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Introduction.

Ir an integral function F(z), of finite or zero order, has —a,, —as, -..
for its sequence of zeros, the Dirichlet series §1 a;° converges when the
n=

real part of s is greater than some finite number %, not less than zero,
and, for this range of values of s, defines an analytic function of s. If
the sequence a,, @y, ... is perfectly general, the line s = &k is a barrier
of essential singularities of the function. If, however, a, is an analytic
function of =, it will usually happen that the function defined by the
Dirichlet series can be continued across the line 3 s = k, and that it gives
rise to an analytic function S(s), whose finite singularities are isolated
points. M. Mellin has shown that when this is the case there is an
intimate relation between the function S(s) and the asymptotic expansion
of the function log F(2).*

The typical function of finite non-zero order has —=* for itsn-th zero.
The Dirichlet series £n~"° then leads to Riemann’s function {(ps), and
the properties of this function and its generalisations play an important
part in the theory of Dirichlet series and asymptotic: expansions of func-
tions of finite order.t

In the integral functions of zero order, we have, for all values of p,
| @| > n* when n is sufficiently great. There is no single functional
form for a, that is typical in the sense in which »* is typical in the case
of finite non-zero order, but an unlimited number of such forms. Thus,
starting from ¢", we have among possible forms of .,

e, exp (¢¥), expexp(e”), ..., (k>1, p>0),

* Acta Soc. Sci. Fenn., T. xx1x., No. 4 (1900). ‘¢ Ein Formel fiir den Logarithmus trans-
cendenter Funktionen von endlichem Geschlecht '’ [Reprinted Acta Math., T. xxviiL. (1904)].
t E. W. Barnes, Proc. London Math. Soc., Ser. 2, Vol. 8, p. 278.
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in ascending order in 7, and

e, exp[(logm)'**], exp[logn (loglognyF], exp [logn (logs®)], ..,

. k<1, p>0),
in descending order.

The first of these two classes may be disposed of very briefly.

M. Fabry* has shown that, if 20,2° be a power series of unit radius of
convergence, and if (c,,1—~c,) > ®©, the unit circle is a barrier of essential
singularities of the function. It follows, on taking z = ¢~*, that the
function Xb,e™* has the line ®s =0 for a barrier. Now, although
M. Fabry’s result assumes the ¢’s to be integers, we must expect that
in all cases when (c,41—c¢,) = ®©, Zb,e™*, and in particular T,
has Bs =0 for a barrier, for, as we have said above, the general
Dirichlet series has Bs =k for a barrier.

It will follow that, if @, be any function of » which increases more
rapidly than e** for all values of p, we must expect the Dirichlet series
Za;*® to have s = 0 for a barrier, and the function S(s) to exist only
where the Dirichlet series converges. The problem of finding the analytic
continuation of the series then does not exist.

In this case, M. Mellin's method for determining an asymptotic expan-
sion for logII (1+42/a,) cannot be applied, for it involves the integral
S S ) zf ds ’

s sin s
thig integral does not exist.

It is interesting to notice that the functions of this same class
exhibit a certain peculiarity, viz., their asymptotic approximation cannot
be effected in terms of the ordinary analytic functions of analysis. I
have shown in a former papert that we can find, from arithmetical con-
siderations, closely approximate asymptotic expressions for the functions
in question, and that these expressions involve other than elementary
analytic functions.

It is clear, then, that for this class of functions there can be no theory
analogous to that developed by M. Mellin and Dr. Barnes for the functions
of finite order.

It is otherwise with the functions for which a, is of our second class,

taken along the line s = — !, and in the present case

* Annales de ' Ecole Normale, Oct., 1896.

t Proc. London Math. Soc., Ser. 2, Vol. 5, p. 361, < On the Asymptotic Approximation to
Integral Functions of Zero Order.”
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t.e., for which a, is of less order than e", and the present paper is occupied
with the problem of determining the functions S(s) which are the con-
tinuations of the Dirichlet series with certain forms of a, of this class,
and with the problem of applying, on the lines of M. Mellin’s method,
the knowledge of these functions S (s) to the determination of asymptotic
expansions for the corresponding integral functions II(1+42/a,).

Tt will be observed that we have included the form @, = ¢" in neither
of our two classes. This form occupies & limiting position between these
classes, and, as might perhaps be expected from this fact, the integral
fanction II(1+4-2/e") exhibits a number of exceptional characteristics.

The Dirichlet series Ze~™ is the simplest of all such series, and the
function S(s), viz., e~°/{1—e™°), is expressible in terms of elementary
functions. The finite singularities of S(s) are seen to be isolated, but they
are infinite in number.

M. Mellin* has given an asymptotic expansion of log IT(14z/e"), but
the finite term in the expansion occurs in the form of an infinite series.*
It is also noteworthy that this expansion is not merely asymptotic,
but exact, the infinite series in descending powers of z being conver-
gent.

Thus the properties of the function II(14-z/e") are quite unlike those
of II(1 +z/e"k) (k > 1) (which belongs to our first class), and we shall see
that they also bear little resemblance to the properties of the function

142/ k< 1),
of our second class.

Abstract.}

The simplest function of our second class is that for which we have
a, = exp (on'*), where ®p >0 (k > 1). Two generalised forms of this
function are considered, corresponding to a. = exp (on**)n~*, and
exp [p (0 *+p ntfi4- ...+ p,n'"*)] respectively, where A and p may be
complex (subject to the condition BRp > 0), but where %, %y, ..., py, pg, ---
are restricted to be real, and where we have k. > k. These forms of a,

* Loc. cit.

t This series exhibits peculiarities analogous to those mentioned in connexion with our
first class of functions. It may be remarked that if the integral function be taken to be
1 (1 +2e~"+), where w is complex, the series in question no longer remains finite for all values
of 2. Cf. my paper cited above, §12.

t The Abstract was added at the request of the Council.
P2
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give rise to the Dirichlet series,

(L) 21 exp (—sn*¥) n*, and (IL) 2 exp[—s @ 4p a4, +pun ],
respectively. (The factor p is omitted, as we do not thereby impair the
generality of the series) These series converge when /s> 0, and
define analytic functions for this range of values of s. Analytic functions
S (s) are found, which represent the values, for any value of s, obtained
by the process of continuation from the Dirichlet series.

For the first case we have

S(s) = kI‘(k)\s+k) s""“""‘+P(s, A), o))
, (= _
where P(s,\) = 2 0 I‘(n+1) ¢ (—nfk—NXs).

In the second case,
=y 6)—3+Q6), (2

where Q(s) 1s an integral function of (apparent) order kj(k—1), with the
origin for a svmple zero, and where

é&rézdﬂr(éﬁmMA%>ﬁmmw}}
8)

the Z inside the square brackets being taken over all positive or zero
integral values ay, ag, ..., a, such that ay+ag+...+a, = m.

\0 (8) = ks=* E [( ' za =m {

The method by which the first result is obtained (I., § 1) may be
sketched as follows. We first suppose s and X real and positive. Follow-
ing the method of Lindeldf,* we take a contour C embracing the positive
real axis, and cutting it in the point a, where 0 < a < 1, and consider
the integral I 5 e‘“ 2 da

c &™—1
taken over C. The singularities of the integrand are at the points

n=1,2,8,.., and we obtain for the Dirichlet series, S(s) =I. The
integral I may be divided into the three parts

1/k
—sht e~ g dg P
L:—je“wm, @:j_____
C Ci

e2rr:n —1 ’

—gV )
e~ F gMdg e ™
and Ia=—5-—e——
c

e—2vm_1 4

* Le Calcul des Reésidus, p. 56.
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where C, and C, denote the parts of C respectively above and below the
real axis. In I, the contour may be deformed into the line from a to
infinity, taken along the real axis, and in I, and I3, C, and C, may be
deformed into the straight lines a+:® to a, and a to a—:® respectively.

It is easily shown that I, tends to the limit s™*~*kT (AAs+k) as a

tends to zero (when s and A are positive), while -1, is shown to tend to
the limit

2”5 exp [_stllkelmlk] A8 ghmuds 2,‘"dt .

0 e —1

If the factor exp[ —s#/* e¥™*] under the integral sign in this last expression be
replaced by its expansion in powers of s, and if the integration be effected
term by term, we obtain an expression for I,+I; which leads to the
result (1). Now the right-hand side of (1) defines an analytic function of
the two variables s and A for all values of s and A, and we have proved
that it represents the Dirichlet series when s and X are real and positive.
1t follows that it is the analytic function representing all values obtained
by continuation, for the variables s and A, from the Dirichlet series.

The analytic function (1) is in general multiform, the multiformity
depending on s™®=% If a cut be made along the negative real axis pre-
venting the point s from making a circuit of the origin, the function
obtained by continuation in the cut plane from the Dirichlet series is
evidently uniform. [A is now supposed to be a constant.] It is shown
that this function, which is denoted by Sy(s) corresponds to the determi-

nation
s~ krs—k — exp[—(kkS"l"k) log 8],

where log s has its principal value.

The function S(s) (in the uncut plane) has s = 0 for its sole finite
stngularity. The apparent poles at the poles of I' (AAs-+£) are neutralised
by the poles of {(—nf/k—As)[n =1, 2, ...].

In the particular case when X is zero, the function P (s, 0) becomes an in-
tegral function of s, whose apparent order is shown to be kf(k—1) (I., § 4).

The result (2) is established on the same general lines (I., § 5). The
sertes for \r(s) converges for all values of s, and \y(s), and therefore also
S (s), evidently has s = O for its sole finite singularity.

The function obtained by continuing the Dirichlet series over the s
plane cut along the negative real axts is determined by assigning to every
term s° of \r (s) the value exp (0 log s), where log s has uts principal value.
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It is important to know something of the behaviour of y(s) when |s]
is large. It is shown (IL., § 4) that, when | s| is sufficiently large, we have

| ()| < Kexp[|s|*]. 4)

In order to establish this result it is previously shown (I., § 5), that ¢f
the sertes for \r(s) be arranged in order of non-decreasing indices of s,
each term of the old expression being retained as a separate term of the
new one,* we have

Y(s) =s7* [I‘ k+1)+ j‘ll Cn s""], ®)

n=

where 0<6,<0,<..., B, > n*®+V/K,
and |ea| < (/6.1

In the case when a, = exp (n'*+p,n'¥), the general formula becomes
fairly simple. 'We have (L., § 6)

S = ¥—31+Q06),

. - 2 (— )usu(l—kkl)
where  r(s) = s ’"[F(k-i-l)-f-k > o

i e F(nk/kl-i-k)],

so that the series within square brackets is an wntegral function of the
argument s~V of order k,[(k,— k).

(It is not important to know the coefficients in the function @ (s).
Those of the singular part - (s) of S(s), however, appear in the asymptotic
expansion of log II (1+2/a.).]

Having this knowledge of the functions generated by the Dirichlet
series I. and II., we may attack the problem of finding asymptotic expan-
sions for the corresponding integral functions IL(1+42z/a.). We are met,
however, at the outset, by a difficulty which does not occur in the corre-
sponding theory of the integral functions of finite non-zero order. We
28 (s)ds
s 8in s
Bs =—1(>0). This integral will not exist in any case unless
|S(s)| < Kexpim|s{). Now the Dirichlet series itself can give us no
information as to the behavour of S(s) on Bs = — I, for it does not con-

require to use the integral j , taken along parts of the line

* J.c., if two terms of the old expression have the same index for s, they are not to be
combined into one term in the new series.
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verge there. On the other hand, if we appeal, for example in our second
case, to the formula (2), we only know ccncerning Q(s) that it is an
integral function of order %/(k—1), and therefore that when |s| is large,
| S(s)] < K exp[|s|"*-D+<]. This result is clearly inadequate for our
purposes, and it is necessary to provide some means of establishing the
better inequality for | S(s)| which in fact exists, for points on the line
Bs = — . This means is afforded by the following general theorem,
which is proved in IL, § 1.

Let F(2) be an analytic function with a finite number of singularities
and possessing the following properties :—

(1) In the region R consisting of the whole of the plane on one side of
a straight line L, and including the points of L, a branch Fy(2) of F(2)
has no singularities, and for all points of R, and for an arbitrarily small e,

| Fo(2)] < K exp (r°*),
where p > 1, and r =|z|.
(2) In the whole plane, assuming the fimte singularities to be ex-
cluded by small circles of radius 6,

| F(2)| < K exp (**9),
Jfor an arbitrary e.

Let L' be the straight line parallel to L and at a distance | from it
on the side of L remote from R, and let R' be the region of the plane on
the same side of L' as R. Let a system of cuts be made so as to prevent
the point z, when it is restricted to the region R', from circumscribing
any singularity of F(2), so that Fy(2), when continued over R', generates
a uniform function. Then, for any arbitrary e, we shall have, for all

points of ', | Fo(2) | < K exp (*~1+9).

From this theorem it is easily deduced that on s = — I, we have
| So(s)| < K exp [—| s | &-D+e],

where Sy(s) denotes the function obtained from the Dirichlet series I. or
II. by continuation over the s-plane cut along the negative real axis.

Provided, then, that we assume % > 2, the integral S%S—)nz’—d:, taken
™
over the part of the line 38s = — [ either above or below the real axis,

will exist.*

* It should be noted that s cannot describe the whole line continuously in the cut plane.
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The problem of finding an asymptotic expansion for log F(2) is greatly
simplified if S(s) is known to be a uniform function. This can never be
the case for the function II., but occurs in the case of I., provided X is
zero and % is an integer. This simplest case is considered first, and may
be treated on the lines of M. Mellin’s paper cited above. (II., §§ 2, 8.)

We find that, <f
F(z) = fI [1+42/exp (pn'™M)],
n=1

where Bp > 0, and where k ts an integer not less than 8,
log F(2) = (k+1)7 p~*(log 2)**?
k
+2(k+ 1)—1 P_k Z 1410 (22n—1_ 1) 772"B2n(10g Z)e+1=tm
1

n=

N —_—
—3logz—pt (—1/0+ 5 (= S8 ony g 6)

where k =3k or 3(k+1), according as k is even or odd, the B's are
Bernoully’s numbers, S(s) is the function (1) (with X = 0), and where

H N| —
|:1|l—[>nw ,JNZ |— 0.

This expansion clearly cannot be valid in the vicinity of the zeros of
F(z). It is, in fact, established first for the case when z vs excluded from
the spiral strip contained by the curves z = — exp (px £ 61), where 6 is an
arbitrarily small positive number, and where x takes all real values from
—o to +® (§2). The region thus excluded is of the type usually con-
sidered in the theory of asymptotic expansions. It is then shown (§ 8)
that the region from which z is excluded may be narrowed (outside the
circle | 2| = 1) into the spiral strip between the curves

z = exp [pz £ 6 (log r)~¢~D+8],

where 6 is arbitrarily small.

If A is not zero, the form of the singularity at s =0 of the function
defined by I. makes the extension of our methods to this case, if not im-
possible, at any rate a matter of great difficulty.

For the function S(s) defined by II., however, the singular part v (s)
is the sum of an infinite number of terms of the form ¢, s%, and, although
the sum represents a complicated singularity, we are able to consider the
effect of each term separately. We consider the function

F(2) = II (142/a.),

n=1
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where a, = exp [p {n¥*4p, w4 pgntee4 . 4 p ntE 1],

and where k, > ... >k, >k > 2, and Rp > 0.

The assumption %> 2 is certainly necessary in order that we may
have | Sy(s)| < exp (e|s|) on Rs = — 1, and it seems necessary to this end
to introduce the additional restriction that p,, pg, ... shall be real. With
these assumptions the inequality for S,(s) is readily deduced from the
general theorem given above,

The following expansion is obtained (II., §§ 4, 5)
log F(2) = —p [{j(—l/k)+ é:] p.,f(—l/k,,)]—f} log 2

PCn sin(k—6,) = l_og_z) k=8, +1
+ /L§0 T ( p Ty
where
Q-1 __ 2
@—_'I)_W B2m(10g z)—‘ZnL’ (7)

o, =TI'0,—k—1)42 m§=]1 rem+06,—k—1) B

where s7% Eo cn8® is the series (5). The infinite series is to be arranged
wn order of increasing indices of 1/log 2, and, when we stop at any term,
say of order (log 2)~?, we have, if R is the remainder,

i 1 1= 0.

Jim | R(og z)?}=0

Tn the proof it is assumed for simplicity that p is real, and that 2z s
excluded from the strip between the straight lines

z = exp [p {e+p a4, 4 p. 2 B | £ 6]

the expansion may, however, be proved for p complex, and when z is
excluded from a narrower spiral strip.

Wae have, by the ordinary theory of residues,

c

2 ssin ws

where S,(es) is the function derived by continuation, in the plane cut
along the negative real axis, from the Dirichlet series II. (with ps as argu-
ment instead of s), and where the contour C embraces the positive real
axis and passes between the points 0 and 1. The contour C may be
deformed into the contour G’ consisting of the line from —I!+4 @ to —1
(0 <1< 1), the circle |z| =1 described clockwise from —! to —{, and
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the line from —!to —!— .. Each term of Sy(ps) of the form c¢,(ps)’~*
is then shown to contribute a divergent but asymptotic series proceeding
in descending (non-integral) powers of logz; while the uniform part
—3+@Q (ps) contributes the first two terms on the right-hand side of (7).
The necessity of dealing with an infinite series of terms, each of which
generates a divergent series, is the main cause of the complexity of the
proof of the final expansion. .

The line of proof adopted is difficult to extend to the case when
P15 Pgs ... are complex, and it must break down when k < 2. The expan-
sion, however, is valid in each case, and even when k,, %,, ... (but not %)
are complex, provided that 3 1/k,<1/k<<1. The proof of this, however,
cannot be given here. It depends on a comparison of the known form of
the expansion in our restricted case with a general form obtained by an
entirely different method, which is mainly arithmetical in character. This
method is itself unable to determine the general coefficients of its result,
but it is easily shown that they must be those occurring in (7).*

There is, however, one interesting point which this principle is unable
to decide, as to whether the expansion (6) for the case an, = exp (pn'¥)
(where % is an integer), which contains an asymptotic series in descending
powers of 2, is valid when k = 2.

It is not possible to apply pur methods to determine asymptotic ex-
pansions for log F(2) in cases where | a,| is of less order in » than exp (")
for arbitrarily small values of e. (On this point, see II., § 8.) The func-
tions S(s) generated by the corresponding Dirichlet series Za;* can, how-
ever, be determined in a number of cases. In Part I. (§§ 7-9) the follow-
ing series are considered :—

(I11.) E exp[—s(log n)'**], £>0;
n=2
and its generalisation

T exp[—s {(log ) **+p, (log n)* *14... 4+ p, (log n)* %+ } ],
where A >k, > ..., and k> 0;

(IV.) X exp[—slogn loglogn];
n=38

* 1 hope shortly to publish an account of this general theory, which applies to all integral
functions of our second class which arise in a natural manner, under the title ‘* On a Class of
Integral Functions."’
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and < exp [—slog n (log, W],
where _ log, » = [log log ... (p times)]n.
For the series (II1.), we find (I., § 7)
S(s) =Y ()—3+Ps),
where P (s) is an integral function of order unity, and where

L{n+1)/QA+k)}
I'n+1) ’

() = 1+k)! ,.go s+ DI +k)
so that \r(s) is an integral function, of the argument s~V*9, of order
(k+1)/k.

For (IV.), we find (1., § 9),
S(s) = s~'T(log s+s~) + P(s),
where P (s) ts an integral function of order unity, and T (x) ts an integral

function of x of infinite order.

In all the cases considered, S(s) is shown to have s = 0 for its sole
finite singularity.

Parr 1.
Darichlet Series.

1. We begin with the series

L

exp (—sn'Ma* (k> 1),
1

where A is any complex number, and #* is interpreted to mean exp (As logn),
log » having its real value.
We shall establish the following results :—

The function S(s) s
kT (kAs+k)s~ @ %4 P(s, A),

where P, A = § (—9)"

Z Tag Snlk—2s).

S (s) has s = O for its sole finite singularity.
If a cut be made in the s-plane along the negative real azis, and if
S, (s) be the function which s defined by continuation in the cut plane
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from the Dirichlet series,
Sy (s) = kI (kAs+k) exp[—(kAs+k) log s]+ P (s, A),
where log s has tts principal value.

Let z'* be interpreted, as usual, to mean exp (log z/k), where logz is
real when z is real and positive.

We shall suppose for the present that s and A are real and positive.
Consider the integral

taken along the contour L;+L,, where L, consists of the straight lines
+ © 483 to a+¢B to a; L, of the lines a to a—B to + © —¢B3, B being
any positive number, and a being any number between 0 and 1. ‘

The integrand is a uniform function of z for Rz > 0, and the integral
is convergent at infinity. Also the sum of the residues of the integrand
at those singularities which lie inside L,+ L, viz., the points 1, 2, 8, ...,
18 — ;‘. e“"l‘kn“, which series is convergent and has i-S(s) for its

T =1 2t

sum. Thus we have I=S. @

Now we have

(2)

AS AS
x x xMdx _ik oMdx
I———j e w“dx+5 e S e~

Ly L 2]

. 1—e™ 2w e?vr:n —1 ‘

b a+if L,
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Let M, be the straight line from < @: to a¢, together with the
quadrant of the circle |z| = « from a¢ to a, and let M, be the reflection
of M, in the real axis.

N _at Z¥dz : —_ ;
ow |e it taken along a part of the circle |z| = R, inter-

cepted either between L, and M,, or between M, and L,, tends to zero as
B tends to infinity. For, if z be any point of either piece of the circle,
we have

1k 1

3 2 ,—82" A8 —
hmw z°%e S e s 0.

Hence, in the last two integrals on the right-hand side of (2), we may
deform L, into M,, and L, into M,, since we do not thereby pass over
singularities of the integrands. = We therefore have, from (1) and (2),

86)=L+IL+1,
where I, = —S e~ 1 dg
L

b @

1k dx
I,=— e ght —
My, b e 2wz __ 1

Jp ) dr
I 3 = € = w)"q 2w
M, 0 € -1

where 5 means that the integral is taken along the contour C, and that
C, ¢

z is supposed to have the argument ¢ at the starting point of C.

First consider the integral I,.

The contour L, may be deformed into the straight line from 4o to a
along the real axis, since the integral is convergent at infinity, and since
we do not pass over singularities of the integrand. Hence

L W
I =—\ e M dx
-

»n
= s-k«\s—kS e-yyla\skyb-l dy,
(ale)*

when we write z = (y/s)".

Since As >0, this last integral is convergent at the origin. Hence,
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making a tend to zero, we have

Il — ks—us—kj e‘”y""‘*""dy+e(a)

0

= s~k kT (kAs+ k) +¢(a) . * (4)

Next consider I, and I,

On the straight portion of 3, since = starts at + o with the argu-
ment 3w, we have r =tet™ and z'* = #'*e™* where ¢ is real, and
similarly, on the straight portion of M,, z'* = t*¢~*"*  Hence, dividing
I, and I; into parts corresponding to the straight and curved parts of the
respective contours, we have

I, = L+I) )
Iy = L+
where I; — __5 exp [_stl I3 eim/l.‘] t)d eﬁm)d 6_11:((—1_#1 !

I = j exp[—-stl I:g—.’gn/k] A8 ghmis g;“iitl N , (5)
21 i - d:l:

I., = —sx' ¥ as
) ju, Q!re z 6-2"2'—1
" —-at dx

I = e—sx‘ & As
8 ja, o z ehzu —1 )

the last two integrals being taken along arcs of the circle |z| = a.
It may be shown that I+ I = e(a). (6)

If z be a point of the contour of I; or of Iy, we have

e"u:llk zo\sz_t_ﬁ::Tl < K Ix "\3—1’
where K does not depend on a. It follows, since As > 0, that Iy and
I tend to gero with a, and we have the result (6).

Returning to (5), let us now consider Ir+Is.

¢ I shall always use ¢(z) to mean a function of = which tends to zero as x tends to its
limit, and shall use the same symbol for all such functions. In the same way to express the
fact that | f ()] is always less than some finite number, I shall write |f(z)| < K, and shall
always use the same K.
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We have I;+1; =28 j axp [ — stk 2] g ghmos e’ifd_t .

= 28 s exp [ — stV emiT | ghs ghmrs 2,‘,,‘“ +¢(a), (7
0

since the last integral is convergent at ¢ = 0, on account of the factor #*.
Calling the integral on the right-hand side of (7) I,, we have, from
@®), @), (5, 6), (1),

S(s) = kL(kAs+k) s7*+ T, +e(a);
and therefore, since every term but the last is independent of a,
S(s) = kT (fAs+k) s~ -*4-1,. (8)

We shall now study the integral I,, where s and A are still supposed
real and positive.

oAk 2k — s (=8 nfk
We have  exp[—stke™#] = E TwtD© gk,

Multiplying by e™*.2¢#¥/(¢*"—1), and integrating term by term from
t = 0 to infinity,* we have

AmIAS ( 9) Anm/k jw tn/k+M
I, = B2e nzo TotD e N t
_ o (_s)ﬂ, . . had tn’k-}-Al
= ﬂ)=_‘,0 Tt D [—2sin {3w(n/k +Ns)}] L e dt
Now when Rz > 0, we have
L é{;i_t_l = — L cosec (372) {(—2).
We therefore have
— o (=8 e
I, = Z: Tk T E(—nfk—Nns).
We now obtain from (8) the result
59 = KL (s st 3 0 e—nfk—ns). ©

n=0 r(7 + 1)

* The justification of this step offers no special difficulty, either here or elsewhere where
it ocours in the paper. I shall omit the proofs throughout.
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Using the formula

$(2) =2(@7F " sin Gr2) [ (1—2) {(1—2),
we obtain from (9) the alternative form
S(s) = kL(kAs+k)s~rrs—*

L — -1
+2@m 3 (r_(o)zﬂsi sin {37 @/k4A9)}

X T(n/k+As+1) §(n/k+)\s+1)]. o

The results (9) and (9)' have been established on the assumption that
s and A are real and positive. But if s and A are any complex num-
bers such that — (n+4%Xs)/k is not unity [%.e., a singularity of I'a—2]
for any value of n» from O to infinity, the series on the right-hand side
of (9)' is convergent.*

Also it can be shown that the right-hand side of (9) can be differ-
entiated term by term with respect to s or A, so that this expression is an
analytic function of s and A for all values of s and A, except s = 0 and
such pairs of values of s and A as make % (1—A\s) zero or a positive
integer.

Now the Dirichlet series defines an analytic function of s and A for
the range of values defined by 3Rs >0, A being allowed to take any
value. Moreover, we have seen that when s and A are real and positive,
the right-hand side of (9) or of (9)' agrees in value with the Dirichlet series.
It follows that the right-hand side of (9) is the analytic function of s
and A obtained by continuation from the Dirichlet series; or, since A is
supposed to have a constant value, we may say that for any complex
value of A, the right-hand side of (9) defines, for all values of s except
isolated singularities, the analytic function of s obtained by continuation
from the Dirichlet series, which is detined for 3%s > 0. This is the first
of our results.

* For sin {gw (nfk+As)} and ¢(n/k+As+1) are finite for all values of n, while when n
is large | O(n/k +As +1)/T (n + 1) | behaves like n-{(-1/*In_ The series therefore converges like
I(s/ | Qmm kALY,
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2. We shall now establish the third result.

The function P(s, A) is uniform, so also is I' (kAs4k): s~**~* means
exp [— (kAs+%) log s], and the question we have to decide is the relation
between the determinations of logs and the various branches of S(s) as
arising from the primary branch defined by the Dirichlet series for
Bs > 0.

The term »* which occurs in the Dirichlet series means exp (As logn),
where log # 18 real and is a uniform function of \. Then, for a given real
and positive s, the Dirichlet series defines a uniform function of \. Again,
log s being taken real, the right-hand side of (9) defines & uniform funec-
tion of A. These two uniform functions agree in value for all real
and positive values of A; they therefore agree for all values of \. We
may restate this result by saying that for any complex A, if s is
real and positive, the Dirichlet series is equal to the right-hand side of
(9), log s being taken real.

If now a cut be made in the s-plane along the negative real axis, and
if Sy(s) be the function defined in the cut plane by continuation from the
Dirichlet series, then S,(s) must be the continuation in the cut plane of
the right-hand side of (9). Now in the cut plane logs, which is real
when s is real and positive, must have its principal value, z.e., it
must have the modulus of its imaginary part not greater than .
This gives the desired determination for s~*¢=* corresponding to the
branch S (s).

8. The point s = 0 is clearly a singularity of S(s). We have to
show that S (s) has no other finite singularity.

The possible finite singularities other than s = 0 are those values of s
which make —(n/k+4As) equal to 1 for some positive or zero integral
value of n. Suppose then that

—nfk-tAsy) = 1:
the term ¢ (—n/k—As) then becomes infinite at s = sa.

In the vicinity of this point we have

_ _ 1 . .
E(—nfk—Ns) = {{(A(sn—9)+1} = NG9 +a finite expression,
and P, N = (=5 _1 +a finite expression. (1)

T A[(n+1) sp—s

Now T(rs+k) = T [—n+Er(s—sm)]

SER. 2. voL. 7. No. 1019, Q
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has a simple pole at the point s = s,, with the residue

1 (="
ix Tint1)°

Hence the general branch of t};e function % (TkAs+k)s~* =% in the
vicinity of s = s,, is equal to

= 1 ex [—(kAs,+k)(log s, 42 w1)] + o finite expression
A (¥ 1) s—s, P " € ST 4p P

)\I‘( (nli-l exp [ (log s, + 2p7rt)] — +a, finite expression

— (—su)" 1
AN[(n+1) s—s,

+a finite expression. (2)

Adding (1) and (2) we see that S(s) is finite at s = s, and has no
singularity there.
There is therefore no finite singularity other than s = 0.

4. When X is not zero the singularity at s =0 is of a complicated
nature, being at once a branch-point and transcendental. If, however,
A =0, in which case the Dirichlet series is = exp(—sn'"), we obtain a
simpler expression for S (s). "=

We have, on writing A = 0 in the formula (9) of § 1

- —9)"
S =Tk+1)s ’+HZU l‘( ey {(—nfk)
= F(}.+1) §h— l+ 21 fm‘_l_l) (—'n/k (1)

since ((0) = — 3.
The infinite series on the right-hand side of (1) is an integral function
of s of order k/(k—1).

This result is easily established as follows.
We have ((—n/k) = -2(@2m)-"*-} sin (nx/2k) T (1 +n[k) ((1 +n/k).
Now {(L+n/k) =1+ e(n), since lim {(1+n/k) =1.

N—>7.

Therefore Cl-nk gL+ n{k), )
Fn+1) T(n+1)

| €(=n/k) L romy s P+ 1K) 3

and i Tm+l) K-t (2m) Fm+1)’ @)
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where (2) holds for all values of n, and (3) for all values of » for which nx/2k differs from every
multiple of = by more than some assigned constant, say »/4k. There will clearly be an infinity
of values of n satisfying this condition, since 2.x/4k% + =2k < =.

Employing Stirling’s theorem, we obtain from (2),

((=nh)| . __1

Fr+1) | = poEmm-as’

when 7 is sufficiently great, and from (3),

’fi:ﬁ@ > 1
F(n+1) |~ pF=Tksan’
when 7 is sufficiently great. From these inequalities it follows, by & well-known result in the
theory of integral functions, that =(—s)" f‘( (TL’:’;‘))- is of (apparent) order k/(k—1).
If % is an integer, the function S(s) is clearly uniform, its only finite

singularity being a pole of order % at the origin. If k¥ is not an integer,
the origin is & branch-point.

5. We shall now study another generalisation of the series Ze="'",
the Dirichlet series

> AXp ["3 {nl"‘-i- > ””;V)“]
< I 1 2 Pv } ]

n=1

where 1<k<k <...<k, and where the p’s are any complex
numbers. The series defines an analytic function in the half plane deter-
mined by 3s > 0.

For this case we obtain the following results.
(i) The function S(s) s
Y(E)—3+Q0),

where Q(s) s an integral function of s of order k[(k—1), with the origin
for a simpie zero, and where

Yr(s) = ks~ § !—(—)”‘ z { I ( .’ ) I (i ka.,/k.,-{-k) Sli(l-k;k_)a, ]_],

m=0 L Za,=m \ v=1 F(a,+1) v=1 J

the = inside the square brackets being taken over all positive or zero
integral values of a,, ay, ..., a,, such that a;+ay+...+a, = m.

(ii.) S(s} has s = O for ts sole finite singularity.
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(iii.) If @ cut be made along the negative real axrs, and if S, (s) be the
Junction which is the continuation of the Dirichlet series in the cut plane,

we have So(8) = Yo (9 —3+Q (),

where ry(s) = r(s), with the restriction that every term s* appearing in
Vr(s) is to be interpreted as exp (A log s), log s having its principal value.

(iv)* If the above erpression for - (s) be arranged in order of non-
decreasing indices of s, each term of the old expression being retarned as
a separate term of the mew one, we have

p = Th+0+ 2 o],

where 0< 0, €0, <K ...,
0, > K-1plitk+D)

and len | < [K[6u).

We suppose s real and positive, and proceed almost exactly ag in § 1.
We obtain a result analogous to (5) of that article, but instead of (6) we

have AL = —34ela).

Thus, for s real and positive,
Sols) = 5 exp [—s {x‘ b4 5 p, gt }]dx—%+Q(s)
0 1
where » D

— = _(=9" w[llk Amik 5 1k, amlkv]n 2mt _1)~1d¢
Q=82 2 1“(n+1>§0 tlerit Zp eihenh | (717

and where S;(s) stands for the Dirichlet series.

That @(s) is an integral function of order k/(k—1) is easily seen as
follows. '

The modulus of the coefficient of s" is less than

9 r | [ = 2% 4 3p, 85w g™ P0m) dt <2 r [Ktr)n
r(n+1) ),

et _1 r(n+1)), e¥—1
2K" :
L (—nlk n-ik=-1krein,
< P(n+1)c( nfk) <

when = is sufficiently great, by the proof given in § 4.
Hence the apparent order of Q (s) is not greater than k/(k—1).

* This result is required in Part II., where we determine an asymptotic expansion for the
integral function corresponding to the Dirichlet series.
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p]

The further result, less important than the above for our later requirements, that Q (s) is

actually of apparent order k/(k—1) may be established in the following way.
After some finite value of ¢, depending on ¢, we have

‘ £P., e < etk
1
It follows without difficulty that
0 3 2k Lk, w2k n £ 3 3
[t”‘e-‘/"w:p,t ve™ -] _ tnk guni2k gnlk ¢ )
L T g = HO gy r el L iy | > K Cn/R),

for an infinite number of values of n.
We have, then, for an infinite number of values of %,
| the coefficient of s" in Q(s)| > K-'((—n/k)/T (n+1) > n-Lk-1 k+ein

whence it follows that the apparent order of @ (s) is not less than %f(k—1), and therefore that
it must actually be k/(k—1).

Returning to (1), consider the integral

5 exp[—s {z"*4Zp, 2% } | da.

0

If we make the transformation z = (y/s)*, it becomes
\b () = ks—k j exp [_ g: Py sl—k/l;vyk “u] yk—le—v d‘,/. (2)
[} v=1

Now, sinee %, >k, this expression defines an analytic function
of s whose sole finite singularity is at s = 0. Therefore, since the
Dirichlet series is equal to Y (s)—3+Q(s) when s is real and positive,
Y (s)—3+ Q(s) must be the function obtained by continuation from the
Dirichlet series.

If a cut be made along the negative real axis, since a power s* of s
occurring in (2) means exp (A logs), the logarithm being real, the function
Vo()—3+@Q(s) obtained by continuation in the cut plane from the
Dirichlet series is yr(s)—4+Q(s), with the restriction that any power
s* occurring in the expression for v/ (s) given by (2) is to mean exp (A log s),
where log s has its principal value.

We must now prove that y(s) is given by the form in our result (i.).
We have

Lod L1
9XP| — 2 p, st Myt
] 1

- mEO I‘( +1) [_EPUS

1-1/k, yk;‘k”]m

b __\m p‘l‘i P:p :.I_(l-k,k»)a,, }::ka,,k,]
) Emr<a1+1) Te+n’® ; .

Gy =

~-Mx
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Multiplying this expression by ks *y*~'¢~?, and integrating term by
term from y = 0 to ®, a process justifiable without any special difficulty,
we obtain

— 2=k 3 [(—y ¥ pr ... pu ( 2(1-k/ku)au]
\lf(S) ks m2=0 ( ) Sa?:m I‘(a+1) e I"Ea,pl— l)r Eka“/kv-l-k)s ’
6))

which is the desired form.
The term corresponding to m = 0 is ks™*I'(k) or T'(k+1)s~*%
We have now established the results (i.), (ii.), (iii.); it remains to
consider (iv.).
Let the general term in (8) be the term s=*(c,s%) in the expansion

¥© = s Th+D+ 3, e
arranged in order of increasing indices. Then

6, = Z(1—k/k,) a,, 2 ka, [k, = m—6,;

and lea| < K T+ .. Ta+1

T (S ka,/k, + ).

Now it is easily shown that I'(a;+1) ... [(a,+1), when oy +ay+... +a,
is equal to a given m, is a8 minimum when

b4

a, __

m
ay = ag = ... = 7.

¥

Then
lew| < E™ {TOnfu+1)} ~* T(Ekay k,+4)
< E™exp [{2 kay[hy+ k) log | Ska/k,+k} — = kaJk+k} +K
(on using Stirling’s theorem)
< K™+ exp[(m— 0,1+ k) log (m— 64+ k)—m log m+ Km]. (4)

ka, k k
T < 75: Za, < : mn,

Now m—0, = 2

and therefore 0, > K 'm.
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Then, from (4), we have
| cn | < K% exp[(m—6,) logm—mlogm]}* < K%.6;™ < (K/[6,).
We have, finally, to prove that
0, > K- 1nl+D),

Now the number of terms in the expansion of
S =kl bk, |
[§ o]

is less than Km*, and all the indices of s which occur are greater than m/K,.

SQ-khya
Hence the number » of terms of the type sf(1 ) which have an

index less than 0, is less than
K0,

s Em < K6,

and therefore 4 0, > K- 1ple+D,

6. In the case when u = 1, the result (i.) for y (s) becomes simpler,
and we obtain for the function generated by the Dirichlet series

-

n(l=kfky)

50 = s [Ph+0+r 5 ST T gk 41|

—3— {f(_llk)‘i‘Plf("'l/kl)} 3+52Q1(8)y

where @), (s) is an integral function of order %/(k—1) and where the series

in square brackets is an integral function of the argument s'~*%1 of order
[k, ~F).

7. We have so far considered Dirichlet series for which |a,| is of
order exp (nf) for some value of p less than unity. The simplest type
of function which is of less order than exp () for all values of p, how-
ever small, but of greater order than n* for all values of p, however large,

18 exp [(log n)**+*],
where % is positive.1

* We have
K+ oxp [k log (m—0; + k) + Km) < K»+) exp (Km) < Kn+)t+log K) < En < KXo < g, |

according to our use of the symbol K.
1 There exists, of course, an infinity of types, intermediate in order between exp (1°) and
exp [(log n)' **]. exp [exp (logn) ¥+ 1] is an exumple,
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Let us consider, then, the Dirichlet series
éz exp [ —s(log n)'*¥].

I shall dwell only on points where the analysis differs in character
from that already employed in other cases.
We start with the integral

. dz
sp(—sloga)+¥] o,
jl,|+l., exp [—s(log «) ]e-”‘-—l

in which s is real and positive, log is supposed to have its principal
value, and where L,+ L, is the contour consisting of the straight lines
+ o +8 to 14+a+¢B to 14a—iB to + o —¢B, B being any positive
number, and « being any number between 0 and 1.

The integral has the value S(s).

Following the lines of § 1, we obtain

S8G6) = L+IL+]1, )
where IL=— L exp [ —s(log z)' *¥] dz,
- _ ek _GT_ (- ¢})
Iﬂ - le exp [ s (log w) ] 1 ___8—2«.\::
dx
— - 14k
Iﬂ - ,SL; exp[ S(lOg Z) ] e’lfr:m_l )
Now I, = j exp [ —s(log z)'+*] dx.
l+a
Putting s(log z)'** = y, we have
Il = 5 e ¥ exp [(y/s)ll(l+k)] s—l (1+k) (1+k)—1 y—kl(l-!»k)dy
s[log(1+a))! +%
s—l/(1+k) e . )
s S e? exp [(/sa+H] y=HI+ gy 4 e(a), ©)
1 +IA 0

since the integral is convergent at y = 0.

The contours L,, Ly in I, and I; may be deformed into M, and M,
respectively, where M, consists of the straight line from 14-(® to 14-a,
together with the quadrant of the circle |z—1|= a, from 14:a to 144,
and where M, is the image of M, in the real axis.

We divide I; and I, into Ip, I3 ; I, I3, corresponding to the straight
and curved parts of their respective contours. Then it is easily seen that

1+a
I, = j exp [ —s(log «)'+¥] 1——_—%,; = —}+ea),

1+a
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and I = —3+e(a),
whence LI = —34e) )

The expression I[;+I; may be transformed as in §1. Putting
# = 14-tetd™ on M, and M, respectively, we obtain

udt
e‘lrrl — 1

L+1Is

1l
s

n!

CF [ | {logatamyporn

|
itgs

(_8) [zms {log (1+te§"‘)ll(l+k)n .e.) dt
0

1 n! ..1rt_1

J+e@ @

all the integrals being convergent at the origin.*
From (1), (2), (3), and (4) we now have, when s is real and positive,

S(s) = () —3+P(s)+ew),

and therefore
S(s) = Y(5)—3+P(s),

where Y (s) = s———;lj;:;k) s: exp [s~ M+ 1+ D] g=y gy =kI1+E) gy

e h lt
P =3 ( [ms {log (1 tebryjaenn . 12 1]

Now, for the coefficient ¢, of s® in P(s), we have

len ] < %5 (Kteuthin E% [since |log (1+tet™)| < K],
. 0 - :

and, by a slight modification of the proof given in § 5, it may be shown
that P(s) is an integral function of order unity.

The expression for y,(s) defines an analytic function regular at every
point except s = 0. Then y(s)—3%+ P(s), since it agrees in value with
the Dirichlet series when s is real and positive, must be the analytic
function obtained by continuation from the Dirichlet series.

If we expand the term exp[s~"(*MyY1+M] in the expression for y(s)
in (5), multiply by (1+4k)~!s7H!+R g=v =K+ and integrate term by term
from y = 0 to o, we obtain

s—n,’(l +k)

— 1 -1+ =
Vi) = A+B)s 2 oD

jo e—y y('t+l)/(1+k)—l dy
Z S A+E) T{n4+1)/A+k)} .

= a+hk™ Tt 1)

(6)

¢ The legitimacy of this step may be established without difficulty.
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‘Thus Y(s) is an integral function of the argument s~'M+9 of order

(k+1)/k.

8. It is not difficult to see that the more general Dirichlet series

§2 exp[—s { (log n)! +*+ él p.(log n)! ++ }],

n=

where k¥ > k, > k; > ..., and where the p’s are any complex numbers,
gives rise to an analytic function S(s) whose sole finite singularity is
at s =0.

Proceeding as in the last article, we find that, when s is real and

positive, S(s) = Y (s)+P(s), o

where P(s) is an integral function of order unity, and

Y(s) = r exp I:—s {(log z)tE4 % p.,(log:c)”""}]dz.

1

On putting z = exp[(y/s)'*+¥], the last expression becomes
s~ Ma+E)

fad n
s _ (k=k)I1+k),) (1 +k )1 +) Y +k) ) A+R)] o= 7y — kL +E)
iTE L exv[ 2 ps y ]exr)[s y+B]evy dy,

which defines an analytic function regular at all points except s = 0.
~ The function S(s), then, is y(s)+ P(s), which has s = 0 for its sole
finite singularity.

9. As an example in which a, is near its lower limit of order in #,
let us consider the series

“©z

., exp[—slog n loglog n].

n=

Here a, is the n-th zero of an integral function of zero order, but
|@n | is of less order in n than exp[(log 7)!**], the case last considered,
for all positive values of k.

We obtain, on the lines previously developed, s being supposed real
and positive,

S(s) =s exp[— s log « log log z]de+1'+1",
et+a
¢t+atio l.dx

where I = j exp[—slogzloglogz] —— ¢, (1)
sta e _1
eta—io —
I"= S exp [—s log x log log =] Tﬂ;f—dﬁ

e+a [ _1 J

and where 0 < a < 3—e.
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Then

S(s) = J exp [ —s log « log log ] dc

1

- s ' exp[—slog z loglog £]dx+1I'+1".
1

Now each of the last three terms defines a function of s, regular at
every finite point, and therefore the three terms together define such
a function, ¢.e., an integral function P(s) of s. The order of this
function may be shown to be unity.

‘Again, if we put logx = y/s,

L exp[—s log z log log x]de = 5 exp [ —y(log y—log s)] exp (y/s) d(y/s)
0

= s“J exp [(log s+s~1) y] e~V 8vdy

0

»
-1

(1033'*'3-)" Jm —ylo n
120 F@a+1) )y ey dy

=s
=s'T(logs+s™),

where 7'(z) may be shown to be an integral function of infinite order.*
The analytic function s~?T(logs+s~") has s = 0 for its sole finite
singularity, and we see that the function S(s) is P(s)+s~!T(logs+s~")
and has s = 0 for its sole finite singularity.
(It may be shown in a somewhat similar manner that the function

S(s), defined by the series éh exp[—s log n(log,n)*], has s = 0 for its

sole finite singularity, where & > 0, log,n stands for log[{log ...} ]
(p logarithms), and where % is so large that log, 2 > 0.]+

* It may be shown that | T'(z) | < expexp [(1+¢) |2]), when || is sufficiently great. It
follows that, for sufficiently large values -of |s],

|s~'T'(logs+s-!)| < exp(]s]‘*),
and therefore | S(s)| < exp(lsi{'*e).
When |s| is small, however, we have the inequality,
18(s)| < expexp((1+<)]s|-T,
when |s}is sufficiently small.
t (Added February 3rd.]
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Parr II.
Asymptotic Expansions.

1. In the present part it will be shown how our knowledge of the
function S(s) enables us, in certain cases, to determine an asymptotic
expansion for the corresponding integral function. We must, however,
for reasons given in the Abstract, first establish the following general
theorem :(—

Let F(2) be an analytic function, with a finite number of singularities,
and possessing the following properties :—

(1) In the region R consisting of the whole of the plane on one side
of a straight line L, and including the pownts of L, a branch Fy(z) of
F(2) has no singularities, and for all points of R,

| Fol2) | < K exp (P19,
where p is a posittve constant greater than unity, » = | z|, and ¢ is any
arbitrary positive number.

(2) In the whole plane, assuming the singularities to be excluded by
small circles of radius 6, | F2)| < K exp **")
for any arbitrary e.

Let L' be the stratght line
parallel to L and at a distance !
from it on the side of L remote from
R, and let R' be the region of the
plane on the same side of L' as R.

Let a system of cuts be made
s0 as to prevent the point z, when
it is restricted to the region R,
Jrom circumscribing any singu-
larity of F(z), so that Fy(2), when

continued over R', generates a
uniform function.
Then, for any arbitrary e, 1
we shall have for all points of R',
| Fo(2)| < K exp (#1*9).

~

Take any fixed point P of L,
and a line A passing through P
making an angle with L less than
ym. Let I' be a circle with P
as centre including all the sin-
gularities of F(2).

)
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Let z, be a point of A lying in R, and such that |z = r, is large.
Let C, be the circle with 2z, as centre, touching L, and let A7, be its
radius, so that \, <1—K~'.* Let C, be the circle with z, as ceutre,
and with radius A,7, where A\, <A, <1l. When |z,] is large, the
circle C, will be exterior to I' (since Ay <<1). Let C be the circle with
2z, a8 centre, touching L'.

Now no point of C, is exterior to B. Therefore, for all points of C),

| Fo(e) | < K exp (*71%) < K exp [(1+A) 7o',
or, since ¢ is arbitrary, |F,(2)| <K exp (5~1*°).
Consequently, if n%o Cn (2—2)" be the expansion of F,(z) about the point
2y, we have, for points z of C,,
| en(e—29"| < [the mazimum modulus of F,(z) on C,]
< K exp (1571*9),
or len] 7" < K exp (r~1%9), (1)

where, what is important to notice, K is independent of both n
and 1,

Again, C, contains no singularity of F (2), and thus lies within the
circle of convergence of X¢,(2—2)* Moreover, we have for points z of C,,

| Fo2) | < K exp (r***) < K exp [{ (142 75} #*<],
80 that | Fo(2) | < K exp (r2+9).
Hence we have
| en (z—2)" | < K exp (2+9),
or | en Ao7)™| < K exp (r5*), (2)

where K is independent of both » and 7,.
From (1) and (2) we now deduce the following result

len| < K exp (5= )\ 7o +141)7", 3)

where K is independent of both % and 7.

* That is, when r, is large. For the origin is at a fixed distance, independent of r,, from P.
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We have
exp (73"”*‘) M1 [\ 7o+ I4+1)""exp (""”_“)]

ArgJn/(Aro)
= I:{l+ l+11 xp[_,'.;(z)—l+e+,r8-1+.§e]

< (6 exp [—rs"+*+7;;--”*'];

and therefore, provided » < 75*%,

<exp[—r T+ K-t < K.
Therefore, when n < 7‘5”",
exp (5770~ < K g7y F14+1)™ exp (g~ +). @
Again,
Mg79 ™ exp (8 *1)/ [\, 7o+ 14 1)~" exp (57149

<[ +75] ewerd

<exp|:-n]0g( )-}-Kn_l_-ﬁ*ie]

Now, provided 7> 78*¥, the term —ulog ()\2/)\) is of higher order in
7o than Knfry+rit¥, and therefore

exp I:-n log ( ) + = Kn +r"+i"] <K.
We have then, when n > #8*4,
(Ag7) ™" exp (7‘6*5") < K (A\y7,+14+1)""exp (7‘;‘“‘). )
If now, in (1), we replace ¢ by }e¢, and compare with (4), we see that

the inequality (8) holds when n < r9*.

Again, replacing e by %e in (2), and comparing with (5), we see that (3)
holds when n > r5*,

The mequahty (8) holds, then, in any case.

It is now easy to deduce our theorem.

For all points z upon or within the circle C, or |z2—2z)| = A\ 7o+, we
have
Pyl <3 leal |35 "

%: | n | Ay7o+D"

l n
Kowp 1) 3 (%)

K exp (3" ) (A 7o+ 14 1),
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Now r> (1— ﬂtl> 7o > (1——>\1— -l—> Yo
To 7o

Therefore, since A, < 1,
exp (PP 7o+ 14+1) < K exp (P71,

and | Fy(2) | < K exp (P~1+%),
Since ¢ is arbitrary, we have, then,
| Fo(2)] < K exp (*~1+9). (6)

This last inequality, then, holds for all points z which can be internal
to a circle C.

Again, if we take a line A’ through P, the image of A in L, the in-
equality (6) will hold for all points which can be internal to a circle C’,
which has its centre at a sufficiently remote point of A’ lying in R, and
which touches L'.

Now every point of the strip between L and L', which is exterior to
some circle I'; with its centre at P, can be interior to a circle C or C':
and therefore (6) holds for all points of the strip exterior to I';.

But for all points of I, when the singularities of F (z) are excluded by
small circles, the inequality (6) obviously holds, and it holds. by hvpothesis,
within the region RB. It must therefore hold within the region R'.

2. When, from our knowledge of the function S(s), we attempt to
determine an asymptotic expansion for log F(z), the problem is greatly
simplified if S(s) is known to be a uniform function of s, for in this event
we can employ the ordinary theory of residues, which is inapplicable when
S(s) is multiform.

Now, if we refer to the various cases of Dirichlet series, considered in
Part L., it will be seen that the only case in which S(s) is found to be a
uniform function occurs when @, = exp (#'*), where & is an integer.

We shall, then, first consider this case. The following result will be
established.

Let k be an integer not less than 3, and let S(s) be the function derived

from the series 2 exp (—sn'*).

n=1

Let F(2) = i (1+42/exp (pn' 9], where Bp > 0.
1

Then, if & be a positive number as small as we please, and if : be
exterior to the region between the spirals defined by

z = — exp(pz + dv),
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where z takes all real values from —® to ®, we have the asymptotic
expansion,

_ (log Z)I;+1

log F(2) = RSV

+ G 2 1+1020 Q71 —1) 7 By, (log 2)F 1~

(k+1)Pk-n=l
—3 log z—p(—1/k)+ % (_)m_l‘S(-;z m) Ty,

where x = 3k or 3(k+1) according as k s even or odd, the B’s are
Bernoully’s numbers, and

lim |Jy2"|=0.
jz >

It is clear that no asymptotic expansion can be valid over the whole
extent of any region containing zeros of F(z).

Now the zeros, which are of the form —exp (on'®), lie on the equi-
angular spiral z = —exp (pz), where  takes all real values. Thus the
two spirals 2 = —exp(pc + ) [z = — @ to ®], include between them
all the zeros of F(2).

In the remaining part R of the plane logz is an uniform function, for
z cannot describe a path in R, starting from and returning to the same
point, and circumseribing the origin. We fix the determination of log 2
by saying that logz is to be zero at 2 = 1, and we then interpret 2* to
mean exp (A log 2).

Let us determine the limits of the argument of z for a given modulus 7,
when z is restricted to the region R.

Let 2z = —exp (pz') be the point of the circle |z |= 7 for which z is
real. Then the circle meets the bounding spirals in the points
—exp (pz’' £ 6. The determination of logz at —exp (px'+6:) may be
found by making 2 describe a path in R from the point z =1 to some
point of the spiral z= —exp (pz+4:), and then making z follow this
spiral up to the point in question.

We thus obtain log z = mi+px'+6u.

Similarly, by making z describe a path in R from z =1 to & point of
the spiral z = exp (pz—4:), we obtain for the point exp {pz’'—di),

log z = mi+px' —4éu.
It is therefore seen that for any point z of B we must have

log z = pz4-¢r,

where z is real, and where | ¢| < 7w—4.
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We now show that, if |#Rps| < K, and if z be any point of R, and if
the points 0, +1, +2, ... be excluded by small circles from the range of s,

2
sin 7s

< Kexp[—|s|/K], (1)

where K is independent of s, though not of 2.
Let ps = B+#, so that | 3| < K. Then

|| = loxp[s (o] |-
< exp [Br+| Risp) | ).
We have also |sin 7ws| > K~'exp |BRwse|.
Therefore, since | ¢| < w—3,

Z!
sin s

‘< K exp (—|s |/ K).

Now suppose that z is less than unity. We then have

log F(2) = s log [142/exp(pn' "))
1

P2 * 3
— 1% .
,El El =) t exp (tpn'*)’

and therefore, since this double series is a uniformly convergent series of
functions, each of which is expansible in a uniformly convergent power
series,

3 & E
=3 (—)"‘ZT z exp(—tpn”‘)]
1

t=1 n=
=— 3 (-y30, (@
t=1

This series must converge when |z| < 1.
Now consider the integral

2'ds
ssinws’

S (ps)

- ls
2‘ L+ Lg

where L,+ L, is the contour 4+® +:8 to a+¢38 to a—¢8 to +o —.fB,

where 3 is positive, and 0 <a < 1. The integrand is a uniform fune-

tion of s inside the contour; also the integral is convergent at infinity,

since 2| < 1, and since S(ps) is finite on the contour. ~The singu-
S8ER. 2. VOL. 7. ~o. 1020. R
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larities of the integrand are the points 1, 2, 8, ..., and the sum of the
residues of the integrand at these points is

] L
— 21 3 (—) "‘Tsoot).

1
27“ t=1

This series is convergent and has the sum 2—_’11_: log F(z). Hence,when z<1,

log F(z) = — _J S(ps) —295_ ()

L+Ls P Csim s’

Let M be the line ps = constant passing through the point a, and
let N,, N, be the parts of the circle |s| = B intercepted between M and
L,, L, vespectively. Then on N, and N, . Rps > Mpa> 1/K, and
therefore

. S(ps) | < K.

Now, if z be a point within the unit circle which is also a point of the
region B, we have, as we have seen above,

2z
sin s

[ < K exp[Bz+]|38(s¢) ]/ [exp | 73 (s0)]],

where B =Rsp and 2z = exp (pz+¢1).

Now >0, and since 3p >0 and |2| < 1, we have z < 0; therefore

P

! < Kexp[|R {s(mr—8) ¢} |]/exp[| R (ws)|]

sin 7§
< Kexp[—d|Rs0]].
On putting s = Re*®, we therefore have

2ds
s sin s

2ds
s sin s

+

S S(PS)
Ny

[ s

<92 S"K exp (—dR sin 6) d,
0

which tends to zero as B tends to infinity.®

It follows from this last result that we may deform the contour L,+ L,
of equation (8) into }, since we pass over no singularities of the integrand,

* For it is less than

Kf"exp(—aR sin 0)do < Kj'
[

in _aRo,2),d0 Kr _ o ¥d0
nexP( x <K oxe(=elgg-
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and we have, when z is a point of R within the unit circle,

2°ds
ssin ws’

log Fe) = — o SM S(p9) (4)

We shall now show that this equation holds when z is any point of the
region B. For any such z, we have, for all points s of the contour M,

|s71S(ps) | < K,
since - Rps = Wpa > 0;
and, by the result (1),
z
S ws] K exp (—[s]/K).

It follows immediately that the integral in (4) is convergent. It can
also be shown without difficulty that the integral is differentiable with
respect to z, and therefore that it defines an analytic function of z in the
region R. This function agrees in value with log F(2) in the part of R
within the unit circle ; it must therefore represent log F(2) over the whole
region E.

Let M' be the line ps = constant passing through the point
—({+1)+a. Now, when By > a,

|S(y) | < K < K exp (|| * V%),
Also, if ¥ = 0 be excluded by a small circle from the range of y, we have
for all values of v, 1S() | < K eip [}y |F G-+,

since, by the results of I., {4, S(y) is the sum of I'(k+41) y~*, and an
integral function of y of order k/(k—1). It therefore follows, by the
theorem of II., § 1, that when

Ry > — (+ Dy,
we have 1SN} < Kexp(|y!** D+,

Hence, within and upon the boundaries of the strip of the s-plane between
M and D', the origin being excluded by a small circle, we have

| S(ps) | < K exp (|ps | =0+,
Now, for all points of the strip, we have, by (1),

ZS
s sin s

< Kexp(—Isl/K).
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Since £>38, we have 1/(k—1) <1, and we can choose ¢ so that
1/(k—1)+e<<1. Then, within the strip,

| (ps) < Kexp[—|s|/K+K |ps|HE-D+]

s 8in s

< K exp[—|s]|/K].

It follows immediately that gS(ps) 2 ds , taken along M’, is con-
ssin ws

vergent, and further, that the same integral taken along a straight line

connecting M and M’ tends to zero as the position of line tends to infinity.
We have then

1 2ds 17 2ds
_ZLS(pS) - +§;jM,S(ps) -

S sin s S Ssin s

7

= —2m [the sum of the residues of ——%S(ps) . " at the
3

singularities between M and M’]. 5)

The singularities are at the points 0, —1, —2, ..., —. The residue of
1 2'S(ps) - .
T3 sen s at s=—m (m£0), 1s

— _L (_)m—l S( P”I‘) —m

2 n

(6)

Now consider the residue at s = 0. Near this point we have, using the
form of S(ps) given in § 4, Part I,

_1286) 1 p ckgokoz Zms 1 ma
2 ssinws  uw Tlke+Dp sin 7§ 27nssm7rs( 3
1 _ (— 9

2¢ssm s[ ps¢{—1/k)+4s'+...].

The residues of the second and third terms give

————(—e}logz)+ §(—1/k) (7
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As regards the first term, we have, when |s| is small,

s
sin s

_1+ 2 A21l9)

2(221; 1__ 1) 71'

A
where Aoy = ol

Bn.

Hence the rasidue of the first term

_ 1 i (log 2)e+ (log 2)**1—2%)
=—5= FT(k+1) J DT + 2 42»&1——2—&)—,[ (8)

where « is 3% or % (k+1), according as % is aven or odd.
We now have from (4), (5), (6), (7), and (8),

2 ds
ssin s

log F@&) = — 5 jM S(ps)

2ds

ssin 7s’

=T-7 SM, S(p9)

where T is the expansion given at the beginuning of the article, with N re-
placed by !/, and with the term Jy omitted.

In order to establish our result, we have now only to show that

1 l —
|zl|n—l;-,, g 5 S69) o s ssinas| 0.
Let z = exp (pz+1¢), ps=p(—l-1+a)+zt,

where z is real, and where ¢ is real when s is a point of M’.

Then lim S 298 (ps) —&

Izl | Jar s 8in s
< lim ) | exp [(0z+19)(—1+a+1t/p)]]| exp [K | ¢] *¢=+] _ Kat
el J e P ? P P exp |1 (ms) |

0

¢
<L lim X j |z|"**exp [| B (¢pes) [Jexp [K | ¢|*-V*<Jexp [— |38 (es) |Jdé (9)

| 2|=o

< lim Klzl‘“""j exp [K|¢| =D+ ) exp [—38 | R (s))|] dt,

|z|—>c

since || < m—6.



246 Mg. J. E. LirTLEW0OD [Nov. 12,

Now the integral last written is convergent, and it is independent of 2.
Also, since a < 1,

lim |z|-'**=0.
|2}

We therefore have
ds

$ sin 7§

lim
|z|—>w

Lr 2+ (ps) =0.

8. In the last article we excluded a spiral strip of the z-plane, contain-
ing the zeros of F(2), from the range of the variable z. (In the particular
case when p is real, the strip becomes the angle of the plane between
two lines making an arbitrarily small angle § with the negative real axis.)
The spiral region is, as a matter of fact, unnecessarily extensive, and we
shall show that the expansion of the last article is valid when the excluded
region is contracted upon the curve of zeros. The expansion, in fact,
is valid when the excluded region has for its boundaries (outside the
unit circle) the curves defined by

z = exp[pz 81 .z~ ¢-D+8],

where z takes all values from 1 to 4+ and where ¢ is an arbitrarily
small positive number. These curves start at the points 2 = exp (p +41) ;
the boundaries of the region from O to these points may be taken to be
the spirals z = exp (pz £ d1).*

If 2z be any point exterior to this region, |z | being supposed greater
than unity, we have

2z = exp(pz+1¢),
where m—|p| > Sx~E-D+8 > K -1(log )~ ¢-D+3,

Since w—|¢| is greater than a positive number independent of s, we
have, as in the last article,

_ | 2°ds
logF(z) =T N Lw S(ps) Py
and we have only to prove that
. ] 2s ds —_
rllgalo # L,, S(ps) sginws| 0.

* The strip between these spirals contains no zeros of F'(z), but it must be excluded
from the range of z in order to secure the proper determination of logz, which is supposed
zeroat 2= 1.
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Now we still have the result (9) of the last article, viz.,

ds

lim -
s 8in s

r—>w

j 2+ S(ps)
M

r—>w

< lim Kr‘”“j exp[|Beus|] exp [K | ¢ ¢~D+] exp[ —|8ms|] dt

< lim Kp~'*e S exp [K | ¢[-D+<] exp [— K~ Y(log r)=®*+2+3 | Rus|] dt,

since m—|¢| > K- (logr)~¢-2+3,

Now, when |¢| > K;, || > K~'|¢|. Also the integral last written,
when taken between the limits ¢ = &+ K, is less than a K independent
of 2z, and this K when multiplied by »~'** has zero as a limit when r
is made infinite. We therefore have

ds
s sin ws

lim
r—>w

S Zl+s S(pS)
M

< lim Kr~'*e S exp [Ky| ¢ [M<=D+] exp [— K (log ») =D+ ¢ ] d¢

—rn

< lim [K,'.—I+a > Zl_g_ 5 l t'" (I(k=1)+e] exp [_K.'}-l (log T)—(k_2)+sltl] dt:]

RS n=0 197 !

» > ah—=2=8Tn
< m I:K,.—1+u ’E 2[I12K8(log 7) ]

=0 T(n+1) Lin (1/7f—1+e)}]-

The infinite series is an integral function of the argument

K, K, (log r)—2-¢

of order 1/[1—Q/k—1+¢)].
Therefore
ds
3 l+s
}l—ﬁ ‘ SM, 2% 8(ps) s sin ws

< }Eg Ky—1*e exp [K {KgKa(log '.)k—‘.l-s}_1[[1—(1/le+1)]+¢']' 2)
Now € and ¢ may be so chosen that

(k—2—08) [1/{1—1/i=1+4e}+¢] < 1—1/K (since k > 2).
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Then the right-hand side of (2) is less than or equal to
lim Kr~'** exp[K (log7)!'~"*] = 0,

r—>wo

and the desired result is established.*

4. If k is not an integer S(ps) is no longer a uniform function,
and the ordinary theory of residues cannot be applied. We shall now
consider this case, and shall investigate the more general form

ro = i [nhon plons )|

where kK, > k.1 > ... >k > k> 2, Py Pg --. 8r€ real, and where we
suppose, for simplicity, that p is real and, of course, positive.
We obtain the following result :—

If the angle of the z-plane contained between the two straight lines
which make an arbitrarily small angle & with the negative real azis
be excluded from the range of the variable z, we have the asymptotic
eLpanston

log F@) = —p e=1/0+ £, p.8(~1/%)]

- pCn 8in(k—6,) 7 (log 2\ F~%+!
% log Z+ 520 T ( P )

(Q2m=1_ 1) r2m

X |:I‘(9,‘—Ic—1)+2‘m§l I'em+6,—k—1) BN T Bsm (log Z)"""'],

@0
where the B's are Bernoulli's numbers and s"‘ngo cns® 1s the expansion

for ¥(s) given in L, §5. The infinite series is to be arranged in
order of wncreasing indices of 1/logz, and when we stop at any term,
of order (log2)™? say, we have lim |R(log2)’| =0, where R is the
remainder. sl

Let R denote the region of the s-plane defined by s > — I (where
! is any positive number), with the origin excluded by a small circle,
and with a cut made along the negative real axis from this circle to the
boundary s = —1.

* The regions over which most other known asymptotic expansions, e.g., that of Barnes’s
function P, (2), are valid, may be extended in the same way.
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As in L, § 5, let Sy(ps) denote the function, uniform in R, which is
derived by continuation over R from the Dirichlet series

5 wa = fns § o]

n=1

defined for ®s > 0. We have, by I., § 5, for all points s, and for all
branches of S(ps),

S(ps) = Y (ps)+Q(ps), @
where Q(z) is an integral function of z of order k/(k—1),
and Y69 = o HTo+D+ 3 calos]
where 6, > K-1pte+D . (2)

lea| < [Ky/0n]n
We shall show that for all points of B we have

[olps)| < K exp[ls|] }
|Qes)| < K exp[|s-1+] |

From (2) we have, for all values of s exterior to the small circle
excluding the origin,

1V (e9)| < K+E 3 [Kip|s]/6a]- )

@)

Let m be the greatest value of n such that

Klplsl/en > el

Now [K,p|s|/6] has its maximum value for 6§ > 0 when 6 = K,p|s|/e,
and the value then is exp[K,p|s|/e]. Heuce, from (4),

2 [Kipls|/6.]

n=m+1

|V (ps)| < K(m—+1) exp[K,p|s|/e]+
< [E8}*" exp[K|s|]+ 2, [e]

< K|sp+*! exp[K|s|]+ é:l exp [— K1 nl/e+D)
< K exp [| S |1+‘],* (5)

since the infinite series is convergent and independent of |s|.

* For the method of determining inequalities such as the above by finding the maximum
term of the series, see Borel, Lecons sur les séries @ termes positifs, p. 69.
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Now let R’ be the region defined by s> 1. When s is real and
s> 1, we have by § 5, Part I,

Volps) = j: exp[—ps {x”"+ vgl p,:c‘”‘-}] dz.

Now the right-hand side defines an analytic function of s, uniform in
the region R'. This function, then, must be \r(ps). Hence, within R’,

Volp9)| < || expl—B(p {2+ B} 1o
< K (since ®ps > p). (5)

Again, since @(s) is an integral function of order k/(k—1), we have,

for all values of s, Qo) | < K exp[]s [H-1+<], ©)
Also, within R’, we have
| Sote) | < |2, exp [—ipo) {n+Zp, i} ]
< K (since Bps > p),
and therefore |Qs)| < |8o(ps) |+ 1o (ps) |
< K. (6

Now we see, from (5) and (5)', that we may apply the theorem of
II., § 1, in the case of the function y y(ps), and we therefore have, for all
points of R, ;

| ¥olps)| < K exp(|s|].

Similarly, by (6) and (6)', we may apply the same theorem in the case
of @(ps), and we have, within R,

|Q (ps)| < K exp [l § |elk=D=1+<],

These are the desired results (8).

Now suppose that |argz| < w—§, so that z is exterior to the angle
of our theorem. Then proceeding exactly as in § 2, we obtain

1 - o7
log F(z) = — 7 L{ . So(ps) p Zinirs ,
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where M is the line Vs =1—a and 0 < a < 1,

= Il+12’
__ 1 2ds

where h=-5 Lw, ir Voles) S . @
__ 1 o\ 2ds

and I, = 2 L{ @ (ps) s sin s

Let M’ be the line Bs = — 1+a.
For all points s within or upon
the boundaries of the strip between ay s
M and M', and outside a small circle

excluding the origin, we have T { ° l—a L

Q(ps)

S sm ws
< K exp[|s["~D+] exp[—|s|/K],

and therefore, since ¢ may be chosen so that 1/(k—1)+e <1,

=3 (1) (0w 5555)

exists, and, since the integrand is uniform, is equal to

S

—92m [the sum of the residues of — +- Q(p )

ssin s

at the singularities between M and M '].

Now the only singularity within the strip is at s = 0; also we have
by L, § 5,

Q) = — 3—p [{(—1M+Ep,{(—1/k)]s+As+ ...

Then we have

-3 (J,=1.) (0w :55)

= —3}logz—p[{(—=1/B)+Zp.{(—1/E)].

and 2 ==—3logz—p[{(—1/B)+Zp.{(—1/k)] +J, ®)
1 2°ds
where J—_g_lj Qes) ssin s’
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It may be shown, on ths lines of § 8, that

lim |Jz-1'+a+u| =0,

izl
and therefore that, for any value of Ny,

lim |J(log2)™| = 0. . 8

|z]—>ew

We have now to consider I,.
Let 1—8 be a positive number
less than 1—a. Let M,, M, be the
straight lines from —14B+ . to o

—14+8 and —148 to —14+8— . /\T\ "
respectively, and let T, be the circle .
|s| = 1—B, starting from —1+8 i 0 N §
and described clockwise. Now U

upon and within the contours
consisting of M,;, Ty, M,, and M, YMZ
we have
|Volps) | < K exp[]s]],
z‘s >
and P < Kexp[—|s|/K].

It follows that the integral

2°ds
s sin s

Yolps)

sM+(—Me)+(—To)+(—M|)
exists.*

Since the integrand has no singularities in the regior between M and
M+ Ty+ M, and since the contour of integration may be considered
closed by two lines crossing from M to M, and from M, to M, the integrals
along which lines tend to zero as the lines are taken more and more
distant from the origin, the above integral must have the weiue zero.
Hence

__ 1 2°ds
L= 2% j Mie Volos) s 8in s
—_1 . £ds 1 2ds
Y Lm " Volps) ssinws L,, . Voles) s 8L s
1 2ds
- E SM,, -7 ‘/jo(PS) sginws’

* I use —L to denote the contour L described in the reverse direction.
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Now upon M, and My, if s = —(1—0B)+,

[ Volps)/s] < K exp[ls|] < K exp[|~|],

z K|re”|
sin s exp[—m|7|}/K

< Kr~'*B exp[—¢|7|],

(z=1re? |0] < 7m—0)

where all the K’s are independent of z as well as of s. Therefore

1 2*ds
% le ¥oles) S s

»
< K,'.—1+pj e—sifl+xlf|‘d_r < K,'.—1+B,
-0

and a similar inequality holds for the integral along M,.

1 2ds

Hence I, =-— % L’ ] Vro(ps) pap— +J, 9)
where lilm |J'271*#| < K,
lo|—>»n
and therefore lim 'J'(log 2" | = 0. 9y
|z|=>»

5. From (7), (8), (8)', (9), and (9)' we now have
log F(z) = — }log z—p [{(— 1/ +Z p,E(—1/k) ]+ U@+,

where lim :J"(log 2)¥| = 0
" (log 271 Y
and Ue) =~ L J Volps) 2%
2 Jo . "0 s sin s

It remains, then, to consider the integral U(z).
We shall prove the following preliminary results.
For all positive values of X, when z; > 1,

[ s
Ty

where K s independent of both z and A.
For any value of «, positive or negative,

8
5 ) ds
Tow  SBID TS

: N
= —2‘—“;’3—"1(10g z)‘“[r(—x—l)-{— 2 T'@n—r—1) As,(log2)~* |+ Jy,,

n=1

A 2ds
s sin s

< K(\/e)* |log z|~**2, (2

3)
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where Ay, ts the coefficient of t** in the expansion of wt[sin wt, and where,
for all values of N,

lim |Jy, (log2)~*~1+*| = 0.
zj[—>w

We suppose that » = |z} > exp[1/(1—P)], so that (1—pB)logr > 1.
Let s=z[logz, and let ¢ =arg(logz). Since logr >0, we have
|¢|<3w. Let T be the contour in the z-plane corresponding to T,
in the s-plane, so that T, is a circle described clockwise, starting from
and returning to the point —(1—p)logz. Let T, be an z contour,
described clockwise, starting from and returning to —(1—g@)logz and
circumscribing the origin, which is such that at all points of T} Bz <a
constant A and | z| > a constant A’, which lies between the parallels dis-
tant = from the real axis, and whose length is less than 2= [log 21.
Let T, be the straight line from —o —(1—fB3)logz to —(1—p)logz,
parallel to the real axis, and let T’y be T, described in the reverse direction.

(o

7‘("m
T ( \
U Y (1-p) Log

Consider the integral 5 | z*e*dz|. On T, we have
T,
=Wz <h, and |[Iz]|<m.

Therefore, for all points = of T'; we have
lzre| < K&,

where K is independent of £ and X\. Now £*¢f has its maximum modulus
for £ < I, either when £ = 1 or when £ = —A. The value in the secoad
case is (A\/e)*. Hence, on T, we have

[zre” | < K\ e);
and therefore ST | z*erda | < K (\e)* |log 2], (4)

since the length of T is less than 2 |logz|.



1908.] ASYMPTOTIC EXPANSIONS OF INTEGRAL FUNCTIONS OF ZERO ORDER. 255

Now for all points z of T, we clearly have

Tr :
€086C (b_gz) ’ < K |logz|,

since |z| is greater than some constant %', and is not greater than
(1—pB) |logz|. We therefore have

A

and therefore, putting =z = s log 2,

)

the first of our results.

=1 dz cosec (%g%) |< K |logz|® (%)A,

\ 2ds

§ q
§ 81 s

A
< K |log z| ~**? (%) )

Turning to the second result, we shall show that

j g M drdr = — U sin kr [ @n—x—1)+J (1, &), (5)
Ty, m+¢
where lim |J(n, x)(og 2*| = O,

|2|—>»

for all values of p.

The contour T,+ T, + T, starts from and returns to — @ — (1—2) log z,
and circumscribes the origin. Hence, by a well known result in the
theory of the gamma-function, '

S g dy = — 9 sin (—k—14-20) 7. T (2n—x—1)
Tot 14Ty, m
= —=%sinkr.T (2n—«—1). (5)

Now, if z be any point of T, or Ty, z =—§&—(1—pB)logz, where
£ > 0, and hence

| g=<-2+ 2| < |z |2 e~C-PlosT=¢  [gince |z | > (1—pB) log» > 1]
<r-A|1—B)logz+£|™ e,

whence it easily follows that

lim
|z|>»

(log 2)? {L +JT } z7*2efdx

= 0. (5)2

From (5), and (5);, we obtain (5).
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When | £ < 1, we have

i
sm-:r - 1+ 1E Aﬂu ’
wher@ A2 2 (22n—1_1) T2nB2n
" 2n!

The radius of convergence of the series is 1, and we have

| don | < K [(1—P)])2;
and therefore, when | ¢| < 1—3,

<K T 1=P)"|t|™ < K|t]|™, (6)

Ni+1

E A o t‘lu

n=N+1

where K is independent of £. Now, for all points 2 of T';, we have

lzflog 2l <18
therefore, by (6),

ﬁ_ _—) = - ’u, 2N, ~2 2N|+2
(log z) eosee (log z) 1+ 2 Az (log 2) +4en,(2)(log 2)~

n=1

where | 4ay,(2)| < a K independent of z and z. Hence

Ll er (lc:rg z) gosec (log ) dz

=5 crr 2dit+ E Ann(IOgZ) Zrbj earm—x—‘z+2ndz
T, )8

n=1

+S Aon (2)(log )M Tg=
T,
and therefore, by (5),

= — 2 gin k7w L'(—x—1)+J (0, «)
+ :2:1 [—2¢sin k7 ['(2n—x—1) A3q(log 2) =2+ J @, )]+ (N1, ), (7)
where J'(N), «) is the integral last written. Now
!?li_;nw | Qlog 2> J"(Ny, o) | < hgl,,, K |logz|'2Ll|z2N""e’”d:c| = 0,

by means of (4), provided that we suppose 2N,—« > 0. Hencs, since
lim | (log 2)* J(n, )| = O,
|2 |—>wo
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for all values of p, we have

lim
|z |=~>n

Ny
(log 2*™ [J 0, x) + 2l J(n, ) +J' (Ny, x)] ‘ =0, 8

n=

Now if in the integral J 57"

Ty«  SSIDTS
s = z/log z, we obtain the integral on the left-hand side of (7), multiplied
by = (logz)™~'. Then, from (7) and (8), we obtain at once the desired
result (8).

Now let us consider U (z). We have

oo =1 Wedry,

T, § 8in Ts

we make the transformation

-k 8 »
_lg ()" 2ds [ 5, c”_(ps)e,.],
2 Jr, ssinws La=o

where we have ¢ =Tk+1), 6,=0.

Since the infinite series is uniformly convergent,

» 8, -k 8, —k 8
U =— 3 &P J 02 g
Ta

neo 2t s8in s
Ny 0, ~k 6, =Lk .8
C. S 2
=— 3 &L —= ds+J(Ny, 9
w=0 20 - Jr, $8ID TS

where N, is any integer such that 6y,—A > e, and where

J(NQ) —_— § Cnp

n=>Nc+1 2

o,.-kj' §On—F 4o

T, S 810 7§

Now the modulus of the coefficient of c,p®~* in the last series is less

— I\ Bk
than K (log 2)**+~% (&‘Tk) , by (2). Hence

|J(Ny| < K |log 2|2*® s {¢n | p®* |log z| =% (Bu/e)
+1

n=Na

(since O,—kfe > 1)

< K |log z|®** s (K/6,)° |log z!=(8,/e)’r,
n +1

SRR, 2. voL. 7. No.1021. S
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by the inequality (iv.) of 1., § 5,

o[ K T
24k %
< K |logz | = [llogz[]

Ng+1

n » K ]-o,,w‘\,,H
2+k 9‘\%, Pl
< K |logz]| > [|10g2| |

N3+l

< K |log z {2+*=fx g? e%tf%a  (provided K < e|logz|)
Ny=1

< K |log z |2+*=0xe, (10)
Z¢~% being convergent, since 6, > K~'n¢+D),
0 —k o5
Now if we replace each term j 52 ds on the right-hand side of
T, § 8in 7§

(9) by its equivalent given by (8), in which « is to be replaced by k—6,.
we obtain

No 3 — k—-0,+1
U(Z) = nEO an = (k m Gn) = (lﬁf_z>

Ny
X[ D= E+0,— 1+ 5, T@n—k+0,~1).10 (o)™ |
Na
+ n§0 r—a, I (Ny), 11)
where we shall have

lim
|z)1=>=

=0

N»
(log 2)? [15 . r-8.d v +J (N z)]

for any given p, provided N; and N, are chosen sufficiently large.
Moreover, all terms in the finite sum in (11) which are of degree in
log#z less than —p may be absorbed into the remainder term, for
they clearly satisfy an inequality similar to that last written. If
we now substitute this asymptotic expansion for U(e) in (1), we obtain
the expansion for log F(2) stated at the beginning of the last article,
and it is clear that if we take any number of terms of the expansion
arranged in order of increasing indices of (log2)~!, if the last term be of
order (log 2)~", we shall have

|.:1|i—t->nw |(logz)* R| = 0,

where R is the remainder.
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6. The expansion found for log F(2) has been proved for the case when
k> 2, and when p, p;, py, ... are real. It may be extended to the case
when p is complex, and py, p,, ... are real, the variable z being excluded
from a spiral strip, as in §2, instead of an angle of the plane; the
modified argument follows the lines of §8. If, however, we suppose
P1 Py, --. complex, considerable difficulties appear to arise. And when we
suppose k < 2, our line of proof breaks down, because we cannot then
prove |S(ps)] < Kexp(e|s|] in the region Bs>—1. It is almost
certain, indeed, that this inequality does not then hold. The expansion,
a8 a matter of fact, is none the less valid.*

7. In the case of the function

”

F@) =1II {14z/exp [p " +p,n"*)]},

n=1
we have pa=pg=..=0,

and (I., § 6)

» n — n G (l=Nk k)
S oo =Th41)+k 3 (SIS0
n=0

R Ty T (nk/k,+ k).

Then we have the expansion

log F (&) = — p [{(—1/B)4p,{(—1/k))—} log 2

. oAk —_n\n —n -k k)
+/i’3 (IOLZ) * b sin(k-}-'nk/kl)-ir.I‘('lzk/kl-}-k)(—-—'(—:ﬁ— (l_og_g)
™ p n=0 n. P

x[l‘ (L= k) —k—1!

2m—1__ 2m
+2 3T {2mtn(—k/k, —k—1} & —Dr”

o )=
me=1 2m) B‘Zm(loo z) ]

In the case p, = 0, in which

F(z) = II [142/exp (pn1 )],

n=1

* See the Abstract, p. 218,
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the expansion may be written

log F(z) = —p{(—1/k)—3 log 2

k+1
+ (l—y) [1 +2 2 1410 (@71 —1) 7 By (log 2)'2’”]-

P
1

8. It is not possible to apply the foregoing methods to determine an
asymptotic expansion for the functions F(z) whose n-th zero is of less
order than exp (%) for all values of k. Consider, for example, the function

F() =TI [14/{exp (ogm'**!].

In this case S (s) contains the terms

*

< A, s 00,

P

1

The term s="¢+" gives rise to terms in log F(2) of the type

[2 C..(log z)‘e”‘:l (log 2)" (1 +0+1,
0

the series bheing an asymptotic one. An infinite series of such series
cannot be combined into an asymptotic expansion. Moreover, if

i L] =0,

for all values of ¢, however small, it may be shown from arithmetic con-
siderations that the maximum positive value of log |II (14z/a,)| is of
higher order in z than (logz), for all values of p, so that if log F(2)
possesses an expansion in terms of logz, it must involve an integral
function of log z.

(We obtain, in fact, by the general theory referred to in the Abstract,
for the function

“ f—s\

[1 +2/exp {plogm)' +¥}],
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L,(1+k)
log F'(2) = exp { (]og ) ' ;

7 log z) —kQ+h) ]
+—6P(1—+k) ( P +lower terms |.
The terms within square brackets may be found as far as any numerically
assigned index of 1/log 2, and give an asymptotic though probably divergent
expansion. But this expansion is of a different character from those we
have been considering, as it involves the factor exp {(logz/p)***¥}].*

It may be noted, in conclusion, that it is possible to find asymptotic
expansions for certain forms of F'(2) whose zeros are repeated, and whose
n-th zeros are of the order exp 2%, k¥ > 1. The function

i 2
'n:.E[l 1+ exp (n""")]

is an example.t Its Dirichlet series defines the function

= kD040 sr 3 296 ),
S(s) = kL'(kA+-Fk) s +n20 I‘(n+1) § (=A—nfk)
a8 is seen by replacing As by A in the result of I, § 1. We ‘may now
proceed as in II., § 2, and if KA+ % is an integer and %k > 2, we obtain an
asymptotic expansion for log F(2) analogous to that of that article.

(I take this opportunity of correcting an error in a proof in my paper
“ On the Asymptotic Approximation to Integral Functions of Zero Order,”
which appeared in these Proceedings, Ser. 2, Vol. 5, pp. 861-410.

From p. 880, 1. 5, to p. 881, 1. 8, should be replaced by the following
argument.

A s—1 A
We have o <2" " <3
A s—1 1 /N s—1
Hence 1—exp (—% 0 )> 4 (-2—” = ),

¢ Added February 8th, 1909.

t The rank of the zero —exp (pn'*) is not n but 1+ (1* +2' +... +n—1*). The n-th zero
is, however, of the order exp [n' *** 1],
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where K is a constant (depending on A) which is independent of n, for
(1—e™®/z lies between finite limits when z < 3\. Hence, from (4),

n+1 “'] / K’nn
1/ [1 n+s K s—1°
Then, by a slight modification of 1. 14, p. 880, to 1.8, p. 381, we
obtain Ia'll <K".rm+K'".

This result then leads as in the fext to (6), provided K, is suitably
chosen. A similar modification must be made in the case of a5, p. 388,
1. 1-8.]



