say, we have lim | B (log z)v \ = 0, where B is the
remainder.

Let B denote the region of the s-plane defined by &s ^ — I (where
I is any positive number), with the origin excluded by a small circle,
and with a cut made along the negative real axis from this circle to the
boundary &s = — I.

* The regions over which most other known asymptotic expansions, e.g., that of Barnes's
function Ptf(*), are valid, may be extended in the same way.
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As in I., § 5, let S0(ps) denote the function, uniform in B, which is
derived by continuation over B from the Dirichlet series

2 exp — ps \nllk-\- 2 pvti}
lkv [

denned for &s > 0. We have, by I., § 5, for all points s, and for all
branches of S(ps),

S(ps) = \]s(ps)-\-Q(ps), (1)

where Q(x) is an integral function of x of order k/(k—l),

and yj,(ps) = (Ps)-k[T(k+l)+ 2 c

where 6n >K~ (2)

We shall show tha t for all points of B we have
£] )

From (2) we have, for all values of s exterior to the small circle
excluding the origin,

| < K+K 2 [KlP\s\ldj*. (-i)
7 1 = 1

Let m be the greatest value of n such that

KlP\s\ldn>e-\

Now [-K"i/o|5|/0]fl has its maximum value for 6 > 0 when 0 = K1p\s\fe,
and the value then is exp [.&!/> |s|/e]. Hence, from (4),

\yj,(ps)\ < K(m+1) exV[KlP\s\le]+ 2
1 W = 7ll

< Z | s^+1 exp [ Z | s | ]+ ^ exp [ - Z - 1 n^+1>]

<i i :exp[ | s | 1 + ' ] ,* (5)

since the infinite series is convergent and independent of \s\.

* For the method of determining inequalities such as the above by finding the maximum
term of the series, see Bore], Lemons sur Us series & lermes iwsitifs, p. 69.
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Now let B' be the region denned by &s > 1. When s is real and
s > 1, we have by § 5, Part L,

= j exp[-ps |^fe+ Jx p , ^ j ] dx.

Now the right-hand side defines an analytic function of s, uniform in
the region B'. This function, then, must be ^0(ps). Hence, within JR',

IIMP«)I <

< K (since &/>s > p). (5)'

Again, since Q{s) is an integral function of order k/ik—l), we have,
for all values of s, . , r , n „ _

| Q ( p s ) | < JSrexp[|«|W-1>+']. (6)

Also, within i?', we have

< Z (since i£t/DS > /o),

and therefore | Q (ps) | < | -So ips) \ + \ \p-0 (ps) \

< K. (6)'

Now we see, from (5) and (5)', that we may apply the theorem of
II., § 1, in the case of the function \Jso(ps), and we therefore have, for all

Similarly, by (6) and (6)', we may apply the same theorem in the case
of Q{ps), and we have, within B,

These are the desired results (3).
Now suppose that | a rgz | < TT—S, SO that z is exterior to the angle

of our theorem. Then proceeding exactly as in § 2, we obtain

= - - c T 80{p8)
s sin ITS
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where M is the line 3&s = I—a and 0 < a < 1,

= I1+I9,

If 2s

where Jx = — — \jso(ps) —7

and J2 = - - 1 [ Q(ps)-A
2i Jjf S SI

simrs

z°ds
amirs

(7)

Let M' be the line fts = — 1+a.
For all points s within or upon
the boundaries of the strip between
M and M', and outside a small circle
excluding the origin, we have

Q(Ps)

M'i

- 1 + a

s sin TTS

1 - a 1

and therefore, since e may be chosen so that l/{k—l)+e < 1>

exists, and, since the integrand is uniform, is equal to

r 1 zs

— 27T* the sum of the residues of — -77- Q(PS) —:
L 2i s sin ITS

at the singularities between M and M' \.

Now the only singularity within the strip is at s = 0 ; also we have
by L, § 5,

Then we have

i ( [ _ f

and

where

(8)

1 f n /
2< JM * s i n 7T.S
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It may be shown, on tha lines of § 8, that

lim \Jz-i+a+t\ = 0,

and therefore that, for any value of Nlt

lim = 0. (8)'

We have now to consider Iv

Let 1—yS be a positive number
less than I—a. Let Mlf M2 be the
straight lines from — l + 0 + o o * to
-1+/3 and - 1 + 0 to - l + 0 - » t
respectively, and let TQ be the circle
| s | = l — 0 , starting from —1+0
and described clockwise. Now
upon and within the contours
consisting of Mlt TQ, Af2, and M,
we have

A

and :
s sm 7rs

<KexV[-\s\IK].

It follows that the integral

z" ds
|M+(-Af2)+(-r0)+(-Af,) ' ' ' ' S Sin 7TS

exists.*
Since the integrand has no singularities in the region between M and

ilfi+To+il/j), and since the contour of integration may be considered
closed by two lines crossing from M to Mz and from M1 to M, the integrals
along which lines tend to zero as the lines are taken more and more
distant from the origin, the above integral must have the value zmo.
Hence

I f . , s 2s ds)ips)
s sin ITS

= - • £ V-oW
2s ds

s sin 7T
-If

2t jMt, -ir

s sm -ITS

sm

* I use — L to denote the contour L described in the reverse direction.
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Now upon Mx and ilf2, if s = — (1—J8)+T«,

|<] < K exp [ | r | e ] ,

sin 7rs
|rv*|

exp[—
(* = re", 16 \< TT-8)

where all the K's are independent of z as well as of s. Therefore

and a similar inequality holds for the integral along

Hence

where

and therefore lim ! J'(\oaz)Nl = 0.

lim \J'z-x+fi\ < K,

(9)

(9)'

5. From (7), (8), (8)', (9), and (9)' we now have

log F(z) = —£log2—p [^(—l/A;)+S/ov^(-

where lim j J" (log ^)^1 j = 0

zfds
and U(z) = - ~

s sin 7T5

It remains, then, to consider the integral U(z).
We shall prove the following preliminary results.
For all positive values of X, token \z\ > 1,

, ^ds
S S i n 7TS

where K is independent of both z and X.
For any value of K, positive or negative,

f . . . z'ds

sin

(1)

(2)

(3)
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where Ain is the coefficient of t2n in the expansion of irt/sin irt, and where,
for all values of Nlt

lim UsAlogz)-*-1^] = 0.

We suppose that r = \z\ > exp[l/(l —0)], so that (1—/3)logr > 1.
Let s = xl\ogz, and let 0 = arg(log#). Since l o g r > 0 , we have
I <f> I < ^TT. Let TQ be the contour in the x-plane corresponding to To

in the s-plane, so that T'o is a circle described clockwise, starting from
and returning to the point —(1— Ŝ) log ^. Let T1 be an x contour,
described clockwise, starting from and returning to — (1 —yS) log z and
circumscribing the origin, which is such that at all points of Tt &x < a
constant h and | x | > a constant hf, which lies between the parallels dis-
tant 7r from the real axis, and whose length is less than 2?r | log 01.
Let T2 be the straight line from —-oo — (1— /3) log 2 to — (1—/3)log2,
parallel to the real axis, and let T3 be T2 described in the reverse direction.

(hp) logz

Consider the integral | xKexdx | . On Tx we have

£ = 3&z < h, and | Ix \ < ir.

Therefore, for all points x of Tx we have

I zV I < K?e*,

where K is independent of g and X. Now | V has its maximum modulus
for g < //, either when g = h or when g = — X. The value in the second
case is (X/e)\ Hence, on Tlt we have

and therefore 1 I xKexdx \ < K (X/e)x | log z |, (4)

since the length of Ta is less than 2ir | log z \.
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Now for all points x of Tlt we clearly have

cosec

since \x\ is greater than some constant h', and is not greater than
(1—/3) | log^|. We therefore have

f
Jr,

K~ cosec log z V e I

and therefore, putting x = s log z,

I s\ ^ds j

rj s sin ITS

the first of our results.

Turning to the second result, we shall show that

I x-K-*+2n<?dx = — 2t sin KirT(Zn—K— 1)+J(n, K), (5)
jT,,w+<f>

where lim | J(n, K)(\ogz)p\ = 0,

for all values of p.

The contour T2-\-Tx-\-T9 starts from and returns to — oo — (1— (3) log z,
and circumscribes the origin. Hence, by a well known result in the
theory of the gamma-function,

1 x~K~2+2nexdx = — 2i sin (—K—1 + 2M.) x . T(In—K—1)

= — 2t sin KIT.T(27i—K— 1). (5\

Now, if x be any point of T2 or T3, x = — ̂ —(1-/8) log z, where
i^O, and hence

[since | a; /8) log r

< r-G-w | (1-/8) log

whence it easily follows that

lim (\ogzy \\ = 0. (5)2

From (5)! and (5)a, we obtain (5).
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When \t\ < 1, we have

^ = 1 + 2 A2ni*
n,

where A2n = 2

The radius of convergence of the series is 1, and we have

and therefore, when \t | ̂  1— /3,
00 00

where K is independent of t. Now, for all points x of 2\, we have

\x
therefore, by (6),

/ irx \ N*
cosec T—- = 1 + 2

where | Av^iz) I < a K independent of x and z. Hence

e*x " " ( 1 cosec h dx

Tl Vlog 0/ Mog z)

2

+ [
Jr,

+ 2 [-2tsin^7rr(2n-K-l)^2n(log^)-2'l+J'(?i,<)]+J"'(iVi.O, (7)
7 1 = 1

where J'(Nlt K) is the integral last written. Now

lim \{\ogz)2^J'(NltK)\ < Urn # | l o g s | - 2 [ \x™>-*e*dx\ = 0,

and therefore, by (5),

= - 2 t sin<'n-r(-^-l)+J'(0, K)

by means of (4), provided that we suppose 2^—K > 0. Hence, since

lim |(log*FJ(ra, JC)| = 0,
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for all values of p , we have

lim
2 - > «

(log z)™> [V(0, K) + 2^ J(n, K)+J' (fflf *)] | = 0. (8)

C tf ds
Now if in the integral s~K —: we make the transformation

J To, ir S S i l l 7TS

s = z/log 2, we obtain the integral on the left-hand side of (7), multiplied
by 7r (logz)"*"1. Then, from (7) and (8), we obtain at once the desired
result (8).

Now let us consider U (z). We have

2t Jr0 * siS i n TTft

S S i n 7TS Ln=Q

where we have c0 = T(k-\-l), 6Q = 0.

Since the infinite series is uniformly convergent,

f —.—-d,= - 2 ^

»i=o 2< J:
^ (9)

r0 «sin-n-s

where Ar
2 is any integer such that 0^,,—k > e, and where

J(N2) = - 2 ^ — • ^ -
n=iNs+i 2t J r o s s in7rs

Now the modulus of the coefficient of c»/)'""fc in the last series is less

than K(\ogz)2+k-0» i^j^) "~\ by (2). Hence

\j(N2)\<K\\ogz\2+fc £ \cn\p**-k|log^|-e»(efl.
M=.V2 + 1

(since 0n—k/e > 1)

< Z | l o g ^ | 2 + f c 2 (K/0n)
6" {log, z\

SRR. 2. VOL. 7. NO. 1021.
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by the inequality (iv.) of I., § 5,

00 r K ~~\e
<K\\ogz\*+k 2 TT^-

' w,+iL|log«|J

< Z | log *!'+*-•*

\e»

<K\\ogz\2+k-9*.-i £ e-e»+9^ (provided K<e\\ogz \)

<K\\ogz\°-+k-°x,^ (10)

2e~6n being convergent, since 0n > Z"1?i1(|x+1).
—: ds on the right-hand side of

T0 s sin ITS

(9) by its equivalent given by (3), in which K is to be replaced by k—6n.
we obtain

(P
™=i

+ 2 t-9uJsl+J(N^t (11)
71 = 0

where we shall have

Urn (log *)* [ J o t-^Jifi+c^ W ] | = 0

for any given p, provided Ni and N2 are chosen sufficiently large.
Moreover, all terms in the finite sum in (11) which are of degree in
log z less than — p may be absorbed into the remainder term, for
they clearly satisfy an inequality similar to that last written. If
we now substitute this asymptotic expansion for U(z) in (1), we obtain
the expansion for log F(z) stated at the beginning of the last article,
and it is clear that if we take any number of terms of the expansion
arranged in order of increasing indices of (log z)~l, if the last term be of
order (log £)"'', we shall have

lim
i -1 * • »

where B is the remainder.
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6. The expansion found for log F(z) has been proved for the case when
k > 2, and when p, pit p.2, ... are real. It may be extended to the case
when p is complex, and pv p2, ... are real, the variable z being excluded
from a spiral strip, as in § 2, instead of an angle of the plane; the
modified argument follows the lines of § 8. If, however, we suppose
Pi> pa. ••• complex, considerable difficulties appear to arise. And when we
suppose k < 2, our line of proof breaks down, because we cannot then
prove |S(/os)j < i fexp[e |*|] in the region %s> — l It is almost
certain, indeed, that this inequality does not then hold. The expansion,
as a matter of fact, is none the less valid.*

7. In the case of the function

F{z) = n {1 +s/exp [p (nx-*+pi»l/tl)]((,

we have p2 = pa = ... = 0,

and (I., § 6)

2
n=o u=i

Then we have the expansion

\ogF(z) = -P [ f t -

kp y
ir \ p / «=o

{na-k/kj — k—l]
+ 2 2 T \2m+n(l-klk, -k-l\(Z

 o , ) x Bim{\ogz)-2r" \.

Iii the case px = 0, in which

F(z)= II ^ ' ]

See the Abstract, p. 21S.
S 2



2B0 MR. .T. E. LITTLEWOOD [NOV. 12,

the expansion may be written

8. It is not possible to apply the foregoing methods to determine an
asymptotic expansion for the functions F(z) whose n-th zero is of less
order than exp (nk) for all values of k. Consider, for example, the function

F(z) =
>r = 2

In this case ,9 (s) contains the terms

The term .s-"(1+;) gives rise to terms in log F(z) of the type

"*•] (log *)"[ 2 CM

the series being an asymptotic one. An infinite series of such series
cannot be combined into an asymptotic expansion. Moreover, if

lim I alle~u'\ = 0,

for all values of e, however small, it may be shown from arithmetic con-
siderations that the maximum positive value of log | II (l-|-.?/a,t) | is of
higher order in z than (log;?)'', for all values of p, so that if logF(z)
possesses an expansion in terms of log z, it must involve an integral
function of logs.

[We obtain, in fact, by the general theoiy referred to in the Abstract,
for the function
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7T2

bp (1 -+- k) \ p )

p I

+lower terms .
J

The terms within square brackets may be found as far as any numerically
assigned index of I/log z, and give an asymptotic though probably divergent
expansion. But this expansion is of a different character from those we
have been considering, as it involves the factor exp

It may be noted, in conclusion, that it is possible to find asymptotic
expansions for certain forms of F(z) whose zeros are repeated, and whose
n-th zeros are of the order exp (nlk), k > 1. The function

is an example. + Its Dirichlet series defines the function

n=o

as is seen by replacing X.s by X in the result of I., § 1. We may now
proceed as in II., § 2, and if k\+k is an integer and k > 2, we obtain an
asymptotic expansion for log F(z) analogous to that of that article.

[I take this opportunity of correcting an error in a proof in my paper
" On the Asymptotic Approximation to Integral Functions of Zero Order,"
which appeared in these Proceedings, Ser. 2, Vol. 5, pp. 861-410.

From p. 880, 1. 5, to p. 381, 1. 8, should be replaced by the following
argument.

We have < — — < \\.
2>/ n Ztj n

Hence 1—expl — > — (-
r \ %\ n / K \2>; n

* Added February 8th, 1909.
f The rank of the zero —exp(pn' *) is not n but 1 + (P f 2X + ... 4-n—1»). The n-th zero

is, however, of the order exp [w' <*x'')].
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where if is a constant (depending on X) which is independent of n, for
(l—e~x)fx lies between finite limits when x < £X. Hence, from (4),

U+J J < /U, n )<s-l'
Then, by a slight modification of 1. 14, p. 380, to 1. 3, p. 381, we
o b t a i n \ \ < K

This result then leads as in the text to (6), provided Kl is suitably
chosen. A similar modification must be made in the case of <r8, p. 383,
11. 1-8.]


